Files
pytorch/torch/_prims/debug_prims.py

61 lines
2.1 KiB
Python

import contextlib
from collections.abc import Generator, Sequence
from typing import Optional
import torch
from torch.utils._content_store import ContentStoreReader
LOAD_TENSOR_READER: Optional[ContentStoreReader] = None
@contextlib.contextmanager
def load_tensor_reader(loc: str) -> Generator[None, None, None]:
global LOAD_TENSOR_READER
assert LOAD_TENSOR_READER is None
# load_tensor is an "op", and we will play merry hell on
# Inductor's memory planning if we return a tensor that
# aliases another tensor that we previously returned from
# an operator. So unlike standard ContentStoreReader use,
# we disable the cache so that you always get fresh storages
# (no aliasing for you!)
LOAD_TENSOR_READER = ContentStoreReader(loc, cache=False)
try:
yield
finally:
LOAD_TENSOR_READER = None
def register_debug_prims() -> None:
torch.library.define(
"debugprims::load_tensor",
"(str name, int[] size, int[] stride, *, ScalarType dtype, Device device) -> Tensor",
)
@torch.library.impl("debugprims::load_tensor", "BackendSelect")
def load_tensor_factory(
name: str,
size: Sequence[int],
stride: Sequence[int],
dtype: torch.dtype,
device: torch.device,
) -> torch.Tensor:
if LOAD_TENSOR_READER is None:
from torch._dynamo.testing import rand_strided
return rand_strided(size, stride, dtype, device)
else:
from torch._dynamo.utils import clone_input
# device argument here takes care of coercion
r = LOAD_TENSOR_READER.read_tensor(name, device=device)
assert list(r.size()) == size, f"{r.size()} != {size}"
assert list(r.stride()) == stride, f"{r.stride()} != {stride}"
assert r.device == device, f"{r.device} != {device}"
# Unlike the other properties, we will do coercions for dtype
# mismatch
if r.dtype != dtype:
r = clone_input(r, dtype=dtype) # type: ignore[no-untyped-call]
return r