mirror of
https://github.com/pytorch/pytorch.git
synced 2025-10-20 21:14:14 +08:00
Summary: This PR introduces shape guards to export. Previously only value ranges, equalities, and specializations would be tracked for symbolic expressions, and we had a forward hook to check them. Instead now we create a function to check shape guards and call it in the exported program. Test Plan: updated several tests Rollback Plan: Differential Revision: D80713603 Pull Request resolved: https://github.com/pytorch/pytorch/pull/161178 Approved by: https://github.com/tugsbayasgalan
519 lines
14 KiB
Python
519 lines
14 KiB
Python
# NOTE: This is a placeholder for iterating on export serialization schema design.
|
|
# Anything is subject to change and no guarantee is provided at this point.
|
|
|
|
from dataclasses import dataclass, field
|
|
from enum import IntEnum
|
|
from typing import Annotated, Optional
|
|
|
|
from torch._export.serde.union import _Union, _union_dataclass
|
|
|
|
|
|
# NOTE: Please update this value if any modifications are made to the schema
|
|
SCHEMA_VERSION = (8, 14)
|
|
TREESPEC_VERSION = 1
|
|
|
|
|
|
# NOTE: If you updated the schema, please run `scripts/export/update_schema.py`
|
|
# to update the auto generated files.
|
|
class ScalarType(IntEnum):
|
|
UNKNOWN = 0
|
|
BYTE = 1
|
|
CHAR = 2
|
|
SHORT = 3
|
|
INT = 4
|
|
LONG = 5
|
|
HALF = 6
|
|
FLOAT = 7
|
|
DOUBLE = 8
|
|
COMPLEXHALF = 9
|
|
COMPLEXFLOAT = 10
|
|
COMPLEXDOUBLE = 11
|
|
BOOL = 12
|
|
BFLOAT16 = 13
|
|
UINT16 = 28
|
|
FLOAT8E4M3FN = 29
|
|
FLOAT8E5M2 = 30
|
|
FLOAT8E4M3FNUZ = 31
|
|
FLOAT8E5M2FNUZ = 32
|
|
|
|
|
|
class Layout(IntEnum):
|
|
Unknown = 0
|
|
SparseCoo = 1
|
|
SparseCsr = 2
|
|
SparseCsc = 3
|
|
SparseBsr = 4
|
|
SparseBsc = 5
|
|
_mkldnn = 6
|
|
Strided = 7
|
|
|
|
|
|
class MemoryFormat(IntEnum):
|
|
Unknown = 0
|
|
ContiguousFormat = 1
|
|
ChannelsLast = 2
|
|
ChannelsLast3d = 3
|
|
PreserveFormat = 4
|
|
|
|
|
|
@dataclass
|
|
class Device:
|
|
type: Annotated[str, 10]
|
|
index: Annotated[Optional[int], 20] = None
|
|
|
|
|
|
@_union_dataclass
|
|
class SymExprHint(_Union):
|
|
as_int: Annotated[int, 10]
|
|
as_bool: Annotated[bool, 20]
|
|
as_float: Annotated[float, 30]
|
|
|
|
|
|
# This is for storing the symbolic expressions behind symints/symfloats/symbools
|
|
# For example, we can get something like
|
|
# SymExpr(expr_str="s0 + s1", hint=SymExprHint(as_int=4)
|
|
# if we also have the hint that s0 and s1 are both 2.
|
|
@dataclass
|
|
class SymExpr:
|
|
expr_str: Annotated[str, 10]
|
|
hint: Annotated[Optional[SymExprHint], 20] = None
|
|
|
|
|
|
@_union_dataclass
|
|
class SymInt(_Union):
|
|
as_expr: Annotated[SymExpr, 10]
|
|
as_int: Annotated[int, 20]
|
|
|
|
|
|
@_union_dataclass
|
|
class SymFloat(_Union):
|
|
as_expr: Annotated[SymExpr, 10]
|
|
as_float: Annotated[float, 20]
|
|
|
|
|
|
@_union_dataclass
|
|
class SymBool(_Union):
|
|
as_expr: Annotated[SymExpr, 10]
|
|
as_bool: Annotated[bool, 20]
|
|
|
|
|
|
@dataclass
|
|
class TensorMeta:
|
|
dtype: Annotated[ScalarType, 10]
|
|
sizes: Annotated[list[SymInt], 20]
|
|
requires_grad: Annotated[bool, 30]
|
|
device: Annotated[Device, 40]
|
|
strides: Annotated[list[SymInt], 50]
|
|
storage_offset: Annotated[SymInt, 60]
|
|
layout: Annotated[Layout, 70]
|
|
|
|
|
|
# In most cases we will use the "as_name" field to store arguments which are
|
|
# SymInts.
|
|
# The "as_int" field is used in the case where we have a list containing a mix
|
|
# of SymInt and ints (ex. [1, s0, ...]). We will serialize this type of list to
|
|
# be List[SymIntArgument] and map the SymInts to the "as_name" field, and ints
|
|
# to the "as_int" field.
|
|
@_union_dataclass
|
|
class SymIntArgument(_Union):
|
|
as_name: Annotated[str, 10]
|
|
as_int: Annotated[int, 20]
|
|
|
|
|
|
# In most cases we will use the "as_name" field to store arguments which are
|
|
# SymFloats.
|
|
# The "as_float" field is used in the case where we have a list containing a mix
|
|
# of SymFloat and float (ex. [1.0, s0, ...]). We will serialize this type of list to
|
|
# be List[SymFloatArgument] and map the SymFloats to the "as_name" field, and ints
|
|
# to the "as_float" field.
|
|
@_union_dataclass
|
|
class SymFloatArgument(_Union):
|
|
as_name: Annotated[str, 10]
|
|
as_float: Annotated[float, 20]
|
|
|
|
|
|
# In most cases we will use the "as_name" field to store arguments which are
|
|
# SymBools.
|
|
# The "as_bool" field is used in the case where we have a list containing a mix
|
|
# of SymBool and bools (ex. [True, i0, ...]). We will serialize this type of list to
|
|
# be List[SymboolArgument] and map the SymBools to the "as_name" field, and bools
|
|
# to the "as_bool" field.
|
|
@_union_dataclass
|
|
class SymBoolArgument(_Union):
|
|
as_name: Annotated[str, 10]
|
|
as_bool: Annotated[bool, 20]
|
|
|
|
|
|
@dataclass
|
|
class TensorArgument:
|
|
name: Annotated[str, 10]
|
|
|
|
|
|
@dataclass
|
|
class TokenArgument:
|
|
name: Annotated[str, 10]
|
|
|
|
|
|
# This is use for storing the contents of a list which contain optional tensors
|
|
# (Tensor?[], ex. [Tensor, None, ...]), where the list will be serialized to the
|
|
# type List[OptionalTensorArgument], with tensor values seiralized to the
|
|
# "as_tensor" field, and None values serialized to the "as_none" field.
|
|
@_union_dataclass
|
|
class OptionalTensorArgument(_Union):
|
|
as_tensor: Annotated[TensorArgument, 20]
|
|
as_none: Annotated[bool, 10]
|
|
|
|
|
|
@dataclass
|
|
class GraphArgument:
|
|
name: Annotated[str, 10]
|
|
graph: Annotated["Graph", 20]
|
|
|
|
|
|
@dataclass
|
|
class CustomObjArgument:
|
|
name: Annotated[str, 10]
|
|
class_fqn: Annotated[str, 20]
|
|
|
|
|
|
@dataclass
|
|
class ComplexValue:
|
|
real: Annotated[float, 10]
|
|
imag: Annotated[float, 20]
|
|
|
|
|
|
# This is actually a union type
|
|
@_union_dataclass
|
|
class Argument(_Union):
|
|
as_none: Annotated[bool, 10]
|
|
as_tensor: Annotated[TensorArgument, 20]
|
|
as_tensors: Annotated[list[TensorArgument], 30]
|
|
as_int: Annotated[int, 50]
|
|
as_ints: Annotated[list[int], 70]
|
|
as_float: Annotated[float, 80]
|
|
as_floats: Annotated[list[float], 90]
|
|
as_string: Annotated[str, 100]
|
|
as_strings: Annotated[list[str], 101]
|
|
as_sym_int: Annotated[SymIntArgument, 110]
|
|
as_sym_ints: Annotated[list[SymIntArgument], 120]
|
|
as_scalar_type: Annotated[ScalarType, 130]
|
|
as_memory_format: Annotated[MemoryFormat, 140]
|
|
as_layout: Annotated[Layout, 150]
|
|
as_device: Annotated[Device, 160]
|
|
as_bool: Annotated[bool, 170]
|
|
as_bools: Annotated[list[bool], 180]
|
|
as_sym_bool: Annotated[SymBoolArgument, 182]
|
|
as_sym_bools: Annotated[list[SymBoolArgument], 184]
|
|
as_graph: Annotated[GraphArgument, 200]
|
|
as_optional_tensors: Annotated[list[OptionalTensorArgument], 190]
|
|
as_custom_obj: Annotated[CustomObjArgument, 210]
|
|
as_operator: Annotated[str, 220]
|
|
as_sym_float: Annotated[SymFloatArgument, 230]
|
|
as_sym_floats: Annotated[list[SymFloatArgument], 240]
|
|
as_optional_tensor: Annotated[OptionalTensorArgument, 250]
|
|
as_complex: Annotated[ComplexValue, 260]
|
|
|
|
|
|
class ArgumentKind(IntEnum):
|
|
UNKNOWN = 0
|
|
POSITIONAL = 1
|
|
KEYWORD = 2
|
|
|
|
|
|
@dataclass
|
|
class NamedArgument:
|
|
# Argument name from the operator schema
|
|
name: Annotated[str, 10]
|
|
arg: Annotated[Argument, 20]
|
|
kind: Annotated[Optional[ArgumentKind], 30] = None
|
|
|
|
|
|
@dataclass
|
|
class Node:
|
|
target: Annotated[str, 10]
|
|
inputs: Annotated[list[NamedArgument], 20]
|
|
outputs: Annotated[list[Argument], 30]
|
|
metadata: Annotated[dict[str, str], 40]
|
|
is_hop_single_tensor_return: Annotated[Optional[bool], 50] = None
|
|
|
|
|
|
@dataclass
|
|
class Graph:
|
|
inputs: Annotated[list[Argument], 10]
|
|
outputs: Annotated[list[Argument], 20]
|
|
nodes: Annotated[list[Node], 30]
|
|
tensor_values: Annotated[dict[str, TensorMeta], 40]
|
|
sym_int_values: Annotated[dict[str, SymInt], 50]
|
|
sym_bool_values: Annotated[dict[str, SymBool], 60]
|
|
# This is for deserializing the submodule graphs from higher order ops
|
|
# (ex. cond, map) where single tensor returns will just return a single
|
|
# tensor, rather than following export schema and returning a singleton
|
|
# list.
|
|
is_single_tensor_return: Annotated[bool, 70] = False
|
|
custom_obj_values: Annotated[dict[str, CustomObjArgument], 80] = field(
|
|
default_factory=dict
|
|
)
|
|
sym_float_values: Annotated[dict[str, SymFloat], 90] = field(default_factory=dict)
|
|
|
|
|
|
@dataclass
|
|
class UserInputSpec:
|
|
# Actually, only tensors and SymInts are allowed here
|
|
arg: Annotated[Argument, 10]
|
|
|
|
|
|
@_union_dataclass
|
|
class ConstantValue(_Union):
|
|
as_none: Annotated[bool, 10]
|
|
as_int: Annotated[int, 20]
|
|
as_float: Annotated[float, 30]
|
|
as_string: Annotated[str, 40]
|
|
as_bool: Annotated[bool, 50]
|
|
|
|
|
|
@dataclass
|
|
class InputToConstantInputSpec:
|
|
name: Annotated[str, 10]
|
|
value: Annotated[ConstantValue, 20]
|
|
|
|
|
|
@dataclass
|
|
class InputToParameterSpec:
|
|
arg: Annotated[TensorArgument, 10]
|
|
parameter_name: Annotated[str, 20]
|
|
|
|
|
|
@dataclass
|
|
class InputToBufferSpec:
|
|
arg: Annotated[TensorArgument, 10]
|
|
buffer_name: Annotated[str, 20]
|
|
persistent: Annotated[bool, 30]
|
|
|
|
|
|
@dataclass
|
|
class InputToTensorConstantSpec:
|
|
arg: Annotated[TensorArgument, 10]
|
|
tensor_constant_name: Annotated[str, 20]
|
|
|
|
|
|
@dataclass
|
|
class InputToCustomObjSpec:
|
|
arg: Annotated[CustomObjArgument, 10]
|
|
custom_obj_name: Annotated[str, 20]
|
|
|
|
|
|
@dataclass
|
|
class InputTokenSpec:
|
|
arg: Annotated[TokenArgument, 10]
|
|
|
|
|
|
@_union_dataclass
|
|
class InputSpec(_Union):
|
|
user_input: Annotated[UserInputSpec, 10]
|
|
parameter: Annotated[InputToParameterSpec, 20]
|
|
buffer: Annotated[InputToBufferSpec, 30]
|
|
tensor_constant: Annotated[InputToTensorConstantSpec, 40]
|
|
custom_obj: Annotated[InputToCustomObjSpec, 50]
|
|
token: Annotated[InputTokenSpec, 70]
|
|
constant_input: Annotated[InputToConstantInputSpec, 60]
|
|
|
|
|
|
@dataclass
|
|
class UserOutputSpec:
|
|
arg: Annotated[Argument, 10]
|
|
|
|
|
|
@dataclass
|
|
class LossOutputSpec:
|
|
arg: Annotated[TensorArgument, 10]
|
|
|
|
|
|
@dataclass
|
|
class BufferMutationSpec:
|
|
arg: Annotated[TensorArgument, 10]
|
|
buffer_name: Annotated[str, 20]
|
|
|
|
|
|
@dataclass
|
|
class ParameterMutationSpec:
|
|
arg: Annotated[TensorArgument, 10]
|
|
parameter_name: Annotated[str, 20]
|
|
|
|
|
|
@dataclass
|
|
class GradientToParameterSpec:
|
|
arg: Annotated[TensorArgument, 10]
|
|
parameter_name: Annotated[str, 20]
|
|
|
|
|
|
@dataclass
|
|
class GradientToUserInputSpec:
|
|
arg: Annotated[TensorArgument, 10]
|
|
user_input_name: Annotated[str, 20]
|
|
|
|
|
|
@dataclass
|
|
class UserInputMutationSpec:
|
|
arg: Annotated[TensorArgument, 10]
|
|
user_input_name: Annotated[str, 20]
|
|
|
|
|
|
@dataclass
|
|
class OutputTokenSpec:
|
|
arg: Annotated[TokenArgument, 10]
|
|
|
|
|
|
@_union_dataclass
|
|
class OutputSpec(_Union):
|
|
user_output: Annotated[UserOutputSpec, 10]
|
|
loss_output: Annotated[LossOutputSpec, 20]
|
|
buffer_mutation: Annotated[BufferMutationSpec, 30]
|
|
gradient_to_parameter: Annotated[GradientToParameterSpec, 40]
|
|
gradient_to_user_input: Annotated[GradientToUserInputSpec, 50]
|
|
user_input_mutation: Annotated[UserInputMutationSpec, 60]
|
|
token: Annotated[OutputTokenSpec, 70]
|
|
parameter_mutation: Annotated[ParameterMutationSpec, 80]
|
|
|
|
|
|
@dataclass
|
|
class GraphSignature:
|
|
input_specs: Annotated[list[InputSpec], 10]
|
|
output_specs: Annotated[list[OutputSpec], 20]
|
|
|
|
|
|
@dataclass
|
|
class RangeConstraint:
|
|
min_val: Annotated[Optional[int], 10]
|
|
max_val: Annotated[Optional[int], 20]
|
|
|
|
|
|
@dataclass
|
|
class ModuleCallSignature:
|
|
inputs: Annotated[list[Argument], 10]
|
|
outputs: Annotated[list[Argument], 20]
|
|
|
|
# These are serialized by calling pytree.treespec_loads
|
|
# And deserialized by calling pytree.treespec_dumps
|
|
in_spec: Annotated[str, 30]
|
|
out_spec: Annotated[str, 40]
|
|
|
|
# This field is used to prettify the graph placeholders
|
|
# after we Ser/Der and retrace
|
|
forward_arg_names: Annotated[Optional[list[str]], 50] = None
|
|
|
|
|
|
@dataclass
|
|
class ModuleCallEntry:
|
|
fqn: Annotated[str, 10]
|
|
signature: Annotated[Optional[ModuleCallSignature], 30] = None
|
|
|
|
|
|
@dataclass
|
|
class NamedTupleDef:
|
|
field_names: Annotated[list[str], 10]
|
|
|
|
|
|
@dataclass
|
|
class GraphModule:
|
|
graph: Annotated[Graph, 10]
|
|
signature: Annotated[GraphSignature, 50]
|
|
# This is used for unflattening, by tracking the calling structure of all of
|
|
# the modules in order to unflatten the modules back to the eager calling
|
|
# conventions.
|
|
module_call_graph: Annotated[list[ModuleCallEntry], 60]
|
|
metadata: Annotated[dict[str, str], 40] = field(default_factory=dict)
|
|
# Mapping of namedtuple types to namedtuple field names, used for BC
|
|
treespec_namedtuple_fields: Annotated[dict[str, NamedTupleDef], 70] = field(
|
|
default_factory=dict
|
|
)
|
|
|
|
|
|
# Invariant: Every time a change is made to the schema, one of the versions
|
|
# should be updated.
|
|
@dataclass
|
|
class SchemaVersion:
|
|
major: Annotated[
|
|
int, 10
|
|
] # Major version number is bumped every time a breaking change is made.
|
|
minor: Annotated[
|
|
int, 20
|
|
] # Minor version number is bumped when a compatible change is made.
|
|
|
|
|
|
@dataclass
|
|
class ExportedProgram:
|
|
graph_module: Annotated[GraphModule, 10]
|
|
# Key is the opset namespace (ex. aten), and value is the version number
|
|
opset_version: Annotated[dict[str, int], 20]
|
|
range_constraints: Annotated[dict[str, RangeConstraint], 30]
|
|
schema_version: Annotated[SchemaVersion, 60]
|
|
verifiers: Annotated[list[str], 70] = field(default_factory=list)
|
|
torch_version: Annotated[str, 80] = "<=2.4"
|
|
guards_code: Annotated[list[str], 90] = field(default_factory=list)
|
|
|
|
|
|
#########################################################################
|
|
# Container types for inference tasks, not being used directly for export.
|
|
#########################################################################
|
|
|
|
|
|
# The metadata for payload saved in PT2 archive.
|
|
# payload includes params, buffers, tensor constants, and custom objects.
|
|
@dataclass
|
|
class PayloadMeta:
|
|
# the path of the payload in the archive file, e.g. "weight_0"
|
|
path_name: Annotated[str, 10]
|
|
is_param: Annotated[bool, 20]
|
|
# whether the payload is serialized using pickle.
|
|
# Only custom objects and tensor subclasses that are not fake tensors
|
|
# are serialized using pickle.
|
|
use_pickle: Annotated[bool, 30]
|
|
# Custom Objects don't have tensor_meta and will be serialized using pickle
|
|
tensor_meta: Annotated[Optional[TensorMeta], 40]
|
|
|
|
|
|
# The mapping from payload FQN to its metadata.
|
|
@dataclass
|
|
class PayloadConfig:
|
|
config: Annotated[dict[str, PayloadMeta], 10]
|
|
|
|
|
|
#
|
|
# The structure is used to serialize instances of AOTInductorModel to pass
|
|
# them from the publishing pipeline to the predictor.
|
|
#
|
|
# All new fields should be marked as optional.
|
|
#
|
|
@dataclass
|
|
class AOTInductorModelPickleData:
|
|
# Base name of an associated .so AOTInductor library. Typically looks like:
|
|
# "abc.so".
|
|
library_basename: Annotated[str, 1]
|
|
|
|
# AOTInductor engine input names.
|
|
input_names: Annotated[list[str], 2]
|
|
|
|
# AOTInductor engine output names.
|
|
output_names: Annotated[list[str], 3]
|
|
|
|
# These fields tell whether floating point inputs/outputs should be converted to
|
|
# a certain type. If None, the dtypes that the AOTInductor engine inferred from the sample
|
|
# inputs are used.
|
|
floating_point_input_dtype: Annotated[Optional[int], 4] = None
|
|
floating_point_output_dtype: Annotated[Optional[int], 5] = None
|
|
|
|
# Whether AOTInductor runtime is for CPU.
|
|
aot_inductor_model_is_cpu: Annotated[Optional[bool], 6] = None
|
|
|
|
|
|
@dataclass
|
|
class ExternKernelNode:
|
|
# name is not the unique identifier of the node
|
|
name: Annotated[str, 10]
|
|
node: Annotated[Node, 20]
|
|
|
|
|
|
@dataclass
|
|
class ExternKernelNodes:
|
|
nodes: Annotated[list[ExternKernelNode], 10]
|