mirror of
https://github.com/pytorch/pytorch.git
synced 2025-10-20 21:14:14 +08:00
This is follow-up of #165037. It generally recommended to use `is/is not` to compare types. Therefore this series of changes apply this suggestion in the code base, and it aims to finally enabling related linter checks. Pull Request resolved: https://github.com/pytorch/pytorch/pull/165142 Approved by: https://github.com/albanD
305 lines
11 KiB
Python
305 lines
11 KiB
Python
# mypy: allow-untyped-defs
|
|
import collections
|
|
from collections import defaultdict
|
|
from collections.abc import Callable
|
|
from typing import Any, Optional
|
|
|
|
import torch
|
|
import torch.utils._pytree as pytree
|
|
|
|
|
|
aten = torch.ops.aten
|
|
|
|
# We would like to split modules into two subgraphs for runtime weight updates to work correctly.
|
|
# The use case and more information could be found at:
|
|
# https://docs.google.com/document/d/1inZC-8KarJ6gKB7G9egmYLx1V_dKX_apxon0w4zPC0Q/edit?usp=sharing
|
|
META_TAG = "MODULE_TYPE"
|
|
MODULE_TAG = "_MAIN_MODULE"
|
|
CONST_MODULE_TAG = "_CONST_MODULE"
|
|
|
|
|
|
def replace_node_with_constant(gm, node, constant, name=None):
|
|
g = gm.graph
|
|
|
|
if name:
|
|
qualname = name
|
|
else:
|
|
if not hasattr(gm, "_frozen_param_count"):
|
|
gm._frozen_param_count = 0
|
|
i = gm._frozen_param_count
|
|
|
|
while True:
|
|
qualname = f"_frozen_param{i}"
|
|
if not hasattr(gm, qualname):
|
|
break
|
|
i += 1
|
|
|
|
gm._frozen_param_count = i + 1
|
|
|
|
with g.inserting_before(node):
|
|
new_input_node = g.create_node("get_attr", qualname, (), {})
|
|
node.replace_all_uses_with(new_input_node)
|
|
new_input_node.meta.update(node.meta)
|
|
g.erase_node(node)
|
|
|
|
# needed to suppress `does not reference an nn.Module, nn.Parameter, or buffer` warning
|
|
gm.register_buffer(qualname, constant)
|
|
setattr(gm, qualname, constant)
|
|
|
|
|
|
class ConstantFolder(torch.fx.Interpreter):
|
|
def __init__(
|
|
self,
|
|
gm: torch.fx.GraphModule,
|
|
skip_constructors: bool = False,
|
|
):
|
|
super().__init__(gm)
|
|
self.node_replacements: dict[torch.fx.Node, Any] = {}
|
|
self.replaced_uses: dict[torch.fx.Node, int] = collections.Counter()
|
|
self.unknown_value = object()
|
|
self.skip_constructors: bool = skip_constructors
|
|
|
|
# overwrite this to deallocate env values if their only remaining use
|
|
# is the output
|
|
self.user_to_last_uses = self.node_to_last_non_output_use()
|
|
|
|
def is_impure(self, node: torch.fx.Node) -> bool:
|
|
if (
|
|
node.target == torch.ops.prims.convert_element_type.default
|
|
and node.args[0].op == "get_attr" # type: ignore[union-attr]
|
|
and node.args[0].meta["val"].dtype == torch.int8 # type: ignore[union-attr]
|
|
and node.args[1] == torch.bfloat16
|
|
):
|
|
# For int8_weight -> dq -> bf16_weight
|
|
return True
|
|
if node.target in [
|
|
torch.ops.quantized_decomposed.dequantize_per_channel.default,
|
|
torch.ops.quantized_decomposed.dequantize_per_tensor.default,
|
|
torch.ops.quantized_decomposed.dequantize_per_tensor.tensor,
|
|
torch.ops.pt2e_quant.dequantize_affine,
|
|
]:
|
|
# For the pattern fp32_weight -> q -> dq
|
|
# We only folding fp32_weight -> q
|
|
# int8_weight and leave dq in graph to be fused
|
|
return True
|
|
return False
|
|
|
|
def node_to_last_non_output_use(self):
|
|
last_non_output_use = collections.defaultdict(list)
|
|
seen_uses = set()
|
|
output_node = next(iter(reversed(self.module.graph.nodes))) # type: ignore[arg-type, union-attr]
|
|
|
|
for node in reversed(self.module.graph.nodes): # type: ignore[arg-type, union-attr]
|
|
if node.target == "output":
|
|
continue
|
|
|
|
def add_use(inp):
|
|
if inp in seen_uses:
|
|
return
|
|
|
|
seen_uses.add(inp)
|
|
last_non_output_use[node].append(inp)
|
|
|
|
# In-place is fine since we don't mutate
|
|
pytree.tree_map_only_(torch.fx.Node, add_use, (node.args, node.kwargs))
|
|
|
|
# if this node is only used in output, we want to gc it right away
|
|
if len(node.users) == 1 and output_node in node.users:
|
|
last_non_output_use[node].append(node)
|
|
|
|
return last_non_output_use
|
|
|
|
def run_node(self, node):
|
|
if node.target == "output":
|
|
# because we remove nodes from env on last non output use,
|
|
# re-define them now or we'll get error in interpreter
|
|
def set_env(arg):
|
|
self.env[arg] = self.unknown_value
|
|
|
|
# In-place is fine since we don't mutate
|
|
pytree.tree_map_only_(torch.fx.Node, set_env, node.args)
|
|
return super().run_node(node)
|
|
|
|
args, kwargs = self.fetch_args_kwargs_from_env(node)
|
|
flattened_inputs = pytree.arg_tree_leaves(*args, **kwargs)
|
|
|
|
# We need to do this weird thing because in cases where flattened_inputs
|
|
# contains a ScriptObject, equality checking results in a type error if
|
|
# the types are different.
|
|
if any(
|
|
type(self.unknown_value) is type(input_) and self.unknown_value == input_
|
|
for input_ in flattened_inputs
|
|
):
|
|
return self.unknown_value
|
|
|
|
# TODO - fix errors with this
|
|
if (
|
|
node.op == "call_function"
|
|
and node.target == aten._efficientzerotensor.default
|
|
):
|
|
return self.unknown_value
|
|
|
|
# TODO - constant folding triton kernel returns the inputs -- fix this
|
|
if (
|
|
node.op == "call_function"
|
|
and node.name == "triton_kernel_wrapper_functional_proxy"
|
|
):
|
|
return self.unknown_value
|
|
|
|
# skip constructors, since inductor generates optimal code for them already
|
|
# and turning into tensor would result in an additional global memory read
|
|
# TODO - more complicated strategy
|
|
if (
|
|
self.skip_constructors
|
|
and node.op != "get_attr"
|
|
and not any(isinstance(e, torch.Tensor) for e in flattened_inputs)
|
|
):
|
|
return self.unknown_value
|
|
|
|
# All mutations should either be removed or on inputs which we did not make constant
|
|
if (
|
|
isinstance(node.target, torch._ops.OpOverload)
|
|
and torch.Tag.nondeterministic_seeded in node.target.tags
|
|
):
|
|
return self.unknown_value
|
|
|
|
out = super().run_node(node)
|
|
|
|
if node.op != "get_attr" and isinstance(out, torch.Tensor):
|
|
if out.device.type == "meta":
|
|
return out
|
|
|
|
if not self.insertable_tensor_check(out):
|
|
return out
|
|
|
|
if self.is_impure(node):
|
|
return self.unknown_value
|
|
|
|
self.add_node_replacement(node, out)
|
|
|
|
flattened_node_inps = pytree.arg_tree_leaves(*node.args, **node.kwargs)
|
|
|
|
for n in flattened_node_inps:
|
|
if not isinstance(n, torch.fx.Node):
|
|
continue
|
|
|
|
self.replaced_uses[n] += 1
|
|
|
|
for to_delete in self.user_to_last_uses.get(node, []):
|
|
if self.replaced_uses[to_delete] == len(to_delete.users):
|
|
self.node_replacements.pop(to_delete, None)
|
|
|
|
return out
|
|
|
|
def insertable_tensor_check(self, tensor: torch.Tensor) -> bool:
|
|
return True
|
|
|
|
def add_node_replacement(self, node: torch.fx.Node, tensor: torch.Tensor) -> None:
|
|
self.node_replacements[node] = tensor
|
|
|
|
def run(self): # type: ignore[override]
|
|
env = {}
|
|
for n in self.module.graph.find_nodes(op="placeholder"): # type: ignore[operator, union-attr]
|
|
env[n] = self.unknown_value
|
|
return super().run(initial_env=env)
|
|
|
|
|
|
def constant_fold(
|
|
gm: torch.fx.GraphModule,
|
|
constraint_fn: Optional[Callable[[torch.fx.Node], bool]] = None,
|
|
):
|
|
with torch.utils._python_dispatch._disable_current_modes():
|
|
cf = ConstantFolder(gm, skip_constructors=True)
|
|
cf.run()
|
|
|
|
for node, constant in cf.node_replacements.items():
|
|
if constraint_fn is not None and not constraint_fn(node):
|
|
continue
|
|
replace_node_with_constant(gm, node, constant)
|
|
|
|
erased_params = []
|
|
# Get all attr users by looking up the graph instead from node.users, because in this case
|
|
# _tensor_constant0 and _tensor_constant0_1 are actually refereing to the same tensor.
|
|
|
|
# opcode name target args kwargs
|
|
# ------------- ------------------- ---------------- --------------------------- --------
|
|
# placeholder arg0_1 arg0 () {}
|
|
# get_attr _tensor_constant0 state () {}
|
|
# call_function add aten.add.Tensor (arg0_1, _tensor_constant0) {}
|
|
# get_attr _tensor_constant0_1 state () {}
|
|
# call_function add_ aten.add_.Tensor (_tensor_constant0_1, 1) {}
|
|
# output output output ([add],) {}
|
|
|
|
get_attr_node_users = defaultdict(list)
|
|
for node in gm.graph.nodes:
|
|
if node.op == "get_attr":
|
|
get_attr_node_users[node.target].extend(node.users.keys())
|
|
for node in gm.graph.find_nodes(op="get_attr"):
|
|
if node.op == "get_attr" and len(get_attr_node_users[node.target]) == 0:
|
|
if hasattr(gm, node.target):
|
|
delattr(gm, node.target)
|
|
erased_params.append(node)
|
|
for node in erased_params:
|
|
gm.graph.erase_node(node)
|
|
|
|
gm.graph.eliminate_dead_code()
|
|
gm.graph.lint()
|
|
gm.recompile()
|
|
|
|
|
|
def constant_graph_tag(gm: torch.fx.GraphModule) -> None:
|
|
with torch.utils._python_dispatch._disable_current_modes():
|
|
cf = ConstantFolder(gm, skip_constructors=True)
|
|
cf.run()
|
|
|
|
for node in gm.graph.nodes:
|
|
if (
|
|
node.op == "get_attr"
|
|
or node in cf.node_replacements
|
|
or node in cf.replaced_uses
|
|
):
|
|
node.meta[META_TAG] = CONST_MODULE_TAG
|
|
else:
|
|
node.meta[META_TAG] = MODULE_TAG
|
|
|
|
|
|
def run_and_get_constant_graph(gm: torch.fx.GraphModule) -> torch.fx.GraphModule:
|
|
"""
|
|
Construct a GraphModule which corresponds to the part which could be
|
|
constant folded in provided gm.
|
|
"""
|
|
|
|
constant_graph_tag(gm)
|
|
# We rewrite the tags, if it's a constant being directly consumed, without
|
|
# any folding opportunity, we keep it in main gm.
|
|
for node in gm.graph.find_nodes(op="get_attr"):
|
|
used_to_fold = False
|
|
for u in node.users:
|
|
if u.meta[META_TAG] == CONST_MODULE_TAG:
|
|
used_to_fold = True
|
|
break
|
|
if not used_to_fold:
|
|
node.meta[META_TAG] = MODULE_TAG
|
|
|
|
new_graph = torch.fx.Graph()
|
|
|
|
node_remapping: dict[torch.fx.Node, torch.fx.Node] = {}
|
|
output_nodes = []
|
|
for node in gm.graph.nodes:
|
|
if node.meta[META_TAG] == MODULE_TAG:
|
|
continue
|
|
|
|
new_node = new_graph.node_copy(node, lambda x: node_remapping[x])
|
|
node_remapping[node] = new_node
|
|
|
|
for user in node.users:
|
|
if user.meta[META_TAG] == MODULE_TAG:
|
|
output_nodes.append(new_node)
|
|
break
|
|
|
|
new_graph.output(tuple(output_nodes))
|
|
new_graph.lint()
|
|
new_gm = torch.fx.GraphModule(gm, new_graph)
|
|
|
|
return new_gm
|