mirror of
https://github.com/pytorch/pytorch.git
synced 2025-10-20 12:54:11 +08:00
Fixes #129053 Previously interpolate had a bad signature and not correct type hints. This fixes this issue. Pull Request resolved: https://github.com/pytorch/pytorch/pull/157202 Approved by: https://github.com/ezyang, https://github.com/albanD
140 lines
3.8 KiB
Python
140 lines
3.8 KiB
Python
# ${generated_comment}
|
|
# mypy: disable-error-code="type-arg"
|
|
|
|
from collections.abc import Sequence
|
|
from typing import Literal, overload
|
|
|
|
from torch import memory_format, Tensor
|
|
from torch.types import _bool, _device, _dtype, _int, _size
|
|
|
|
# Defined in tools/autograd/templates/python_nn_functions.cpp
|
|
|
|
${c_nn_function_hints}
|
|
|
|
# Defined in aten/src/ATen/native/mkldnn/Linear.cpp
|
|
def mkldnn_linear(input: Tensor, weight: Tensor, bias: Tensor | None) -> Tensor: ...
|
|
|
|
# Defined at aten/src/ATen/native/mkldnn/MKLDNNConversions.cpp
|
|
def mkldnn_reorder_conv2d_weight(
|
|
self: Tensor,
|
|
padding: list,
|
|
stride: list,
|
|
dilatation: list,
|
|
groups: int,
|
|
) -> Tensor: ...
|
|
def mkldnn_reorder_conv3d_weight(
|
|
self: Tensor,
|
|
padding: list,
|
|
stride: list,
|
|
dilatation: list,
|
|
groups: int,
|
|
) -> Tensor: ...
|
|
|
|
# Defined in aten/src/ATen/native/mkldnn/Prelu.cpp
|
|
def mkldnn_prelu(input: Tensor, weight: Tensor) -> Tensor: ...
|
|
|
|
# Defined at tools/autograd/templates/python_nn_functions.cpp
|
|
@overload
|
|
def _parse_to(
|
|
device: _device,
|
|
dtype: _dtype,
|
|
non_blocking: _bool,
|
|
copy: _bool,
|
|
*,
|
|
memory_format: memory_format,
|
|
) -> tuple[_device, _dtype, _bool, memory_format]: ...
|
|
@overload
|
|
def _parse_to(
|
|
dtype: _dtype,
|
|
non_blocking: _bool,
|
|
copy: _bool,
|
|
*,
|
|
memory_format: memory_format,
|
|
) -> tuple[_device, _dtype, _bool, memory_format]: ...
|
|
@overload
|
|
def _parse_to(
|
|
tensor: Tensor,
|
|
non_blocking: _bool,
|
|
copy: _bool,
|
|
*,
|
|
memory_format: memory_format,
|
|
) -> tuple[_device, _dtype, _bool, memory_format]: ...
|
|
|
|
# Defined in aten/src/ATen/native/PackedSequence.cpp
|
|
def pad_sequence(
|
|
sequences: list[Tensor] | tuple[Tensor, ...],
|
|
batch_first: bool = False,
|
|
padding_value: float = 0.0,
|
|
padding_side: Literal["left", "right"] = "right",
|
|
) -> Tensor: ...
|
|
|
|
# Upsample functions used by torch.nn.functional.interpolate
|
|
def upsample_nearest1d(
|
|
input: Tensor,
|
|
output_size: Sequence[int] | None,
|
|
scale_factors: Sequence[float] | None,
|
|
) -> Tensor: ...
|
|
def upsample_nearest2d(
|
|
input: Tensor,
|
|
output_size: Sequence[int] | None,
|
|
scale_factors: Sequence[float] | None,
|
|
) -> Tensor: ...
|
|
def upsample_nearest3d(
|
|
input: Tensor,
|
|
output_size: Sequence[int] | None,
|
|
scale_factors: Sequence[float] | None,
|
|
) -> Tensor: ...
|
|
def _upsample_nearest_exact1d(
|
|
input: Tensor,
|
|
output_size: Sequence[int] | None,
|
|
scale_factors: Sequence[float] | None,
|
|
) -> Tensor: ...
|
|
def _upsample_nearest_exact2d(
|
|
input: Tensor,
|
|
output_size: Sequence[int] | None,
|
|
scale_factors: Sequence[float] | None,
|
|
) -> Tensor: ...
|
|
def _upsample_nearest_exact3d(
|
|
input: Tensor,
|
|
output_size: Sequence[int] | None,
|
|
scale_factors: Sequence[float] | None,
|
|
) -> Tensor: ...
|
|
def upsample_linear1d(
|
|
input: Tensor,
|
|
output_size: Sequence[int] | None,
|
|
align_corners: bool,
|
|
scale_factors: Sequence[float] | None,
|
|
) -> Tensor: ...
|
|
def _upsample_bilinear2d_aa(
|
|
input: Tensor,
|
|
output_size: Sequence[int] | None,
|
|
align_corners: bool,
|
|
scale_factors: Sequence[float] | None,
|
|
) -> Tensor: ...
|
|
def upsample_bilinear2d(
|
|
input: Tensor,
|
|
output_size: Sequence[int] | None,
|
|
align_corners: bool,
|
|
scale_factors: Sequence[float] | None,
|
|
) -> Tensor: ...
|
|
def upsample_trilinear3d(
|
|
input: Tensor,
|
|
output_size: Sequence[int] | None,
|
|
align_corners: bool,
|
|
scale_factors: Sequence[float] | None,
|
|
) -> Tensor: ...
|
|
def _upsample_bicubic2d_aa(
|
|
input: Tensor,
|
|
output_size: Sequence[int] | None,
|
|
align_corners: bool,
|
|
scale_factors: Sequence[float] | None,
|
|
) -> Tensor: ...
|
|
def upsample_bicubic2d(
|
|
input: Tensor,
|
|
output_size: Sequence[int] | None,
|
|
align_corners: bool,
|
|
scale_factors: Sequence[float] | None,
|
|
) -> Tensor: ...
|
|
def flatten_dense_tensors(tensors: list[Tensor]) -> Tensor: ...
|
|
def unflatten_dense_tensors(flat: Tensor, tensors: list[Tensor]) -> list[Tensor]: ...
|