mirror of
https://github.com/pytorch/pytorch.git
synced 2025-10-20 21:14:14 +08:00
Fixes #ISSUE_NUMBER Pull Request resolved: https://github.com/pytorch/pytorch/pull/142115 Approved by: https://github.com/ezyang
135 lines
4.4 KiB
Python
135 lines
4.4 KiB
Python
"""
|
|
For procedural tests needed for __torch_function__, we use this function
|
|
to export method names and signatures as needed by the tests in
|
|
test/test_overrides.py.
|
|
|
|
python -m tools.autograd.gen_annotated_fn_args \
|
|
aten/src/ATen/native/native_functions.yaml \
|
|
aten/src/ATen/native/tags.yaml \
|
|
$OUTPUT_DIR \
|
|
tools/autograd
|
|
|
|
Where $OUTPUT_DIR is where you would like the files to be
|
|
generated. In the full build system, OUTPUT_DIR is
|
|
torch/testing/_internal/generated
|
|
"""
|
|
|
|
from __future__ import annotations
|
|
|
|
import argparse
|
|
import os
|
|
import textwrap
|
|
from collections import defaultdict
|
|
from typing import Any, TYPE_CHECKING
|
|
|
|
import torchgen.api.python as python
|
|
from torchgen.context import with_native_function
|
|
from torchgen.gen import parse_native_yaml
|
|
from torchgen.utils import FileManager
|
|
|
|
from .gen_python_functions import (
|
|
is_py_fft_function,
|
|
is_py_linalg_function,
|
|
is_py_nn_function,
|
|
is_py_special_function,
|
|
is_py_torch_function,
|
|
is_py_variable_method,
|
|
should_generate_py_binding,
|
|
)
|
|
|
|
|
|
if TYPE_CHECKING:
|
|
from collections.abc import Sequence
|
|
|
|
from torchgen.model import Argument, BaseOperatorName, NativeFunction
|
|
|
|
|
|
def gen_annotated(
|
|
native_yaml_path: str, tags_yaml_path: str, out: str, autograd_dir: str
|
|
) -> None:
|
|
native_functions = parse_native_yaml(
|
|
native_yaml_path, tags_yaml_path
|
|
).native_functions
|
|
mappings = (
|
|
(is_py_torch_function, "torch._C._VariableFunctions"),
|
|
(is_py_nn_function, "torch._C._nn"),
|
|
(is_py_linalg_function, "torch._C._linalg"),
|
|
(is_py_special_function, "torch._C._special"),
|
|
(is_py_fft_function, "torch._C._fft"),
|
|
(is_py_variable_method, "torch.Tensor"),
|
|
)
|
|
annotated_args: list[str] = []
|
|
for pred, namespace in mappings:
|
|
groups: dict[BaseOperatorName, list[NativeFunction]] = defaultdict(list)
|
|
for f in native_functions:
|
|
if not should_generate_py_binding(f) or not pred(f):
|
|
continue
|
|
groups[f.func.name.name].append(f)
|
|
for group in groups.values():
|
|
for f in group:
|
|
annotated_args.append(f"{namespace}.{gen_annotated_args(f)}")
|
|
|
|
template_path = os.path.join(autograd_dir, "templates")
|
|
fm = FileManager(install_dir=out, template_dir=template_path, dry_run=False)
|
|
fm.write_with_template(
|
|
"annotated_fn_args.py",
|
|
"annotated_fn_args.py.in",
|
|
lambda: {
|
|
"annotated_args": textwrap.indent("\n".join(annotated_args), " "),
|
|
},
|
|
)
|
|
|
|
|
|
@with_native_function
|
|
def gen_annotated_args(f: NativeFunction) -> str:
|
|
def _get_kwargs_func_exclusion_list() -> list[str]:
|
|
# functions that currently don't work with kwargs in test_overrides.py
|
|
return [
|
|
"diagonal",
|
|
"round_",
|
|
"round",
|
|
"scatter_",
|
|
]
|
|
|
|
def _add_out_arg(
|
|
out_args: list[dict[str, Any]], args: Sequence[Argument], *, is_kwarg_only: bool
|
|
) -> None:
|
|
for arg in args:
|
|
if arg.default is not None:
|
|
continue
|
|
out_arg: dict[str, Any] = {}
|
|
out_arg["is_kwarg_only"] = str(is_kwarg_only)
|
|
out_arg["name"] = arg.name
|
|
out_arg["simple_type"] = python.argument_type_str(
|
|
arg.type, simple_type=True
|
|
)
|
|
size_t = python.argument_type_size(arg.type)
|
|
if size_t:
|
|
out_arg["size"] = size_t
|
|
out_args.append(out_arg)
|
|
|
|
out_args: list[dict[str, Any]] = []
|
|
_add_out_arg(out_args, f.func.arguments.flat_positional, is_kwarg_only=False)
|
|
if f"{f.func.name.name}" not in _get_kwargs_func_exclusion_list():
|
|
_add_out_arg(out_args, f.func.arguments.flat_kwarg_only, is_kwarg_only=True)
|
|
|
|
return f"{f.func.name.name}: {repr(out_args)},"
|
|
|
|
|
|
def main() -> None:
|
|
parser = argparse.ArgumentParser(description="Generate annotated_fn_args script")
|
|
parser.add_argument(
|
|
"native_functions", metavar="NATIVE", help="path to native_functions.yaml"
|
|
)
|
|
parser.add_argument("tags", metavar="TAGS", help="path to tags.yaml")
|
|
parser.add_argument("out", metavar="OUT", help="path to output directory")
|
|
parser.add_argument(
|
|
"autograd", metavar="AUTOGRAD", help="path to template directory"
|
|
)
|
|
args = parser.parse_args()
|
|
gen_annotated(args.native_functions, args.tags, args.out, args.autograd)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
main()
|