mirror of
https://github.com/pytorch/pytorch.git
synced 2025-10-20 21:14:14 +08:00
Pull Request resolved: https://github.com/pytorch/pytorch/pull/144556 Approved by: https://github.com/ezyang
34 lines
1.2 KiB
Python
34 lines
1.2 KiB
Python
# Owner(s): ["oncall: package/deploy"]
|
|
|
|
import torch
|
|
|
|
|
|
class TestNnModule(torch.nn.Module):
|
|
def __init__(self, nz=6, ngf=9, nc=3):
|
|
super().__init__()
|
|
self.main = torch.nn.Sequential(
|
|
# input is Z, going into a convolution
|
|
torch.nn.ConvTranspose2d(nz, ngf * 8, 4, 1, 0, bias=False),
|
|
torch.nn.BatchNorm2d(ngf * 8),
|
|
torch.nn.ReLU(True),
|
|
# state size. (ngf*8) x 4 x 4
|
|
torch.nn.ConvTranspose2d(ngf * 8, ngf * 4, 4, 2, 1, bias=False),
|
|
torch.nn.BatchNorm2d(ngf * 4),
|
|
torch.nn.ReLU(True),
|
|
# state size. (ngf*4) x 8 x 8
|
|
torch.nn.ConvTranspose2d(ngf * 4, ngf * 2, 4, 2, 1, bias=False),
|
|
torch.nn.BatchNorm2d(ngf * 2),
|
|
torch.nn.ReLU(True),
|
|
# state size. (ngf*2) x 16 x 16
|
|
torch.nn.ConvTranspose2d(ngf * 2, ngf, 4, 2, 1, bias=False),
|
|
torch.nn.BatchNorm2d(ngf),
|
|
torch.nn.ReLU(True),
|
|
# state size. (ngf) x 32 x 32
|
|
torch.nn.ConvTranspose2d(ngf, nc, 4, 2, 1, bias=False),
|
|
torch.nn.Tanh(),
|
|
# state size. (nc) x 64 x 64
|
|
)
|
|
|
|
def forward(self, input):
|
|
return self.main(input)
|