Files
pytorch/test/inductor/test_pattern_matcher.py

1806 lines
61 KiB
Python

# Owner(s): ["module: inductor"]
import copy
import itertools
import os
import unittest
from collections.abc import Callable
from typing import Optional
import torch
import torch._dynamo.config as dynamo_config
import torch._inductor.config as inductor_config
import torch._inductor.fx_passes.post_grad
import torch.nn.functional as F
from torch._dynamo.utils import count_calls, counters
from torch._higher_order_ops.auto_functionalize import auto_functionalized
from torch._higher_order_ops.out_dtype import out_dtype
from torch._inductor.fx_passes import joint_graph
from torch._inductor.pattern_matcher import (
Arg,
CallFunction,
fwd_only,
gen_pattern,
is_mutation_op,
KeywordArg,
Match,
PatternMatcherPass,
PatternPrettyPrinter,
register_graph_pattern,
register_replacement,
stable_topological_sort,
)
from torch._inductor.test_case import run_tests, TestCase
from torch._inductor.utils import run_and_get_code
from torch._inductor.virtualized import V
from torch.fx.experimental.proxy_tensor import make_fx
from torch.testing import FileCheck
from torch.testing._internal.common_cuda import SM80OrLater, xfailIfSM89
from torch.testing._internal.common_device_type import expectedFailureXPU, skipCUDAIf
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
IS_LINUX,
parametrize,
skipIfRocm,
skipIfXpu,
)
from torch.testing._internal.inductor_utils import GPU_TYPE, HAS_GPU, IS_BIG_GPU
from torch.utils import _pytree as pytree
aten = torch.ops.aten
@instantiate_parametrized_tests
class TestPatternMatcher(TestCase):
device_type = GPU_TYPE
def common(
self,
fn,
args,
expected_matches,
expected_nodes,
additional_check=lambda code: None,
reference_in_float=False,
):
counters.clear()
torch.manual_seed(42)
if reference_in_float:
ref_inputs = pytree.tree_map_only(
torch.Tensor, lambda x: x.to(torch.float32), args
)
else:
ref_inputs = args
expected = fn(*ref_inputs)
torch.manual_seed(42)
actual, codes = run_and_get_code(torch.compile(fn), *args)
if len(codes) == 1:
codes = codes[0]
torch.testing.assert_close(actual, expected, check_dtype=not reference_in_float)
self.assertEqual(
counters["inductor"]["pattern_matcher_count"], expected_matches
)
self.assertEqual(counters["inductor"]["pattern_matcher_nodes"], expected_nodes)
additional_check(codes)
counters.clear()
@inductor_config.patch(max_autotune_gemm=True)
def test_mm_plus_mm(self):
def fn(a, b, c, d):
return torch.add(torch.mm(a, b), torch.mm(c, d))
# when m1 == n1 and m2 == n2, mm_plus_mm can be matched to fused op
fusible_args_list = [
(
torch.randn(16, 16, device=GPU_TYPE),
torch.randn(16, 16, device=GPU_TYPE),
torch.randn(16, 16, device=GPU_TYPE),
torch.randn(16, 16, device=GPU_TYPE),
),
(
torch.randn(1, 4, device=GPU_TYPE),
torch.randn(4, 2, device=GPU_TYPE),
torch.randn(1, 5, device=GPU_TYPE),
torch.randn(5, 2, device=GPU_TYPE),
),
]
for args in fusible_args_list:
self.common(fn, args, 1, 3)
# if not fusible, it can only match add(mm())
unfusible_args_list = [
# https://github.com/pytorch/pytorch/issues/100670.
(
torch.randn(1, 4, device=GPU_TYPE),
torch.randn(4, 2, device=GPU_TYPE),
torch.randn(1, 2, device=GPU_TYPE),
torch.randn(2, 1, device=GPU_TYPE),
),
(
torch.randn(1, 2, device=GPU_TYPE),
torch.randn(2, 1, device=GPU_TYPE),
torch.randn(1, 4, device=GPU_TYPE),
torch.randn(4, 2, device=GPU_TYPE),
),
]
for args in unfusible_args_list:
self.common(fn, args, 1, 2)
def _test_fused_int_mm_mul_impl(self, fn, args, fused_int_mm_mul_expected=True):
torch._dynamo.reset()
counters.clear()
ref = fn(*args)
test, (code,) = run_and_get_code(torch.compile(fn, mode="max-autotune"), *args)
self.assertEqual("triton_tem_fused__int" in code, fused_int_mm_mul_expected)
if fused_int_mm_mul_expected:
indices = ~ref.isinf()
torch.testing.assert_close(
ref[indices], test[indices]
) # also checks that dtype is correct
@skipIfXpu
@skipCUDAIf(not SM80OrLater, "need sm_80")
@inductor_config.patch(
{
"benchmark_epilogue_fusion": "False",
"max_autotune_gemm_backends": "TRITON",
"max_autotune_gemm": True,
}
)
@unittest.skipIf(not IS_BIG_GPU, "templates require big gpu")
def test_fused_int_mm_mul(self):
def fn1(a, b, c):
return out_dtype(torch.ops.aten.mm.default, torch.int32, a, b) * c
def fn2(a, b, c):
return (out_dtype(torch.ops.aten.mm.default, torch.int32, a, b) * c).to(
torch.bfloat16
)
args_list = [
(
torch.randint(-128, 127, (32, 32), dtype=torch.int8, device=GPU_TYPE),
torch.randint(-128, 127, (32, 8), dtype=torch.int8, device=GPU_TYPE),
torch.randn((32, 1), dtype=torch.float16, device=GPU_TYPE) * 0 + 0.5,
),
(
torch.randint(-128, 127, (32, 32), dtype=torch.int8, device=GPU_TYPE),
torch.randint(-128, 127, (32, 8), dtype=torch.int8, device=GPU_TYPE),
torch.randn((1, 8), dtype=torch.bfloat16, device=GPU_TYPE),
),
(
torch.randint(-128, 127, (32, 32), dtype=torch.int8, device=GPU_TYPE),
torch.randint(-128, 127, (32, 8), dtype=torch.int8, device=GPU_TYPE),
torch.randn((1, 8), dtype=torch.float32, device=GPU_TYPE),
),
]
for args in args_list:
self._test_fused_int_mm_mul_impl(fn1, args, True)
self._test_fused_int_mm_mul_impl(fn2, args, True)
def test_duplicate_search(self):
from collections.abc import Callable, Iterable
import torch
from torch._inductor.pattern_matcher import (
fwd_only,
PatternMatcherPass,
register_replacement,
)
def pattern1(x: torch.Tensor) -> torch.Tensor:
return x + 1
def replacement1(x: torch.Tensor) -> torch.Tensor:
return x - 1
def pattern2(x: torch.Tensor) -> torch.Tensor:
return x + 2
def replacement2(x: torch.Tensor) -> torch.Tensor:
return x - 2
patterns = PatternMatcherPass()
inputs = [torch.empty(4, 5, dtype=torch.float32, device=GPU_TYPE)]
register_replacement(pattern1, replacement1, inputs, fwd_only, patterns)
register_replacement(pattern2, replacement2, inputs, fwd_only, patterns)
count = 0
def custom_pass(graph: torch.fx.Graph):
nonlocal count
count = patterns.apply(graph)
def custom_backend(
graph: torch.fx.GraphModule, example_inputs: Iterable[torch.Tensor]
) -> Callable:
from torch._inductor import config
current_config = config.shallow_copy_dict()
from torch._inductor.compile_fx import compile_fx
current_config["post_grad_custom_post_pass"] = custom_pass
return compile_fx(graph, example_inputs, config_patches=current_config)
@torch.compile(backend=custom_backend)
def f(x: torch.Tensor) -> torch.Tensor:
y = x + 1
y2 = y.relu() + 2
return y2
def f_replaced(x: torch.Tensor) -> torch.Tensor:
y = x - 1
y2 = y.relu() - 2
return y2
inp = torch.rand(3, 5, device=GPU_TYPE)
self.assertEqual(f(inp), f_replaced(inp))
self.assertEqual(count, 2)
@skipIfXpu
@skipCUDAIf(not SM80OrLater, "need sm_80")
@inductor_config.patch(
{
"benchmark_epilogue_fusion": "False",
"max_autotune_gemm_backends": "TRITON",
"max_autotune_gemm": True,
}
)
@unittest.skipIf(not IS_BIG_GPU, "templates require big gpu")
@inductor_config.patch(force_fuse_int_mm_with_mul=True)
@inductor_config.patch("test_configs.runtime_triton_dtype_assert", True)
def test_fused_int_mm_mul_epilogue(self):
def fn1(a, b, c):
return (
(out_dtype(torch.ops.aten.mm.default, torch.int32, a, b) * c) * 0.5
).relu()
def fn2(a, b, c):
return (
(out_dtype(torch.ops.aten.mm.default, torch.int32, a, b) * c).to(
torch.bfloat16
)
* 0.5
).relu()
args_list = [
(
torch.randint(-128, 127, (32, 32), dtype=torch.int8, device=GPU_TYPE),
torch.randint(-128, 127, (32, 8), dtype=torch.int8, device=GPU_TYPE),
torch.randn((32, 1), dtype=torch.float16, device=GPU_TYPE) * 0 + 0.5,
),
(
torch.randint(-128, 127, (32, 32), dtype=torch.int8, device=GPU_TYPE),
torch.randint(-128, 127, (32, 8), dtype=torch.int8, device=GPU_TYPE),
torch.randn((1, 8), dtype=torch.bfloat16, device=GPU_TYPE),
),
(
torch.randint(-128, 127, (32, 32), dtype=torch.int8, device=GPU_TYPE),
torch.randint(-128, 127, (32, 8), dtype=torch.int8, device=GPU_TYPE),
torch.randn((1, 8), dtype=torch.float32, device=GPU_TYPE),
),
]
for args in args_list:
self._test_fused_int_mm_mul_impl(fn1, args, True)
self._test_fused_int_mm_mul_impl(fn2, args, True)
@skipIfRocm
@skipIfXpu
@skipCUDAIf(not SM80OrLater, "need sm_80")
@inductor_config.patch(
{
"benchmark_epilogue_fusion": "False",
"max_autotune_gemm_backends": "TRITON",
"max_autotune_gemm": True,
}
)
@unittest.skipIf(not IS_BIG_GPU, "templates require big gpu")
def test_fused_int_mm_mul_gating(self):
def fn1(a, b, c):
return out_dtype(torch.ops.aten.mm.default, torch.int32, a, b) * c
args1 = (
torch.randint(-128, 127, (32, 32), dtype=torch.int8, device=GPU_TYPE),
torch.randint(-128, 127, (32, 8), dtype=torch.int8, device=GPU_TYPE),
torch.randn((8), dtype=torch.float32, device=GPU_TYPE),
)
self._test_fused_int_mm_mul_impl(fn1, args1, True)
def _test_mixed_impl(
self,
fn,
args,
mixed_mm_expected,
fallback_mixed_mm_expected,
rtol=None,
atol=None,
):
torch._dynamo.reset()
counters.clear()
ref = fn(*args)
test, (code,) = run_and_get_code(torch.compile(fn), *args)
torch.testing.assert_close(ref, test, rtol=rtol, atol=atol)
if mixed_mm_expected:
FileCheck().check("k_idx").check(".to(").check("tl.dot").run(code)
else:
if "extern_kernels.mm" not in code:
FileCheck().check("k_idx").check_not(".to(").check("tl.dot").run(code)
if fallback_mixed_mm_expected:
extern_mm = "extern_kernels.mm" in code
FileCheck().check("def call").check(".run").check(
"triton_tem" if not extern_mm else "extern_kernels.mm"
).run(code)
@expectedFailureXPU
@skipCUDAIf(not SM80OrLater, "need sm_80")
@inductor_config.patch(
{
"benchmark_epilogue_fusion": "False",
"max_autotune_gemm_backends": "TRITON",
"max_autotune_gemm": True,
}
)
@unittest.skipIf(not IS_BIG_GPU, "templates require big gpu")
def test_mixed_mm(self):
def fn(a, b):
return torch.mm(a, b.to(a.dtype))
args_list = [
(
torch.randn(8, 8, device=GPU_TYPE),
torch.randint(-128, 127, (8, 8), dtype=torch.int8, device=GPU_TYPE),
),
(
torch.randn(8, 2, device=GPU_TYPE, dtype=torch.bfloat16),
torch.randint(-128, 127, (2, 8), dtype=torch.int8, device=GPU_TYPE),
),
(
torch.randn(8, 5, device=GPU_TYPE, dtype=torch.float16),
torch.randint(0, 255, (5, 2), dtype=torch.uint8, device=GPU_TYPE),
),
(
torch.randn(8, 8, device=GPU_TYPE, dtype=torch.float32),
torch.randn(8, 8, device=GPU_TYPE, dtype=torch.bfloat16),
),
]
for args in args_list:
self._test_mixed_impl(fn, args, True, False)
@expectedFailureXPU
@skipCUDAIf(not SM80OrLater, "need sm_80")
@inductor_config.patch(
{
"benchmark_epilogue_fusion": "False",
"max_autotune_gemm_backends": "TRITON",
"max_autotune_gemm": True,
}
)
@unittest.skipIf(not IS_BIG_GPU, "templates require big gpu")
def test_mixed_mm_exhaustive_dtypes(self):
def fn(a, b):
return torch.mm(a, b.to(a.dtype))
dtypes_left = [torch.float16, torch.float32, torch.bfloat16]
dtypes_right = [torch.int8, torch.uint8]
dtype_ranges = {torch.uint8: (0, 255), torch.int8: (-128, 127)}
for dtype_left, dtype_right in itertools.product(dtypes_left, dtypes_right):
low, high = dtype_ranges[dtype_right]
args = (
torch.randn(256, 256, dtype=dtype_left, device=GPU_TYPE),
torch.randint(
low, high, (256, 256), dtype=dtype_right, device=GPU_TYPE
),
)
self._test_mixed_impl(fn, args, True, False, rtol=0.16, atol=1e-4)
@expectedFailureXPU
@skipCUDAIf(not SM80OrLater, "need sm_80")
@inductor_config.patch(
{
"benchmark_epilogue_fusion": "False",
"max_autotune_gemm_backends": "TRITON",
"max_autotune_gemm": True,
}
)
@unittest.skipIf(not IS_BIG_GPU, "templates require big gpu")
def test_mixed_mm_bad_cases(self):
def fn(a, b):
return torch.mm(a, b.to(a.dtype))
args_list = [
(
torch.randn(8, 8, device=GPU_TYPE, dtype=torch.float16),
torch.randint(-128, 127, (4, 8), dtype=torch.int8, device=GPU_TYPE).t()[
:, ::2
],
),
(
torch.randn(8, 8, device=GPU_TYPE, dtype=torch.bfloat16),
torch.randint(0, 255, (4, 8), dtype=torch.uint8, device=GPU_TYPE).t()[
:, ::2
],
),
]
for args in args_list:
self._test_mixed_impl(fn, args, True, False)
@expectedFailureXPU
@skipCUDAIf(not SM80OrLater, "need sm_80")
@inductor_config.patch(
{
"benchmark_epilogue_fusion": "False",
"max_autotune_gemm_backends": "TRITON",
"max_autotune_gemm": True,
}
)
@unittest.skipIf(not IS_BIG_GPU, "templates require big gpu")
def test_mixed_mm_epi_works(self):
def fn(a, b, c, d):
return torch.mm(a, b.to(a.dtype)) * c + d
args_list = [
(
torch.randn(8, 8, device=GPU_TYPE),
torch.randint(-128, 127, (8, 8), dtype=torch.int8, device=GPU_TYPE),
torch.randn(8, device=GPU_TYPE),
torch.randn(8, device=GPU_TYPE),
),
(
torch.randn(8, 2, device=GPU_TYPE, dtype=torch.bfloat16),
torch.randint(-128, 127, (2, 8), dtype=torch.int8, device=GPU_TYPE),
torch.randn(8, device=GPU_TYPE, dtype=torch.bfloat16),
torch.randn(8, device=GPU_TYPE, dtype=torch.bfloat16),
),
(
torch.randn(8, 5, device=GPU_TYPE, dtype=torch.float16),
torch.randint(0, 255, (5, 2), dtype=torch.uint8, device=GPU_TYPE),
torch.randn(2, device=GPU_TYPE, dtype=torch.float16),
torch.randn(2, device=GPU_TYPE, dtype=torch.float16),
),
]
for args in args_list:
self._test_mixed_impl(fn, args, True, False)
@expectedFailureXPU
@skipCUDAIf(not SM80OrLater, "need sm_80")
@unittest.skipIf(not IS_BIG_GPU, "templates require big gpu")
def test_mixed_mm_gating(self):
def fn(a, b):
return torch.mm(a, b.to(a.dtype))
args = (
torch.randn(8, 8, device=GPU_TYPE),
torch.randint(-128, 127, (8, 8), dtype=torch.int8, device=GPU_TYPE),
)
# will no max autotune, will not generate fused template
self._test_mixed_impl(fn, args, False, True)
with inductor_config.patch(
{
"benchmark_epilogue_fusion": "False",
"max_autotune_gemm_backends": "TRITON",
"max_autotune_gemm": True,
}
):
self._test_mixed_impl(fn, args, True, False)
def test_mixed_mm_cpu(self):
def fn(a, b):
return torch.mm(a, b.to(a.dtype))
args = (
torch.randn(8, 8),
torch.randint(-128, 127, (8, 8), dtype=torch.int8),
)
self._test_mixed_impl(fn, args, False, False)
@parametrize(
"case",
[
((4, 8), GPU_TYPE),
("dynamic", GPU_TYPE),
],
)
def test_unsuccessful_partial_reuse(self, case):
shape, device = case
def test_fn(x):
partial = torch.amax(x, [0], True)
full = torch.amax(x)
return partial, full
if shape == "dynamic":
x = torch.rand([2048, 64], device=GPU_TYPE)
torch._dynamo.mark_dynamic(x, 0)
else:
x = torch.randn(*shape, device=device)
compiled_fn = torch.compile(test_fn)
self.assertEqual(compiled_fn(x), test_fn(x))
self.assertEqual(counters["inductor"]["partial_reduction_reuse"], 0)
@parametrize(
"case",
[
((2048, 2048), (torch.amax, torch.amax)),
((1024, 1024), (torch.amin, torch.min)),
((4096, 512), (torch.amax, torch.max)),
],
)
def test_successful_partial_reuse(self, case):
shape, (partial_fn, full_fn) = case
def test_fn(x):
partial = partial_fn(x, [0], True)
full = full_fn(x)
return partial, full
x = torch.randn(*shape, device=GPU_TYPE)
compiled_fn = torch.compile(test_fn)
self.assertEqual(compiled_fn(x), test_fn(x))
self.assertEqual(counters["inductor"]["partial_reduction_reuse"], 1)
def test_addmm(self):
def fn(a, b, c):
return torch.add(a, torch.mm(b, c)), torch.mm(b, c) + a
args_list = [
(
torch.randn(16, 16, device=GPU_TYPE),
torch.randn(16, 16, device=GPU_TYPE),
torch.randn(16, 16, device=GPU_TYPE),
True,
),
(
torch.randn(8, device=GPU_TYPE),
torch.randn(16, 16, device=GPU_TYPE),
torch.randn(16, 8, device=GPU_TYPE),
True,
),
(
torch.randn(16, 16, device=GPU_TYPE),
torch.randn(1, 16, device=GPU_TYPE),
torch.randn(16, 16, device=GPU_TYPE),
False,
),
(
torch.randn(1, 16, 16, device=GPU_TYPE),
torch.randn(16, 16, device=GPU_TYPE),
torch.randn(16, 16, device=GPU_TYPE),
False,
),
(
4,
torch.randn(16, 16, device=GPU_TYPE),
torch.randn(16, 16, device=GPU_TYPE),
False,
),
]
for a, b, c, should_fuse in args_list:
torch._dynamo.reset()
counters.clear()
args = (a, b, c)
e1, e2 = fn(*args)
a1, a2 = torch.compile(fn)(*args)
torch.testing.assert_close(a1, e1)
torch.testing.assert_close(a2, e2)
count, nodes = (2, 4) if should_fuse else (0, 0)
self.assertEqual(counters["inductor"]["pattern_matcher_count"], count)
self.assertEqual(counters["inductor"]["pattern_matcher_nodes"], nodes)
def test_addmm_symbolic_scalar(self):
def fn(m1, m2):
bias = m1.size(0)
return torch.add(bias, torch.mm(m1, m2)), torch.mm(m1, m2) + bias
m1 = torch.randn(16, 16, device=GPU_TYPE)
m2 = torch.randn(16, 16, device=GPU_TYPE)
counters.clear()
expect = fn(m1, m2)
actual = torch.compile(fn, dynamic=True)(m1, m2)
self.assertEqual(expect, actual)
self.assertEqual(counters["inductor"]["pattern_matcher_count"], 0)
def test_addmm_broadcasting_bias(self):
class Model(torch.nn.Module):
def __init__(self) -> None:
super().__init__()
self.linear = torch.nn.functional.linear
self.linear_weight = torch.randn(4, 4).to(GPU_TYPE)
self.bias = torch.randn(1, 4).to(GPU_TYPE)
def forward(self, x):
x = self.linear(x, self.linear_weight, self.bias)
return x
input_tensor = torch.randn(1, 3, 4).to(GPU_TYPE)
func = Model().to(GPU_TYPE)
res1 = func(input_tensor)
jit_func = torch.compile(func)
res2 = jit_func(input_tensor)
self.assertEqual(res1, res2)
@inductor_config.patch(
{
"max_autotune_gemm_backends": "ATEN",
}
)
def test_bmm_to_mm(self):
def fn(a, b):
return torch.bmm(a, b)
a = torch.randn(1, 16, 8, device=GPU_TYPE)
b = torch.randn(1, 8, 32, device=GPU_TYPE)
result, (code,) = run_and_get_code(torch.compile(fn), a, b)
expected = fn(a, b)
torch.testing.assert_close(result, expected)
# The mm kernel should use ATen (because we set max_autotune_gemm_backends = ATEN).
# Its name should contain `aten.bmm` since this is the original aten op where the bmm came from.
if HAS_GPU:
FileCheck().check("extern_kernels.mm(").check_not(
"extern_kernels.bmm("
).run(code)
else:
FileCheck().check("extern_kernels.bmm(")
a_multi = torch.randn(3, 16, 8, device=GPU_TYPE)
b_multi = torch.randn(3, 8, 32, device=GPU_TYPE)
result_multi, (code_multi,) = run_and_get_code(
torch.compile(fn), a_multi, b_multi
)
expected_multi = fn(a_multi, b_multi)
torch.testing.assert_close(result_multi, expected_multi)
FileCheck().check("extern_kernels.bmm(").run(code_multi)
def test_cat_mm(self):
def fn(a, b, c):
return torch.cat(
[
torch.mm(a, b),
torch.mm(b, c),
torch.mm(a, c),
],
1,
)
args = [
torch.randn(16, 16, device=GPU_TYPE),
torch.randn(16, 16, device=GPU_TYPE),
torch.randn(16, 16, device=GPU_TYPE),
]
out, code = run_and_get_code(torch.compile(fn), *args)
self.assertEqual(out, fn(*args))
FileCheck().check("call").check_not(".run").run(code[0])
def test_cat_addmm(self):
def fn(a, b, c):
return torch.cat(
[
torch.addmm(a, b, c),
torch.addmm(b, c, a),
torch.addmm(c, a, b),
],
1,
)
args = [
torch.randn(16, 16, device=GPU_TYPE),
torch.randn(16, 16, device=GPU_TYPE),
torch.randn(16, 16, device=GPU_TYPE),
]
out, code = run_and_get_code(torch.compile(fn), *args)
self.assertEqual(out, fn(*args))
FileCheck().check("call").check_not(".run").run(code[0])
def test_cat_slice_cat_cuda(self):
def fn(a, b):
cat_1 = torch.ops.aten.cat.default([a, b], 1)
slice_1 = torch.ops.aten.slice.Tensor(cat_1, 0, 0, 9223372036854775807)
slice_2 = torch.ops.aten.slice.Tensor(slice_1, 1, 0, 19)
return torch.ops.aten.cat.default([cat_1, slice_2], 1)
args = [
torch.randn(2, 32, device=GPU_TYPE),
torch.randn(2, 16, device=GPU_TYPE),
]
self.common(fn, args, 1, 3)
args = [
torch.randn(2, 8, device=GPU_TYPE),
torch.randn(2, 16, device=GPU_TYPE),
]
torch._dynamo.reset()
counters.clear()
expected = fn(*args)
actual = torch.compile(fn)(*args)
torch.testing.assert_close(actual, expected)
# We don't recompile for dynamic-shape cases.
if dynamo_config.assume_static_by_default:
self.assertEqual(counters["inductor"]["pattern_matcher_count"], 1)
self.assertEqual(counters["inductor"]["pattern_matcher_nodes"], 3)
# Verify we fallback to non-optimal path for negative `end`.
def fn(a, b):
cat_1 = torch.ops.aten.cat.default([a, b], 1)
slice_1 = torch.ops.aten.slice.Tensor(cat_1, 0, 0, 9223372036854775807)
slice_2 = torch.ops.aten.slice.Tensor(slice_1, 1, 0, -1)
return torch.ops.aten.cat.default([cat_1, slice_2], 1)
args = [
torch.randn(2, 8, device=GPU_TYPE),
torch.randn(2, 16, device=GPU_TYPE),
]
self.common(fn, args, 1, 3)
def test_pointless_view_pair(self):
def f(x):
x = aten.view.default(x, [3, 5, 7])
x = aten.view.default(x, [15, 7])
return x
x = torch.randn(15, 7, device=GPU_TYPE)
gm = make_fx(f)(x)
self.assertEqual(count_calls(gm.graph), 2)
joint_graph.joint_graph_passes(gm)
self.assertEqual(count_calls(gm.graph), 0)
def f(x):
x1 = aten.view.default(x, [3, 5, 7])
x2 = aten.view.default(x1, [15, 7])
return x1, x2
gm = make_fx(f)(x)
self.assertEqual(count_calls(gm.graph), 2)
joint_graph.joint_graph_passes(gm)
self.assertEqual(count_calls(gm.graph), 2)
# handle negative 1 in size argument of view
def f(x):
x = aten.view.default(x, [3, 5, 7])
x = aten.view.default(x, [-1, 7])
return x
gm = make_fx(f)(x)
self.assertEqual(count_calls(gm.graph), 2)
joint_graph.joint_graph_passes(gm)
self.assertEqual(count_calls(gm.graph), 0)
def test_pointless_view_pair_dynamic_shapes(self):
def f(x):
s1, s2 = x.shape
x = aten.view.default(x, [-1])
x = aten.view.default(x, [s1, s2])
return x
x = torch.randn(15, 7, device=GPU_TYPE)
torch._dynamo.decorators.mark_unbacked(x, 0)
out = torch.compile(f, dynamic=True)(x)
self.assertTrue(torch.equal(x, out))
self.assertEqual(counters["inductor"]["removed_pointless_view_pair"], 1)
def test_pointless_permute_pair(self):
def f(x):
x = aten.permute.default(x, [1, 0])
x = aten.permute.default(x, [1, 0])
return x
x = torch.randn(15, 7, device=GPU_TYPE)
gm = make_fx(f)(x)
self.assertEqual(count_calls(gm.graph), 2)
joint_graph.joint_graph_passes(gm)
self.assertEqual(count_calls(gm.graph), 0)
def f(x):
x1 = aten.permute.default(x, [1, 0])
x2 = aten.permute.default(x1, [1, 0])
return x1, x2
gm = make_fx(f)(x)
self.assertEqual(count_calls(gm.graph), 2)
joint_graph.joint_graph_passes(gm)
self.assertEqual(count_calls(gm.graph), 2)
def test_pointless_permute_pair_3d(self):
def f(x):
x = aten.permute.default(x, [1, 0, 2])
x = aten.permute.default(x, [1, 0, 2])
return x
x = torch.randn(3, 5, 7, device=GPU_TYPE)
gm = make_fx(f)(x)
self.assertEqual(count_calls(gm.graph), 2)
joint_graph.joint_graph_passes(gm)
self.assertEqual(count_calls(gm.graph), 0)
def f(x):
x1 = aten.permute.default(x, [1, 0, 2])
x2 = aten.permute.default(x1, [1, 0, 2])
return x1, x2
gm = make_fx(f)(x)
self.assertEqual(count_calls(gm.graph), 2)
joint_graph.joint_graph_passes(gm)
self.assertEqual(count_calls(gm.graph), 2)
def test_pointless_convert(self):
def fn1(x):
x = torch.ops.prims.convert_element_type.default(x, torch.float16)
x = torch.ops.prims.convert_element_type.default(x, torch.float32)
return x
gm = torch.fx.symbolic_trace(fn1)
self.assertEqual(count_calls(gm.graph), 2)
joint_graph.joint_graph_passes(gm)
self.assertEqual(count_calls(gm.graph), 1)
def fn2(x):
x = torch.ops.prims.convert_element_type.default(x, torch.int32)
x = torch.ops.prims.convert_element_type.default(x, torch.float32)
return x
gm = torch.fx.symbolic_trace(fn2)
self.assertEqual(count_calls(gm.graph), 2)
joint_graph.joint_graph_passes(gm)
self.assertEqual(count_calls(gm.graph), 2)
# Constant folding was explicitly turned off due to issue #108388
# Turn it back on for test
@inductor_config.patch(joint_graph_constant_folding=True)
def test_pointless_cumsum(self):
def fn1():
ones = torch.full(
[1, 128], 1, layout=torch.strided, dtype=torch.float32
).to(torch.int64)
return torch.cumsum(ones, 1) * ones
def fn2():
ones = torch.full(
[55, 10], 1, layout=torch.strided, dtype=torch.float32
).to(torch.int64)
return torch.cumsum(ones, 1)
def fn3():
twos = torch.full([5, 4, 3], 2, dtype=torch.int64)
return torch.cumsum(twos, 0)
def fn4():
x = torch.full([100], 0.1, dtype=torch.float32)
return torch.cumsum(x, 0)
def fn5():
t1 = torch.full([2, 4], 1)
t2 = t1.to(dtype=torch.bool)
return torch.cumsum(t2, 1)
def fn6():
x = torch.full([10, 10], True, dtype=torch.int32)
return torch.cumsum(x, 1)
for fn in (fn1, fn2, fn3, fn4, fn5, fn6):
result, (code,) = run_and_get_code(torch.compile(fn, fullgraph=True))
self.assertNotIn("aten.cumsum", code)
self.assertEqual(result, fn())
self.assertEqual(counters["inductor"]["pattern_matcher_count"], 1)
counters.clear()
def test_splitwithsizes_cat(self):
# Good case
def fn(a):
split_with_sizes = torch.ops.aten.split_with_sizes.default(a, [8, 24], 1)
getitem = split_with_sizes[0]
getitem_1 = split_with_sizes[1]
cat = torch.ops.aten.cat.default([getitem, getitem_1], 1)
return cat**2
args = [
torch.randn(2, 32, device=GPU_TYPE),
]
self.common(fn, args, 1, 4)
# Not all getitems are passed to cat
def fn(a):
split_with_sizes = torch.ops.aten.split_with_sizes.default(a, [8, 8, 16], 1)
getitem = split_with_sizes[0]
getitem_1 = split_with_sizes[1]
getitem_2 = split_with_sizes[2]
cat = torch.ops.aten.cat.default([getitem, getitem_1], 1)
return cat**2 + getitem_2
args = [
torch.randn(2, 32, device=GPU_TYPE),
]
self.common(fn, args, 0, 0)
# Different dimensions (TODO this case should be handled by replacing with a reshape)
def fn(a):
split_with_sizes = torch.ops.aten.split_with_sizes.default(
a, [8, 8, 8, 8], 1
)
cat = torch.ops.aten.cat.default(split_with_sizes, 0)
return cat**2
args = [
torch.randn(2, 32, device=GPU_TYPE),
]
self.common(fn, args, 0, 0)
# https://github.com/pytorch/pytorch/issues/99686.
def fn(a):
x = torch.ops.aten.split_with_sizes.default(a, [3, 2, 3], dim=1)
cat = torch.ops.aten.cat.default([x[1], x[0], x[2]], dim=1)
return cat
args = [
torch.randn(1, 8, device=GPU_TYPE),
]
self.common(fn, args, 0, 0)
def test_cat_splitwithsizes(self):
# good case
def fn(a, b, c):
cat = torch.ops.aten.cat.default([a, b, c], 1)
split_with_sizes = torch.ops.aten.split_with_sizes.default(
cat, [2, 3, 5], 1
)
return [s**2 for s in split_with_sizes]
args = [
torch.randn(2, 2, device=GPU_TYPE),
torch.randn(2, 3, device=GPU_TYPE),
torch.randn(2, 5, device=GPU_TYPE),
]
self.common(fn, args, 1, 2)
# cat node has other users
def fn(a, b, c):
cat = torch.ops.aten.cat.default([a, b, c], 1)
split_with_sizes = torch.ops.aten.split_with_sizes.default(
cat, [2, 3, 5], 1
)
return [s**2 for s in split_with_sizes] + [cat**3]
args = [
torch.randn(2, 2, device=GPU_TYPE),
torch.randn(2, 3, device=GPU_TYPE),
torch.randn(2, 5, device=GPU_TYPE),
]
self.common(fn, args, 0, 0)
# cat and split dims are different
def fn(a, b, c):
cat = torch.ops.aten.cat.default([a, b, c], 1)
split_with_sizes = torch.ops.aten.split_with_sizes.default(
cat, [2, 3, 5], 0
)
return [s**2 for s in split_with_sizes]
args = [
torch.randn(10, 2, device=GPU_TYPE),
torch.randn(10, 3, device=GPU_TYPE),
torch.randn(10, 5, device=GPU_TYPE),
]
self.common(fn, args, 0, 0)
# cat and split lengths are different
def fn(a, b, c):
cat = torch.ops.aten.cat.default([a, b, c], 1)
split_with_sizes = torch.ops.aten.split_with_sizes.default(cat, [5, 5], 1)
return [s**2 for s in split_with_sizes]
args = [
torch.randn(2, 2, device=GPU_TYPE),
torch.randn(2, 3, device=GPU_TYPE),
torch.randn(2, 5, device=GPU_TYPE),
]
self.common(fn, args, 0, 0)
# cat input sizes and split sizes are different
def fn(a, b, c):
cat = torch.ops.aten.cat.default([a, b, c], 1)
split_with_sizes = torch.ops.aten.split_with_sizes.default(
cat, [2, 5, 3], 1
)
return [s**2 for s in split_with_sizes]
args = [
torch.randn(2, 2, device=GPU_TYPE),
torch.randn(2, 3, device=GPU_TYPE),
torch.randn(2, 5, device=GPU_TYPE),
]
self.common(fn, args, 0, 0)
def test_symint_pattern_matching(self):
import torch._inductor.config as config
from torch._inductor.pattern_matcher import (
fwd_only,
PatternMatcherPass,
register_replacement,
)
saved_graph = None
class _CustomPass(PatternMatcherPass):
def __init__(self) -> None:
super().__init__()
def __call__(self, g: torch.fx.graph.Graph):
self.apply(g)
nonlocal saved_graph
saved_graph = g
with config.patch(
# leave custom pass only in post_grad_passes()
pattern_matcher=False,
# define pattern match as custom post grad opt pass
post_grad_custom_pre_pass=None,
post_grad_custom_post_pass=_CustomPass(),
):
def add(x, y):
return x + y
# testing that
def sym_minus(x, y):
return (x - (-y.size(0))) - (y * -1) - y.size(0)
device = "cpu"
my_args = [
torch.empty([8, 1], device=device),
torch.empty([10], device=device),
]
invoked = False
def extra_check(match):
nonlocal invoked
invoked = True
return True
register_replacement(
add,
sym_minus,
my_args,
fwd_only,
[config.post_grad_custom_post_pass],
extra_check=extra_check,
)
@torch.compile(dynamic=True)
def foo(x, y):
return x + y
x = torch.rand([8, 1])
y = torch.rand([10])
self.assertEqual(foo(x, y), x + y)
self.assertTrue(invoked)
# we trace out the y.sym_size in replacement
FileCheck().check("sym_size_int").check_same("num_users=2").check_same(
"target=torch.ops.aten.sym_size"
).run(str(saved_graph))
@inductor_config.patch(fx_graph_remote_cache=False)
def test_match_with_mutation(self):
counter = 0
test_pass = PatternMatcherPass(pass_name="test")
@register_graph_pattern(
CallFunction(
torch.add, KeywordArg("x"), CallFunction(torch.sin, KeywordArg("x"))
),
pass_dict=test_pass,
)
def _test(match, x):
nonlocal counter
counter += 1
def fn0(x, y):
a = torch.sin(x)
b = torch.add(x, a)
return b
def fn1(x, y):
a = torch.sin(x)
x.copy_(y)
b = torch.add(x, a)
return b
def fn2(x, y):
a = torch.sin(x)
with torch.no_grad():
b = torch.add(x, a)
return b
def fn3(x, y):
a = torch.sin(x)
with torch.autocast(GPU_TYPE):
b = torch.add(x, a)
return b
def fn4(x, y):
a = torch.sin(x)
torch.manual_seed(1234)
b = torch.add(x, a)
return b
def fn5(x, y):
a = torch.sin(x)
torch.add(y, 1, out=x)
b = torch.add(x, a)
return b
args = [
torch.randn(5, 5, device=GPU_TYPE),
torch.randn(5, 5, device=GPU_TYPE),
]
with (
unittest.mock.patch(
"torch._inductor.fx_passes.pre_grad.config.pre_grad_fusion_options",
{"test": {}},
),
unittest.mock.patch(
"torch._inductor.fx_passes.pre_grad.PRE_GRAD_FUSIONS",
[],
),
unittest.mock.patch(
"torch._inductor.fx_passes.pre_grad.PRE_GRAD_PATTERNS",
{"test": test_pass},
),
):
for fn in (fn0, fn1, fn2, fn3, fn4, fn5):
counter = 0
expected = fn(*copy.deepcopy(args))
actual = torch.compile(fn)(*copy.deepcopy(args))
# should not match
self.assertEqual(counter, int(fn is fn0))
torch.testing.assert_close(actual, expected)
def test_remove_pointless_clones(self):
@torch.compile(fullgraph=True)
def fn(a, b):
return torch.mm(a, b).clone()
_, (code) = run_and_get_code(fn, torch.randn(8, 8), torch.randn(8, 8))
# clone would create a buf1
self.assertIn("return (buf0, )", code[0])
self.assertNotIn("async_compile.cpp", code[0])
def test_unfuse_bias_addmm(self):
args = [
torch.randn(20, device=GPU_TYPE),
torch.randn(10, 15, device=GPU_TYPE),
torch.randn(15, 20, device=GPU_TYPE),
]
@torch.compile()
def fn(inp, a, b):
return torch.ops.aten.addmm(inp, a, b)
_, (code) = run_and_get_code(fn, args[0], args[1], args[2])
FileCheck().check("extern_kernels.addmm(").run(code[0])
@torch.compile()
def fn2(inp, a, b):
return torch.nn.functional.gelu(torch.ops.aten.addmm(inp, a, b))
_, (code) = run_and_get_code(fn2, args[0], args[1], args[2])
FileCheck().check_not("extern_kernels.addmm(").run(code[0])
@torch.compile()
def fn2(inp, a, b):
return torch.nn.functional.gelu(
torch.ops.aten.addmm(inp, a, b).unsqueeze(0)
)
# hit the view path
_, (code) = run_and_get_code(fn2, args[0], args[1], args[2])
FileCheck().check_not("extern_kernels.addmm(").run(code[0])
def test_serialized_patterns_up_to_date(self):
import torch.utils._pytree as pytree
from torch._inductor.fx_passes import joint_graph
from torch._inductor.pattern_matcher import _known_precompiled_patterns
# Ensure the patterns are loaded
os.environ.pop("PYTORCH_GEN_PATTERNS", None)
joint_graph.lazy_init()
with torch._subclasses.FakeTensorMode() as mode:
for (
search_fn,
example_inputs,
trace_fn,
scalar_workaround,
search_fn_pattern,
) in _known_precompiled_patterns:
# Because the example_inputs were saved as fake tensors in a
# different FakeTensorMode we need to update them to our
# FakeTensorMode().
def remap_fake_tensor(x):
if isinstance(x, torch.Tensor):
return torch._subclasses.FakeTensor.from_tensor(x, mode)
return x
example_inputs = pytree.tree_map(remap_fake_tensor, example_inputs)
pattern = gen_pattern(
search_fn, example_inputs, trace_fn, scalar_workaround
)
pattern_pp = PatternPrettyPrinter.run(pattern)
self.assertEqual(
pattern_pp,
PatternPrettyPrinter.run(search_fn_pattern),
msg=f"Found mismatched pattern {search_fn.__name__}. Run torchgen/fuse/gen_patterns.py",
)
# Since we've already checked that the serialized patterns match
# lets verify the serializer by ensuring the generated patterns
# also match (since search_fn_pattern is the serialized version
# of search_fn).
self.assertTrue(pattern.pattern_eq(search_fn_pattern))
@skipIfXpu
@xfailIfSM89
@inductor_config.patch(
{
"triton.unique_kernel_names": "original_aten",
"fx_graph_remote_cache": False,
"max_autotune_gemm_backends": "TRITON",
}
)
def test_original_aten_preserved_split_addmm(self):
# addmm -> elementwise should be decomposed into mm -> add -> elementwise
def fn(x, y, z):
return torch.addmm(z, x, y).sin()
args = [
torch.randn(16, 24, device=GPU_TYPE),
torch.randn(24, 32, device=GPU_TYPE),
torch.randn(16, 32, device=GPU_TYPE),
]
counters.clear()
opt_fn = torch.compile(fn, mode="max-autotune")
ret, code = run_and_get_code(opt_fn, *args)
self.assertEqual(counters["inductor"]["pattern_matcher_count"], 1)
# The mm kernel should use a template (because we set max_autotune_gemm_backends = TRITON).
# Its name should contain `addmm` because `addmm` was the original aten op where the mm came from.
FileCheck().check_not("extern_kernels.addmm(").check(
"def triton_tem_fused_addmm"
).run(code[0])
@inductor_config.patch(fx_graph_remote_cache=False)
def test_match_equivalent_function_invocations1(self):
counter = 0
test_pass = PatternMatcherPass()
args = [
torch.randn(20, device=GPU_TYPE),
torch.randn(10, 15, device=GPU_TYPE),
torch.randn(15, 20, device=GPU_TYPE),
]
def f0(inp, a, b):
return torch.ops.aten.addmm(inp, a, b)
def f1(inp, a, b):
return torch.ops.aten.addmm(inp, a, b, beta=1.0)
def f2(inp, a, b):
return torch.ops.aten.addmm(inp, a, b, beta=1.0, alpha=1.0)
# This graph pattern should successfully match all of the above functions
@register_graph_pattern(
CallFunction(
torch.ops.aten.addmm,
Arg(),
Arg(),
Arg(),
beta=KeywordArg("beta"),
alpha=KeywordArg("alpha"),
),
pass_dict=test_pass,
)
def addmm_replacement(match: Match, inp, mat1, mat2, beta, alpha):
nonlocal counter
counter += 1
def repl(inp, x1, x2):
return (x1 @ x2) * alpha + inp * beta
with V.fake_mode:
match.replace_by_example(repl, [inp, mat1, mat2])
with unittest.mock.patch(
"torch._inductor.fx_passes.post_grad.pass_patterns",
torch._inductor.fx_passes.post_grad.pass_patterns + [test_pass],
):
for fn in (f0, f1, f2):
counter = 0
expected = fn(*copy.deepcopy(args))
opt_fn = torch.compile(fn)
actual, (code) = run_and_get_code(opt_fn, args[0], args[1], args[2])
# pattern should match
self.assertEqual(counter, 1)
torch.testing.assert_close(actual, expected)
# addmm should be replaced
FileCheck().check_not("extern_kernels.addmm(").run(code[0])
def test_addmm_dtype_mismatch(self):
a = torch.nn.Linear(1024, 1024, bias=False).to(GPU_TYPE)
a = a.to(dtype=torch.float16)
w = torch.randn(1024, 1024, device=GPU_TYPE)
def func():
x = torch.ones(1024, 1024, device=GPU_TYPE, dtype=torch.float16)
x = a(x)
x = x + w
return x
actual, (code) = run_and_get_code(torch.compile(func))
self.assertEqual(actual, func())
FileCheck().check_not("addmm").run(code[0])
def test_replace_mul_zero(self):
def test(x, y):
return x + (y * 0)
x = torch.rand([256], device=GPU_TYPE)
y = torch.rand([256], device=GPU_TYPE)
test_c = torch.compile(test)
out, code = run_and_get_code(test_c, x, y)
FileCheck().check_not(".run").run(code[0])
self.assertEqual(out, test(x, y))
@inductor_config.patch(fx_graph_remote_cache=False)
def test_match_equivalent_function_invocations2(self):
counter = 0
test_pass = PatternMatcherPass()
args = [
torch.randn(20, device=GPU_TYPE),
torch.randn(10, 15, device=GPU_TYPE),
torch.randn(15, 20, device=GPU_TYPE),
]
def f0(inp, a, b):
return torch.ops.aten.addmm(inp, a, b)
def f1(inp, a, b):
return torch.ops.aten.addmm(inp, a, b, beta=1.0)
def f2(inp, a, b):
return torch.ops.aten.addmm(inp, a, b, beta=1.0, alpha=1.0)
# This graph pattern should only match f0
@register_graph_pattern(
CallFunction(torch.ops.aten.addmm, Arg(), Arg(), Arg()),
pass_dict=test_pass,
)
def addmm_replacement(match: Match, inp, mat1, mat2):
nonlocal counter
counter += 1
def repl(inp, x1, x2):
return x1 @ x2 + inp
with V.fake_mode:
match.replace_by_example(repl, [inp, mat1, mat2])
with unittest.mock.patch(
"torch._inductor.fx_passes.post_grad.pass_patterns",
torch._inductor.fx_passes.post_grad.pass_patterns + [test_pass],
):
for fn in (f0, f1, f2):
counter = 0
expected = fn(*copy.deepcopy(args))
actual = torch.compile(fn)(*copy.deepcopy(args))
self.assertEqual(counter, 1)
torch.testing.assert_close(actual, expected)
def test_input_output_same(self):
def pattern(x, y):
out1 = torch.add(x, y)
return out1, x
def replace(x, y):
out1 = torch.mul(x, y)
out2 = torch.mul(out1, y)
return out1, out2
my_patterns = PatternMatcherPass()
inputs = (torch.ones(3, 3), torch.ones(3, 3))
register_replacement(pattern, replace, inputs, fwd_only, my_patterns)
def custom_pass(graph: torch.fx.Graph) -> torch.fx.Graph:
_ = my_patterns.apply(graph)
stable_topological_sort(graph)
graph.eliminate_dead_code()
return graph
@torch.compile(
options={
"post_grad_custom_post_pass": custom_pass,
}
)
def f(x, y):
res = torch.add(x, y)
sub = torch.sub(res, x)
return sub
test, (code,) = run_and_get_code(f, *(torch.ones(3, 3), torch.ones(3, 3)))
self.assertTrue("aten.add.default" not in code)
self.assertTrue("aten.mul.default" not in code)
@inductor_config.patch(fx_graph_remote_cache=False)
def test_match_equivalent_function_invocations3(self):
counter = 0
test_pass = PatternMatcherPass()
args = [
torch.randn(20, device=GPU_TYPE),
torch.randn(10, 15, device=GPU_TYPE),
torch.randn(15, 20, device=GPU_TYPE),
]
def f0(inp, a, b):
return torch.ops.aten.addmm(inp, a, b)
def f1(inp, a, b):
return torch.ops.aten.addmm(inp, a, b, beta=1.0)
def f2(inp, a, b):
return torch.ops.aten.addmm(inp, a, b, beta=1.0, alpha=1.0)
# This graph pattern should only match f1
@register_graph_pattern(
CallFunction(
torch.ops.aten.addmm, Arg(), Arg(), Arg(), beta=KeywordArg("beta")
),
pass_dict=test_pass,
)
def addmm_replacement(match: Match, inp, mat1, mat2, beta):
nonlocal counter
counter += 1
def repl(inp, x1, x2):
return x1 @ x2 + inp
with V.fake_mode:
match.replace_by_example(repl, [inp, mat1, mat2])
with unittest.mock.patch(
"torch._inductor.fx_passes.post_grad.pass_patterns",
torch._inductor.fx_passes.post_grad.pass_patterns + [test_pass],
):
for fn in (f0, f1, f2):
counter = 0
expected = fn(*copy.deepcopy(args))
actual = torch.compile(fn)(*copy.deepcopy(args))
self.assertEqual(counter, 1)
torch.testing.assert_close(actual, expected)
def test_stable_topological_sort(self):
def fn1(a, b):
return a + b
graph = torch.fx.Graph()
a = graph.placeholder("x")
b = graph.placeholder("y")
c = graph.call_function(fn1, (a, b))
stable_topological_sort(graph)
self.assertEqual(list(graph.nodes), [a, b, c])
graph = torch.fx.Graph()
b = graph.placeholder("y")
a = graph.placeholder("x")
c = graph.call_function(fn1, (a, b))
stable_topological_sort(graph)
self.assertEqual(list(graph.nodes), [b, a, c])
graph = torch.fx.Graph()
a = graph.placeholder("x")
b = graph.placeholder("y")
c = graph.call_function(fn1, (b, a))
c.append(a)
stable_topological_sort(graph)
self.assertEqual(list(graph.nodes), [b, a, c])
def test_scaled_softmax(self):
def mul_softmax(a, b):
return F.softmax(a * b, dim=0)
def div_softmax(x, inv_scale):
return F.softmax(x / inv_scale, dim=0)
x = torch.randn(10, 10)
scale = 1e6
inv_scale = 1 / scale
self.common(mul_softmax, (x, scale), 1, 3)
self.common(mul_softmax, (scale, x), 1, 3)
self.common(div_softmax, (x, inv_scale), 1, 3)
scale = torch.randn(10) * 1e6
inv_scale = 1 / scale
self.common(mul_softmax, (x, scale), 1, 3)
self.common(mul_softmax, (scale, x), 1, 3)
self.common(div_softmax, (x, inv_scale), 1, 3)
scale = torch.randn(1, 10) * 1e6
inv_scale = 1 / scale
self.common(mul_softmax, (x, scale), 1, 3)
self.common(mul_softmax, (scale, x), 1, 3)
self.common(div_softmax, (x, inv_scale), 1, 3)
# Test matching with type promotion
x = torch.randn(10, 10, dtype=torch.bfloat16)
scale = torch.randn(10, dtype=torch.bfloat16) * 1e6
inv_scale = 1 / scale
self.common(mul_softmax, (x, scale), 1, 4, reference_in_float=True)
self.common(mul_softmax, (scale, x), 1, 4, reference_in_float=True)
self.common(div_softmax, (x, inv_scale), 1, 4, reference_in_float=True)
# No match if scale changes in softmax dim
scale = torch.randn(10, 10)
self.common(mul_softmax, (x, scale), 0, 0)
self.common(mul_softmax, (scale, x), 0, 0)
self.common(div_softmax, (x, scale), 0, 0)
def test_mutation_op_matching(self):
def check(type, func_name, args, kwargs, expect=True):
assert type in ["call_function", "call_method"]
graph = torch.fx.Graph()
getattr(graph, type)(func_name, args, kwargs)
res = is_mutation_op(next(iter(graph.nodes)))
if expect:
self.assertTrue(res)
else:
self.assertFalse(res)
t = torch.randn(1)
check("call_function", torch._C._set_grad_enabled, (False,), {})
check("call_method", "copy_", (t, t), {})
check("call_method", "relu_", (t,), {})
check("call_function", torch.manual_seed, (0,), {})
check("call_function", torch.ops.aten.set_.source_Tensor, (t, t), {})
check(
"call_function",
torch.amp.autocast_mode._enter_autocast,
(GPU_TYPE, None, True, None),
{},
)
check("call_function", torch.amp.autocast_mode._exit_autocast, (None,), {})
check(
"call_function",
torch.ops._c10d_functional.all_gather_into_tensor_out,
(t, 2, "0"),
{"out": t},
)
check("call_function", torch.ops.inductor.resize_storage_bytes_, (t, 0), {})
check(
"call_function",
torch.ops.inductor.resize_storage_bytes_.default,
(t, 0),
{},
)
check(
"call_function",
torch.ops.fsdp.split_with_sizes_copy,
(t, [64, 128, 8, 8]),
{"dim": 1, "out": [t, t, t, t]},
)
check("call_function", torch.ops.fsdp.copy_, (t, t), {})
check(
"call_function", torch.ops.aten.__rshift__.Scalar, (t, 2), {}, expect=False
)
check(
"call_function",
torch.ops._c10d_functional.all_gather_into_tensor,
(t, 2, "0"),
{},
expect=False,
)
@torch.library.custom_op("vllm::fused_rms_norm_quant_static", mutates_args=[])
def fused_rms_norm_quant_static(out: torch.Tensor, input: torch.Tensor) -> None:
pass
check(
"call_function",
torch.ops.vllm.fused_rms_norm_quant_static,
(t, t),
{},
expect=False,
)
def test_multioutput_register_replacement(self):
@torch.library.custom_op(
"vllm::fused_rms_norm_quant_static", mutates_args=["result", "scale"]
)
def fused_rms_norm_quant_static(
result: torch.Tensor,
input: torch.Tensor,
weight: torch.Tensor,
scale: torch.Tensor,
azp: torch.Tensor,
epsilon: float,
) -> None:
print("vllm::fused_rms_norm_quant_static")
result_rms = torch.mul(input, weight) + epsilon
_result = torch.mul(result_rms, scale).to(torch.int8)
scale.fill_(0.5)
@torch.library.custom_op("vllm::rms_norm", mutates_args=["result"])
def rms_norm(
result: torch.Tensor,
input: torch.Tensor,
weight: torch.Tensor,
epsilon: float,
) -> None:
# bogus implementation doesn't matter
_result = torch.mul(input, weight) + epsilon
@torch.library.custom_op(
"vllm::static_scaled_int8_quant", mutates_args=["result", "scale"]
)
def static_scaled_int8_quant(
result: torch.Tensor,
input: torch.Tensor,
scale: torch.Tensor,
azp: Optional[torch.Tensor] = None,
) -> None:
# bogus implementation doesn't matter
_result = torch.mul(input, scale).to(torch.int8)
scale.fill_(0.5)
def rms_pattern_static(
result: torch.Tensor,
result_rms: torch.Tensor,
input: torch.Tensor,
weight: torch.Tensor,
scale: torch.Tensor,
):
at1 = auto_functionalized(
torch.ops.vllm.rms_norm.default,
result=result_rms,
input=input,
weight=weight,
epsilon=1e-6,
)
at2 = auto_functionalized(
torch.ops.vllm.static_scaled_int8_quant.default,
result=result,
input=at1[1],
scale=scale,
azp=None,
)
return at2[1], at2[2]
def rms_replacement_static(
result: torch.Tensor,
result_rms: torch.Tensor,
input: torch.Tensor,
weight: torch.Tensor,
scale: torch.Tensor,
):
at = auto_functionalized(
torch.ops.vllm.fused_rms_norm_quant_static.default,
result=result,
input=input,
weight=weight,
epsilon=1e-6,
scale=scale,
azp=None,
)
return at[1], at[2]
def empty_bf16(*args, **kwargs):
return torch.empty(*args, **kwargs, dtype=torch.bfloat16)
def empty_int8(*args, **kwargs):
return torch.empty(*args, **kwargs, dtype=torch.int8)
my_patterns = PatternMatcherPass()
inputs = [
empty_int8(5, 4),
empty_bf16(5, 4),
empty_bf16(5, 4),
empty_bf16(5, 1),
torch.empty(1, 1),
]
register_replacement(
rms_pattern_static, rms_replacement_static, inputs, fwd_only, my_patterns
)
def custom_pass(graph: torch.fx.Graph) -> torch.fx.Graph:
_count = my_patterns.apply(graph)
# print(f"Count: {_count}")
graph.eliminate_dead_code()
# graph.print_tabular()
return graph
def custom_backend(
graph: torch.fx.GraphModule, example_inputs: list[torch.Tensor]
) -> Callable:
from torch._inductor import config
current_config = config.shallow_copy_dict()
from torch._inductor.compile_fx import compile_fx
current_config["post_grad_custom_post_pass"] = custom_pass
return compile_fx(graph, example_inputs, config_patches=current_config)
@torch.compile(backend=custom_backend)
def my_func_static(x, w, epsilon):
quant_result = torch.empty_like(x, dtype=torch.int8)
result_rms = torch.empty_like(x, dtype=torch.bfloat16)
scale = torch.ones((1, 1))
x = x.to(torch.bfloat16)
w = w.to(torch.bfloat16)
quant_result, scale = rms_pattern_static(
result=quant_result,
result_rms=result_rms,
input=x,
weight=w,
scale=scale,
)
return quant_result, scale
inputs = [torch.empty((5, 4)), torch.empty((5, 1)), 1e-6]
# print(my_func_static(*inputs))
test, (code,) = run_and_get_code(my_func_static, *inputs)
self.assertTrue("static_scaled_int8_quant" not in code)
def test_fwd_only_generate_original_aten_meta(self):
def f(x):
return torch.ops.aten.sigmoid(x)
sample_input = torch.randn(3, 5, device=GPU_TYPE)
gm_with_meta = fwd_only(f, args=[sample_input])
sigmoid_nodes = gm_with_meta.graph.find_nodes(
op="call_function", target=torch.ops.aten.sigmoid.default
)
self.assertEqual(len(sigmoid_nodes), 1)
self.assertTrue("original_aten" in sigmoid_nodes[0].meta)
if __name__ == "__main__":
if IS_LINUX and HAS_GPU:
run_tests()