mirror of
https://github.com/pytorch/pytorch.git
synced 2025-10-20 12:54:11 +08:00
`SIM` rules are useful for simplifying boolean expressions and enhances code readability. Pull Request resolved: https://github.com/pytorch/pytorch/pull/164645 Approved by: https://github.com/ezyang, https://github.com/mlazos
76 lines
2.2 KiB
Python
76 lines
2.2 KiB
Python
# Owner(s): ["module: inductor"]
|
|
import glob
|
|
import math
|
|
import os
|
|
import shutil
|
|
import tempfile
|
|
|
|
import torch
|
|
import torch._dynamo
|
|
import torch._inductor.config as inductor_config
|
|
from torch._inductor.test_case import run_tests, TestCase
|
|
from torch.testing._internal.common_cuda import PLATFORM_SUPPORTS_FUSED_ATTENTION
|
|
from torch.testing._internal.common_utils import IS_LINUX
|
|
from torch.testing._internal.inductor_utils import HAS_CUDA_AND_TRITON
|
|
|
|
|
|
try:
|
|
import pydot # noqa: F401
|
|
|
|
HAS_PYDOT = True
|
|
except ImportError:
|
|
HAS_PYDOT = False
|
|
|
|
|
|
HAS_DOT = shutil.which("dot") is not None
|
|
|
|
|
|
class TestGraphTransformObserver(TestCase):
|
|
def test_sdpa_rewriter(self):
|
|
if not (
|
|
HAS_CUDA_AND_TRITON
|
|
and PLATFORM_SUPPORTS_FUSED_ATTENTION
|
|
and HAS_PYDOT
|
|
and HAS_DOT
|
|
):
|
|
return
|
|
|
|
def dot_prod_attention(
|
|
query: torch.Tensor, key: torch.Tensor, value: torch.Tensor
|
|
) -> torch.Tensor:
|
|
"""Input tensors assumed to have shape (batch_size, n_head, seq_len, embed_dim)"""
|
|
return (
|
|
torch.matmul(query, key.transpose(-2, -1))
|
|
.div(math.sqrt(key.shape[-1]))
|
|
.softmax(dim=-1)
|
|
.matmul(value)
|
|
)
|
|
|
|
log_url = tempfile.mkdtemp()
|
|
inductor_config.trace.log_url_for_graph_xform = log_url
|
|
inductor_config.force_disable_caches = True
|
|
compiled_fn = torch.compile(dot_prod_attention, fullgraph=True)
|
|
|
|
tensor_shape = (4, 2, 16, 32)
|
|
q = torch.randn(tensor_shape, device="cuda")
|
|
k = torch.randn(tensor_shape, device="cuda")
|
|
v = torch.randn(tensor_shape, device="cuda")
|
|
compiled_fn(q, k, v)
|
|
|
|
found_input_svg = False
|
|
found_output_svg = False
|
|
for filepath_object in glob.glob(log_url + "/*"):
|
|
if os.path.isfile(filepath_object):
|
|
if filepath_object.endswith("input_graph.dot"):
|
|
found_input_svg = True
|
|
elif filepath_object.endswith("output_graph.dot"):
|
|
found_output_svg = True
|
|
|
|
self.assertTrue(found_input_svg)
|
|
self.assertTrue(found_output_svg)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
if IS_LINUX:
|
|
run_tests()
|