Files
pytorch/test/inductor/test_foreach.py
2025-08-10 07:05:52 +00:00

1114 lines
34 KiB
Python

# Owner(s): ["module: inductor"]
import sys
import unittest
import unittest.mock as mock
import torch
import torch._inductor
from torch._higher_order_ops import foreach_map
from torch._inductor.test_case import TestCase
from torch._inductor.utils import run_fw_bw_and_get_code
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
IS_FBCODE,
parametrize,
)
from torch.testing._internal.inductor_utils import HAS_CPU, HAS_CUDA_AND_TRITON
from torch.testing._internal.triton_utils import requires_cuda_and_triton
from torch.utils._pytree import tree_flatten
aten = torch.ops.aten
try:
try:
from .test_torchinductor import check_model, check_model_cuda
except ImportError:
from test_torchinductor import ( # @manual=fbcode//caffe2/test/inductor:test_inductor-library
check_model,
check_model_cuda,
)
except (unittest.SkipTest, ImportError) as e:
sys.stderr.write(f"{type(e)}: {e}\n")
if __name__ == "__main__":
sys.exit(0)
raise
def foreach_map_wrapper(op):
def wrapper(*args, **kwargs):
return foreach_map(op, *args, **kwargs)
wrapper.__name__ = "foreach_map_" + op.__name__
wrapper.original_op = op
return wrapper
def add_op(x, y):
return torch.add(x, y)
def add_inplace_op(x, y):
x.add_(y)
return x.sin()
def addrecip_op(x, y):
return torch.reciprocal(torch.add(x, y))
def addcmul_op(x, y, z):
return torch.mul(torch.add(x, y), z)
def recipaddmul_op(x, y, z):
return torch.mul(torch.add(torch.reciprocal(x), y), z)
# Foreach map bin op defs which support a scalar arg
foreach_map_add = foreach_map_wrapper(torch.add)
foreach_map_mul = foreach_map_wrapper(torch.mul)
foreach_map_sub = foreach_map_wrapper(torch.sub)
foreach_map_div = foreach_map_wrapper(torch.div)
foreach_map_addrecip = foreach_map_wrapper(addrecip_op)
foreach_map_clamp_max = foreach_map_wrapper(torch.clamp_max)
foreach_map_clamp_min = foreach_map_wrapper(torch.clamp_min)
# No scalar args (due to limitations on the op itself)
foreach_map_max = foreach_map_wrapper(torch.maximum)
foreach_map_min = foreach_map_wrapper(torch.minimum)
foreach_map_copy = foreach_map_wrapper(aten.copy)
# More general functions
foreach_map_add_fn = foreach_map_wrapper(add_op)
foreach_map_add_inplace = foreach_map_wrapper(add_inplace_op)
foreach_map_recipaddmul = foreach_map_wrapper(addrecip_op)
foreach_map_addcmul = foreach_map_wrapper(addcmul_op)
foreach_map_recipaddmul = foreach_map_wrapper(recipaddmul_op)
# Foreach map unary op defs
foreach_map_recip = foreach_map_wrapper(torch.reciprocal)
foreach_map_neg = foreach_map_wrapper(torch.neg)
foreach_map_sign = foreach_map_wrapper(torch.sign)
foreach_map_abs = foreach_map_wrapper(torch.abs)
inplace_bin_ops_under_test = [
torch._foreach_add_,
torch._foreach_mul_,
torch._foreach_sub_,
torch._foreach_div_,
]
ternary_ops_under_test = [
foreach_map_addcmul,
foreach_map_recipaddmul,
]
foreach_map_bin_ops_under_test = [
foreach_map_add,
foreach_map_mul,
foreach_map_sub,
foreach_map_div,
foreach_map_addrecip,
foreach_map_clamp_max,
foreach_map_clamp_min,
foreach_map_add_fn,
foreach_map_max,
foreach_map_min,
]
foreach_map_un_ops_under_test = [
foreach_map_recip,
foreach_map_neg,
foreach_map_sign,
foreach_map_abs,
]
bin_ops_under_test = [
torch._foreach_add,
torch._foreach_mul,
torch._foreach_sub,
torch._foreach_div,
torch._foreach_maximum,
torch._foreach_minimum,
torch._foreach_clamp_max,
torch._foreach_clamp_min,
aten._foreach_copy,
foreach_map_copy, # aten.copy doesn't support backward
*foreach_map_bin_ops_under_test,
]
scalar_bin_ops_under_test = [
op
for op in bin_ops_under_test
if op
not in (foreach_map_max, foreach_map_min, foreach_map_copy, aten._foreach_copy)
]
un_ops_under_test = [
torch._foreach_reciprocal,
torch._foreach_neg,
torch._foreach_sign,
torch._foreach_abs,
torch._foreach_sqrt,
torch._foreach_rsqrt,
*foreach_map_un_ops_under_test,
]
compose_ops = [torch._foreach_addcdiv, torch._foreach_addcmul]
all_ops = parametrize(
"op",
ternary_ops_under_test + bin_ops_under_test + un_ops_under_test,
name_fn=lambda f: f.__name__,
)
bin_ops = parametrize("op", bin_ops_under_test, name_fn=lambda f: f.__name__)
inplace_bin_ops = parametrize(
"op", inplace_bin_ops_under_test, name_fn=lambda f: f.__name__
)
scalar_bin_ops = parametrize(
"op", scalar_bin_ops_under_test, name_fn=lambda f: f.__name__
)
scalar_tensor_bin_ops = parametrize(
"op", scalar_bin_ops_under_test, name_fn=lambda f: f.__name__
)
foreach_map_bin_ops = parametrize(
"op", foreach_map_bin_ops_under_test, name_fn=lambda f: f.__name__
)
foreach_map_un_ops = parametrize(
"op", foreach_map_un_ops_under_test, name_fn=lambda f: f.__name__
)
decomp_ops = parametrize("op", compose_ops, name_fn=lambda f: f.__name__)
def gen_args(op):
if op in un_ops_under_test:
return (
torch.rand(10, 10, device="cuda:0"),
torch.rand(20, 20, device="cuda:0"),
)
elif op in bin_ops_under_test:
return (
torch.rand(10, 10, device="cuda:0"),
torch.rand(20, 20, device="cuda:0"),
torch.rand(10, 10, device="cuda:0"),
torch.rand(20, 20, device="cuda:0"),
)
else:
return (
torch.rand(10, 10, device="cuda:0"),
torch.rand(20, 20, device="cuda:0"),
torch.rand(10, 10, device="cuda:0"),
torch.rand(20, 20, device="cuda:0"),
torch.rand(10, 10, device="cuda:0"),
torch.rand(20, 20, device="cuda:0"),
)
@instantiate_parametrized_tests
class ForeachTests(TestCase):
check_model_cuda = check_model_cuda
check_model_cpu = check_model
check_kernel_count = True
def setUp(self):
super().setUp()
torch._inductor.metrics.reset()
def tearDown(self):
super().tearDown()
torch._inductor.metrics.reset()
def _test_single_list(self, op):
if op in un_ops_under_test:
def fn(a0, a1):
return op([a0, a1])
elif op in bin_ops_under_test:
def fn(a0, a1, b0, b1):
return op([a0, a1], [b0, b1])
else:
def fn(a0, a1, b0, b1, c0, c1):
return op([a0, a1], [b0, b1], [c0, c1])
self.check_model_cuda(
fn,
gen_args(op),
)
def _test_single_scalar(self, op):
def fn(a0, a1):
return op([a0, a1], 3.3)
self.check_model_cuda(
fn,
(
torch.rand(10, 10, device="cuda:0"),
torch.rand(20, 20, device="cuda:0"),
),
)
def _test_single_scalar_tensor(self, op):
def fn(a0, a1):
return op([a0, a1], torch.tensor(3.3, device="cuda:0"))
self.check_model_cuda(
fn,
(
torch.rand(10, 10, device="cuda:0"),
torch.rand(20, 20, device="cuda:0"),
),
)
# called in test_cuda_cpp_wrapper.py
@requires_cuda_and_triton
def test_foreach_cpp_wrapper_cuda(self):
self._test_single_list(op=torch._foreach_add)
@requires_cuda_and_triton
@all_ops
def test_single_list(self, op):
self._test_single_list(op)
self.assertEqual(torch._inductor.metrics.generated_kernel_count, 1)
@requires_cuda_and_triton
@scalar_bin_ops
def test_single_scalar(self, op):
self._test_single_scalar(op)
self.assertEqual(torch._inductor.metrics.generated_kernel_count, 1)
@requires_cuda_and_triton
@scalar_tensor_bin_ops
def test_single_scalar_tensor(self, op):
self._test_single_scalar_tensor(op)
self.assertEqual(torch._inductor.metrics.generated_kernel_count, 1)
@requires_cuda_and_triton
@all_ops
def test_scheduler_fusion_list(self, op):
if op in un_ops_under_test:
def fn(a0, a1):
c = op([a0, a1])
return torch._foreach_sqrt(c)
elif op in bin_ops_under_test:
def fn(a0, a1, b0, b1):
c = op([a0, a1], [b0, b1])
return c, torch._foreach_add([a0, a1], c)
else:
def fn(a0, a1, b0, b1, c0, c1):
c = op([a0, a1], [b0, b1], [c0, c1])
return c, torch._foreach_add([a0, a1], c)
self.check_model_cuda(
fn,
gen_args(op),
)
self.assertEqual(torch._inductor.metrics.generated_kernel_count, 1)
@requires_cuda_and_triton
@scalar_bin_ops
def test_scheduler_fusion_scalar(self, op):
def fn(a0, a1):
c = op([a0, a1], 3.4)
return c, torch._foreach_add([a0, a1], c)
self.check_model_cuda(
fn,
(
torch.rand(10, 10, device="cuda:0"),
torch.rand(20, 20, device="cuda:0"),
),
)
self.assertEqual(torch._inductor.metrics.generated_kernel_count, 1)
@requires_cuda_and_triton
@scalar_bin_ops
def test_broadcasting(self, op):
def fn(a0, a1, b0, b1):
return op([a0, a1], [b0, b1])
fn_opt = torch.compile(fn)
inputs = (
torch.rand(10, 1, device="cuda:0"),
torch.rand(20, 20, device="cuda:0"),
torch.rand(1, 10, device="cuda:0"),
torch.rand(20, 20, device="cuda:0"),
)
actual = fn_opt(*inputs)
expected = fn(*inputs)
self.assertEqual(actual, expected)
self.assertEqual(torch._inductor.metrics.generated_kernel_count, 1)
@requires_cuda_and_triton
@all_ops
def test_singleton_lists(self, op):
if op in un_ops_under_test:
def fn(a0):
return op([a0])
args = (torch.rand(10, 10, device="cuda:0"),)
elif op in bin_ops_under_test:
def fn(a0, b0):
return op([a0], [b0])
args = (
torch.rand(10, 10, device="cuda:0"),
torch.rand(10, 10, device="cuda:0"),
)
else:
def fn(a0, b0, c0):
return op([a0], [b0], [c0])
args = (
torch.rand(10, 10, device="cuda:0"),
torch.rand(10, 10, device="cuda:0"),
torch.rand(10, 10, device="cuda:0"),
)
self.check_model_cuda(
fn,
args,
)
self.assertEqual(torch._inductor.metrics.generated_kernel_count, 1)
@requires_cuda_and_triton
@bin_ops
def test_type_promotion(self, op):
def fn(a0, a1, b0, b1):
return op([a0, a1], [b0, b1])
fn_opt = torch.compile(fn)
max32 = torch.iinfo(torch.int32).max
max64 = torch.iinfo(torch.int64).max
inputs = (
torch.randint(max32, (10, 10), device="cuda:0", dtype=torch.int32),
torch.randint(max32, (20, 20), device="cuda:0", dtype=torch.int32),
torch.randint(max32, (10, 10), device="cuda:0", dtype=torch.int32),
torch.randint(max64, (20, 20), device="cuda:0", dtype=torch.int64),
)
actual = fn_opt(*inputs)
expected = fn(*inputs)
self.assertEqual(actual, expected)
self.assertEqual(torch._inductor.metrics.generated_kernel_count, 1)
@requires_cuda_and_triton
@scalar_bin_ops
def test_kernel_split_arg_limit_list(self, op):
# NB: foeach_copy won't pass this test because it will dce one set of buffers
def fn(a, b):
return op(a, b)
fn_opt = torch.compile(fn)
max_args = 370
max_list_len = (max_args // 3) + 1
inputs = (
[torch.rand(10, 10, device="cuda:0") for _ in range(max_list_len)],
[torch.rand(10, 10, device="cuda:0") for _ in range(max_list_len)],
)
actual = fn_opt(*inputs)
expected = fn(*inputs)
self.assertEqual(actual, expected)
self.assertEqual(torch._inductor.metrics.generated_kernel_count, 2)
@requires_cuda_and_triton
@scalar_bin_ops
@unittest.skip(
"Triton recursion depth exceeded: https://github.com/triton-lang/triton/issues/1763"
)
def test_kernel_split_arg_limit_scalar(self, op):
def fn(a):
return op(a, 3.3)
fn_opt = torch.compile(fn)
max_args = 370
max_list_len = (max_args // 2) + 1
inputs = ([torch.rand(10, 10, device="cuda:0") for _ in range(max_list_len)],)
actual = fn_opt(*inputs)
expected = fn(*inputs)
self.assertEqual(actual, expected)
self.assertEqual(torch._inductor.metrics.generated_kernel_count, 2)
@requires_cuda_and_triton
@bin_ops
def test_fusion_duplicate_buffer_list(self, op):
def fn(a0, a1, b0, b1):
c = op([a0, a1], [b0, b1])
return op([a0, b0], [c[0], c[0]])
self.check_model_cuda(
fn,
(
torch.rand(10, 10, device="cuda:0"),
torch.rand(20, 20, device="cuda:0"),
torch.rand(10, 10, device="cuda:0"),
torch.rand(20, 20, device="cuda:0"),
),
reference_in_float=False,
check_lowp=False,
)
kernel_count = 1
if "foreach_map" in op.__name__:
kernel_count = 2
self.assertEqual(torch._inductor.metrics.generated_kernel_count, kernel_count)
@requires_cuda_and_triton
@all_ops
def test_non_foreach_consumer_list(self, op):
if op in un_ops_under_test:
def fn(a0, a1):
c = op([a0, a1])
return torch.mul(c[0], a0)
elif op in bin_ops_under_test:
def fn(a0, a1, b0, b1):
c = op([a0, a1], [b0, b1])
return torch.mul(c[0], a0)
else:
def fn(a0, a1, b0, b1, c0, c1):
c = op([a0, a1], [b0, b1], [c0, c1])
return torch.mul(c[0], a0)
self.check_model_cuda(
fn,
gen_args(op),
)
self.assertEqual(torch._inductor.metrics.generated_kernel_count, 1)
@requires_cuda_and_triton
@scalar_bin_ops
def test_non_foreach_consumer_scalar(self, op):
def fn(a0, a1):
c = op([a0, a1], 4.7)
return torch.mul(c[0], a0)
self.check_model_cuda(
fn,
(
torch.rand(10, 10, device="cuda:0"),
torch.rand(20, 20, device="cuda:0"),
),
)
self.assertEqual(torch._inductor.metrics.generated_kernel_count, 1)
@requires_cuda_and_triton
@all_ops
def test_non_foreach_producer_list(self, op):
if op in un_ops_under_test:
def fn(a0, a1):
c0 = torch.add(a0, a0)
c1 = torch.add(a1, a1)
return op([c0, c1])
elif op in bin_ops_under_test:
def fn(a0, a1, b0, b1):
c0 = torch.add(a0, b0)
c1 = torch.add(a1, b1)
return op([a0, a1], [c0, c1])
else:
def fn(a0, a1, b0, b1, c0, c1):
c0 = torch.add(a0, b0)
c1 = torch.add(a1, b1)
return op([a0, a1], [b0, b1], [c0, c1])
self.check_model_cuda(
fn, gen_args(op), reference_in_float=False, check_lowp=False
)
self.assertEqual(torch._inductor.metrics.generated_kernel_count, 1)
@requires_cuda_and_triton
@scalar_bin_ops
def test_non_foreach_producer_scalar(self, op):
def fn(a0, a1, b0, b1):
c0 = torch.mul(a0, b0)
c1 = torch.mul(a1, b1)
return op([c0, c1], 5.6)
self.check_model_cuda(
fn,
(
torch.rand(10, 10, device="cuda:0"),
torch.rand(20, 20, device="cuda:0"),
torch.rand(10, 10, device="cuda:0"),
torch.rand(20, 20, device="cuda:0"),
),
)
self.assertEqual(torch._inductor.metrics.generated_kernel_count, 1)
@requires_cuda_and_triton
@all_ops
def test_non_foreach_consumer_producer_list(self, op):
if op in un_ops_under_test:
def fn(a0, a1):
c0 = torch.add(a0, a0)
c1 = torch.mul(a1, a1)
d = op([c0, c1])
e0 = torch.mul(d[0], a0)
e1 = torch.mul(d[1], a1)
return [e0, e1]
elif op in bin_ops_under_test:
def fn(a0, a1, b0, b1):
c0 = torch.add(a0, b0)
c1 = torch.add(a1, b1)
d = op([a0, a1], [c0, c1])
e0 = torch.mul(d[0], a0)
e1 = torch.mul(d[1], a1)
return [e0, e1]
else:
def fn(a0, a1, b0, b1, c0, c1):
c0 = torch.add(a0, b0)
c1 = torch.add(a1, b1)
d = op([a0, a1], [b0, b1], [c0, c1])
e0 = torch.mul(d[0], a0)
e1 = torch.mul(d[1], a1)
return [e0, e1]
self.check_model_cuda(
fn,
gen_args(op),
reference_in_float=False,
check_lowp=False,
)
self.assertEqual(torch._inductor.metrics.generated_kernel_count, 1)
@requires_cuda_and_triton
@scalar_bin_ops
def test_non_foreach_consumer_producer_scalar(self, op):
def fn(a0, a1, b0, b1):
c0 = torch.add(a0, b0)
c1 = torch.add(a1, b1)
d = op([c0, c1], 5.8)
e0 = torch.mul(d[0], a0)
e1 = torch.mul(d[1], a1)
return [e0, e1]
self.check_model_cuda(
fn,
(
torch.rand(10, 10, device="cuda:0"),
torch.rand(20, 20, device="cuda:0"),
torch.rand(10, 10, device="cuda:0"),
torch.rand(20, 20, device="cuda:0"),
),
reference_in_float=False,
check_lowp=False,
)
self.assertEqual(torch._inductor.metrics.generated_kernel_count, 1)
@requires_cuda_and_triton
@bin_ops
@torch._dynamo.config.patch("automatic_dynamic_shapes", False)
@torch._dynamo.config.patch("assume_static_by_default", False)
@torch._inductor.config.patch("combo_kernel_foreach_dynamic_shapes", False)
def test_dynamic_shapes_fallback(self, op):
def fn(a0, a1, b0, b1):
return op([a0, a1], [b0, b1])
inputs = (
torch.rand(10, 10, device="cuda:0"),
torch.rand(20, 20, device="cuda:0"),
torch.rand(10, 10, device="cuda:0"),
torch.rand(20, 20, device="cuda:0"),
)
self.check_model_cuda(fn, inputs)
self.assertEqual(torch._inductor.metrics.generated_kernel_count, 2)
@requires_cuda_and_triton
@torch._dynamo.config.patch("automatic_dynamic_shapes", False)
@torch._dynamo.config.patch("assume_static_by_default", False)
@torch._inductor.config.patch("combo_kernel_foreach_dynamic_shapes", True)
def test_enable_dynamic_shapes_python_wrapper(self, op=torch._foreach_add):
def fn(a0, a1, b0, b1):
return op([a0, a1], [b0, b1])
inputs = (
torch.rand(10, 10, device="cuda:0"),
torch.rand(20, 20, device="cuda:0"),
torch.rand(10, 10, device="cuda:0"),
torch.rand(20, 20, device="cuda:0"),
)
self.check_model_cuda(fn, inputs)
self.assertEqual(torch._inductor.metrics.generated_kernel_count, 1)
@requires_cuda_and_triton
@torch._dynamo.config.patch("automatic_dynamic_shapes", False)
@torch._dynamo.config.patch("assume_static_by_default", False)
@torch._inductor.config.patch("combo_kernel_foreach_dynamic_shapes", True)
@torch._inductor.config.patch("cpp_wrapper", True)
def test_enable_dynamic_shapes_cpp_wrapper_cuda(self, op=torch._foreach_add):
def fn(a0, a1, b0, b1):
return op([a0, a1], [b0, b1])
inputs = (
torch.rand(10, 10, device="cuda:0"),
torch.rand(20, 20, device="cuda:0"),
torch.rand(10, 10, device="cuda:0"),
torch.rand(20, 20, device="cuda:0"),
)
self.check_model_cuda(fn, inputs)
@unittest.skipIf(IS_FBCODE, "cpp compile not supported in fbcode")
@bin_ops
def test_cpu_cpp_fallback(self, op):
def fn(a0, a1, b0, b1):
return op([a0, a1], [b0, b1])
inputs = (
torch.rand(10, 10, device="cpu"),
torch.rand(20, 20, device="cpu"),
torch.rand(10, 10, device="cpu"),
torch.rand(20, 20, device="cpu"),
)
self.check_model_cpu(fn, inputs)
self.assertEqual(torch._inductor.metrics.generated_kernel_count, 2)
@requires_cuda_and_triton
@decomp_ops
def test_decomp(self, op):
def fn(a0, a1, b0, b1, c0, c1):
return op([a0, a1], [b0, b1], [c0, c1], value=0.5)
self.check_model_cuda(
fn,
(
torch.rand(10, 10, device="cuda:0"),
torch.rand(20, 20, device="cuda:0"),
torch.rand(10, 10, device="cuda:0"),
torch.rand(20, 20, device="cuda:0"),
torch.rand(10, 10, device="cuda:0"),
torch.rand(20, 20, device="cuda:0"),
),
)
self.assertEqual(torch._inductor.metrics.generated_kernel_count, 1)
@requires_cuda_and_triton
def test_fuse_concat(self):
def fn(x1, x2, x3, w1, w2, w3):
x = torch.stack([x1, x2, x3])
w = torch.stack([w1, w2, w3])
y = torch.bmm(x, w)
return y
x1 = torch.randn(5, 4).cuda()
x2 = x1 + 1
x3 = x1 + 2
w1 = torch.randn(4, 3).cuda()
w2 = w1 + 1
w3 = w1 + 2
args = (x1, x2, x3, w1, w2, w3)
self.check_model_cuda(fn, args)
self.assertEqual(torch._inductor.metrics.generated_kernel_count, 2)
@requires_cuda_and_triton
def test_zero_elems(self):
def fn(a0, a1, b0, b1):
return torch._foreach_add([a0, a1], [b0, b1])
self.check_model_cuda(
fn,
(
torch.rand(0, device="cuda:0"),
torch.rand(10, 10, device="cuda:0"),
torch.rand(0, device="cuda:0"),
torch.rand(10, 10, device="cuda:0"),
),
)
self.assertEqual(torch._inductor.metrics.generated_kernel_count, 1)
@requires_cuda_and_triton
@bin_ops
def test_2d_blocking(self, op):
def fn(a0, a1, b0, b1):
return op([a0, a1], [b0, b1])
self.check_model_cuda(
fn,
(
torch.rand(10, 40, device="cuda:0"),
torch.rand(10, 30, device="cuda:0"),
torch.rand(40, 10, device="cuda:0").t(),
torch.rand(30, 10, device="cuda:0").t(),
),
)
self.assertEqual(torch._inductor.metrics.generated_kernel_count, 1)
@requires_cuda_and_triton
@bin_ops
def test_2d_blocking_partitioning(self, op):
def fn(a0, a1, b0, b1):
return op([a0, a1], [b0, b1])
self.check_model_cuda(
fn,
(
torch.rand(30, 20, device="cuda:0"),
torch.rand(40, 30, device="cuda:0"),
torch.rand(30, 20, device="cuda:0"),
torch.rand(30, 40, device="cuda:0").t(),
),
)
self.assertEqual(torch._inductor.metrics.generated_kernel_count, 2)
@requires_cuda_and_triton
@bin_ops
def test_2d_blocking_partitioning_elems(self, op):
"""2D blocking should be grouped by number of yelems"""
def fn(a0, a1, a2, b0, b1, b2):
return op([a0, a1, a2], [b0, b1, b2])
self.check_model_cuda(
fn,
(
torch.rand(10, 20, device="cuda:0"),
torch.rand(30, 20, device="cuda:0"),
torch.rand(10, 30, device="cuda:0"),
torch.rand(20, 10, device="cuda:0").t(),
torch.rand(20, 30, device="cuda:0").t(),
torch.rand(30, 10, device="cuda:0").t(),
),
)
self.assertEqual(torch._inductor.metrics.generated_kernel_count, 2)
@requires_cuda_and_triton
@bin_ops
@torch._inductor.config.patch("combo_kernel_allow_mixed_sizes", 2)
def test_2d_blocking_partitioning_mixed_sizes(self, op):
"""2D blocking with mixed sizes should group together"""
def fn(a0, a1, a2, b0, b1, b2):
return op([a0, a1, a2], [b0, b1, b2])
self.check_model_cuda(
fn,
(
torch.rand(10, 20, device="cuda:0"),
torch.rand(30, 20, device="cuda:0"),
torch.rand(10, 30, device="cuda:0"),
torch.rand(20, 10, device="cuda:0").t(),
torch.rand(20, 30, device="cuda:0").t(),
torch.rand(30, 10, device="cuda:0").t(),
),
)
self.assertEqual(torch._inductor.metrics.generated_kernel_count, 1)
@requires_cuda_and_triton
@inplace_bin_ops
def test_reinplacing(self, op):
def fn(a0, a1, b0, b1):
op([a0, a1], [b0, b1])
return [a0, a1]
inputs = (
torch.rand(10, 10, device="cuda:0"),
torch.rand(20, 20, device="cuda:0"),
torch.rand(10, 10, device="cuda:0"),
torch.rand(20, 20, device="cuda:0"),
)
self.check_model_cuda(fn, inputs, check_lowp=False)
self.assertEqual(torch._inductor.metrics.generated_kernel_count, 1)
@requires_cuda_and_triton
@inplace_bin_ops
def test_reinplacing_mut_before(self, op):
def fn(a0, a1, b0, b1):
a0.add_(torch.ones(10, 10, device="cuda:0"))
op([a0, a1], [b0, b1])
return [a0, a1]
inputs = (
torch.rand(10, 10, device="cuda:0"),
torch.rand(20, 20, device="cuda:0"),
torch.rand(10, 10, device="cuda:0"),
torch.rand(20, 20, device="cuda:0"),
)
self.check_model_cuda(fn, inputs, check_lowp=False)
self.assertEqual(torch._inductor.metrics.generated_kernel_count, 1)
@requires_cuda_and_triton
@inplace_bin_ops
def test_reinplacing_mut_after(self, op):
def fn(a0, a1, b0, b1):
op([a0, a1], [b0, b1])
a0.add_(torch.ones(10, 10, device="cuda:0"))
return [a0, a1]
inputs = (
torch.rand(10, 10, device="cuda:0"),
torch.rand(20, 20, device="cuda:0"),
torch.rand(10, 10, device="cuda:0"),
torch.rand(20, 20, device="cuda:0"),
)
self.check_model_cuda(fn, inputs, check_lowp=False)
self.assertEqual(torch._inductor.metrics.generated_kernel_count, 1)
@requires_cuda_and_triton
def test_multi_device(self):
def test_foreach_add(a0, a1, b0, b1):
return torch._foreach_add([a0, a1], [b0, b1])
inps = [
torch.ones(10, 10, device="cuda"),
torch.ones(20, 20, device="cpu"),
torch.zeros(10, 10, device="cuda"),
torch.zeros(20, 20, device="cpu"),
]
out_eager = test_foreach_add(*inps)
out_compiled = torch.compile(test_foreach_add)(*inps)
self.assertEqual(out_eager, out_compiled)
self.assertEqual(torch._inductor.metrics.generated_kernel_count, 2)
@requires_cuda_and_triton
def test_aliasing(self):
def test_foreach_add(a0, a1, a2, b0, b1, b2):
return torch._foreach_add_([a0, a1, a2], [b0, b1, b2])
input = torch.ones(10, 10, device="cuda")
input2 = torch.ones(10, 10, device="cuda")
inps = [
input,
input.view(10, 10),
input.view(10, 10),
input2,
input2.view(10, 10),
input2.view(10, 10),
]
out_eager = test_foreach_add(*inps)
out_compiled = torch.compile(test_foreach_add)(*inps)
self.assertEqual(out_eager, out_compiled)
self.assertEqual(torch._inductor.metrics.generated_kernel_count, 4)
@requires_cuda_and_triton
@torch._inductor.config.patch("combo_kernel_allow_mixed_sizes", 1)
def test_2d_block_no_mixed_sizes_no_mask(self):
"""2D blocking with no mixed sizes constant mask"""
def fn(a0, a1, a2, b0, b1, b2):
return torch._foreach_add([a0, a1, a2], [b0, b1, b2])
self.check_model_cuda(
fn,
(
torch.rand(1024, 2048, device="cuda:0"),
torch.rand(2048, 2048, device="cuda:0"),
torch.rand(1024, 2048, device="cuda:0"),
torch.rand(2048, 1024, device="cuda:0").t(),
torch.rand(2048, 2048, device="cuda:0").t(),
torch.rand(2048, 1024, device="cuda:0").t(),
),
)
self.assertEqual(torch._inductor.metrics.generated_kernel_count, 2)
@requires_cuda_and_triton
@torch._inductor.config.patch("combo_kernel_allow_mixed_sizes", 2)
def test_2d_block_mixed_sizes_with_mask(self):
"""2D blocking with mixed sizes should have mask"""
def fn(a0, a1, a2, b0, b1, b2):
return torch._foreach_add([a0, a1, a2], [b0, b1, b2])
self.check_model_cuda(
fn,
(
torch.rand(1024, 2048, device="cuda:0"),
torch.rand(2048, 2048, device="cuda:0"),
torch.rand(1024, 2048, device="cuda:0"),
torch.rand(2048, 1024, device="cuda:0").t(),
torch.rand(2048, 2048, device="cuda:0").t(),
torch.rand(2048, 1024, device="cuda:0").t(),
),
)
self.assertEqual(torch._inductor.metrics.generated_kernel_count, 1)
@requires_cuda_and_triton
@foreach_map_bin_ops
def test_foreach_map_backward_binary(self, op):
from torch._dynamo.polyfills import foreach_map_fn
def fn(xs, ys):
outs = op(xs, ys)
return outs[0].sum() + outs[1].sum() + outs[2].sum()
def ref_fn(xs, ys):
outs = foreach_map_fn(torch.add, xs, ys)
return outs[0].sum() + outs[1].sum() + outs[2].sum()
ref_inps = (
[
torch.rand(10, 20, device="cuda:0", requires_grad=True),
torch.rand(10, 30, device="cuda:0", requires_grad=True),
torch.rand(30, 30, device="cuda:0", requires_grad=True),
],
[
torch.rand(10, 20, device="cuda:0", requires_grad=True),
torch.rand(10, 30, device="cuda:0", requires_grad=True),
torch.rand(30, 30, device="cuda:0", requires_grad=True),
],
)
inps = (
[x.clone().detach().requires_grad_(True) for x in ref_inps[0]],
[y.clone().detach().requires_grad_(True) for y in ref_inps[1]],
)
out_ref = ref_fn(*ref_inps)
out_ref.backward()
# unpacking result, (fw_code, bw_code)
_, (_, _) = run_fw_bw_and_get_code(lambda: torch.compile(fn)(*inps))
for ref, act in zip(tree_flatten(ref_inps)[0], tree_flatten(inps)[0]):
torch.allclose(ref.grad, act.grad)
self.assertEqual(torch._inductor.metrics.generated_kernel_count, 5)
@requires_cuda_and_triton
def test_foreach_map_input_mutation(self):
def fn(xs, ys):
outs = foreach_map_add_inplace(xs, ys)
return outs[0].sum() + outs[1].sum() + outs[2].sum()
ref_inps = (
[
torch.rand(10, 20, device="cuda:0", requires_grad=True),
torch.rand(10, 30, device="cuda:0", requires_grad=True),
torch.rand(30, 30, device="cuda:0", requires_grad=True),
],
[
torch.rand(10, 20, device="cuda:0", requires_grad=True),
torch.rand(10, 30, device="cuda:0", requires_grad=True),
torch.rand(30, 30, device="cuda:0", requires_grad=True),
],
)
# Set requires_grad to be False to avoid mutating a leaf variable
inps = (
[x.clone().detach().requires_grad_(False) for x in ref_inps[0]],
[y.clone().detach().requires_grad_(False) for y in ref_inps[1]],
)
# TODO: after decomposing auto_functionalized, we're getting
# a functional subgraph with an inlined epilogue.
with self.assertRaisesRegex(
torch._inductor.exc.InductorError,
"Buffer mutation detected during lowering of aten.copy_.default",
):
with mock.patch(
"torch._dynamo.variables.higher_order_ops.BaseHOPVariable.supports_input_mutation",
True,
):
_ = run_fw_bw_and_get_code(lambda: torch.compile(fn)(*inps))
@requires_cuda_and_triton
@foreach_map_un_ops
def test_foreach_map_backward_unary(self, op):
from torch._dynamo.polyfills import foreach_map_fn
def fn(xs):
outs = op(xs)
return outs[0].sum() + outs[1].sum() + outs[2].sum()
def ref_fn(xs):
outs = foreach_map_fn(op.original_op, xs)
return outs[0].sum() + outs[1].sum() + outs[2].sum()
ref_inp = [
torch.rand(10, 20, device="cuda:0", requires_grad=True),
torch.rand(10, 30, device="cuda:0", requires_grad=True),
torch.rand(30, 30, device="cuda:0", requires_grad=True),
]
inp = [x.clone().detach().requires_grad_(True) for x in ref_inp]
out_ref = ref_fn(ref_inp)
out_ref.backward()
# unpacking result, (fw_code, bw_code)
_, (_, _) = run_fw_bw_and_get_code(lambda: torch.compile(fn)(inp))
for ref, act in zip(ref_inp, inp):
torch.allclose(ref.grad, act.grad)
self.assertEqual(torch._inductor.metrics.generated_kernel_count, 5)
if __name__ == "__main__":
from torch._inductor.test_case import run_tests
if HAS_CPU or HAS_CUDA_AND_TRITON:
run_tests(needs="filelock")