Files
pytorch/test/inductor/test_codegen_triton.py
David Berard 69e82d02d3 [inductor][3/N] triton support post-#5512, tt.divisibility format (#145575)
1. Fix the tt.divisibility format in hints.py. Previously, it was `{((0,), (1,)): [["tt.divisibility", 16]]}`. Now it is `{(0,): [["tt.divisibility", 16]], (1,): [["tt.divisibility", 16]]}`. This was an oversight in the first PR I added. I've verified that we now get `{ tt.divisibility = 16 }` in the generated TTGIR.
2. Update the test_codegen_triton.py test to work with multiple triton versions (and test this divisibility format in the new triton version)

Pull Request resolved: https://github.com/pytorch/pytorch/pull/145575
Approved by: https://github.com/SamGinzburg
2025-01-27 21:48:58 +00:00

106 lines
3.7 KiB
Python

# Owner(s): ["module: inductor"]
import contextlib
import sympy
import torch
import torch._inductor.config as inductor_config
from torch._inductor.codegen import triton_utils
from torch._inductor.codegen.common import SizeArg
from torch._inductor.graph import GraphLowering
from torch._inductor.test_case import TestCase as InductorTestCase
from torch._inductor.virtualized import V
from torch.testing._internal.inductor_utils import HAS_CPU, HAS_GPU
class TestCodegenTriton(InductorTestCase):
def setUp(self):
super().setUp()
class DummyModule(torch.nn.Module):
def forward(self, x):
return x * 2
self._gm = torch.fx.symbolic_trace(DummyModule())
self._graph = GraphLowering(self._gm)
self._stack = contextlib.ExitStack()
self._stack.enter_context(V.set_graph_handler(self._graph))
def tearDown(self):
self._stack.close()
super().tearDown()
@inductor_config.patch("triton.divisible_by_16", True)
def test_config_of_sizearg(self):
from torch._inductor.utils import (
get_triton_attrs_descriptor_version,
TritonAttrsDescriptorVersion,
)
two = sympy.Integer(2)
eight = sympy.Integer(8)
sixteen = sympy.Integer(16)
s0 = sympy.Symbol("s0", positive=True, integer=True)
s1 = sympy.Symbol("s1", positive=True, integer=True)
def _check_divisibility(expected_divisible_indices, config):
if get_triton_attrs_descriptor_version() in {
TritonAttrsDescriptorVersion.V1_COMPILER,
TritonAttrsDescriptorVersion.V0_NO_TRITON,
}:
self.assertEqual(expected_divisible_indices, config.divisible_by_16)
elif get_triton_attrs_descriptor_version() in {
TritonAttrsDescriptorVersion.V2_BACKENDS,
TritonAttrsDescriptorVersion.V3_BACKENDS_TUPLE,
}:
self.assertEqual(expected_divisible_indices, config.divisibility_16)
else:
assert (
get_triton_attrs_descriptor_version()
== TritonAttrsDescriptorVersion.V4_DICT
)
self.assertIsInstance(config, dict)
for idx in expected_divisible_indices:
# config is in the form
# {(idx,): [["tt.divisibility", 16]]}
# where (idx,) is a tuple in order to support tuple inputs to triton kernels.
self.assertTrue((idx,) in config)
self.assertTrue(["tt.divisibility", 16] in config[(idx,)])
_check_divisibility(
(2,),
triton_utils.config_of(
[
SizeArg("A", two), # no
SizeArg("B", eight), # no
SizeArg("C", sixteen), # yes
SizeArg("D", s0), # no
SizeArg("E", s1), # no
]
),
)
_check_divisibility(
(0, 2, 4, 5, 6),
triton_utils.config_of(
[
SizeArg("A", two * eight), # 0: yes
SizeArg("B", eight * s0), # 1: no
SizeArg("C", two * eight * s0), # 2: yes
SizeArg("D", s0 * s1), # 3: no
SizeArg("E", sixteen * s0), # 4: yes
SizeArg("F", sixteen * eight * s0 * s1), # 5: yes
SizeArg("G", two * eight * s0 * s1), # 6: yes
]
),
)
if __name__ == "__main__":
from torch._inductor.test_case import run_tests
if HAS_CPU or HAS_GPU:
run_tests("sympy")