Files
pytorch/test/inductor/test_autoheuristic.py
PyTorch MergeBot 2344eca5eb Revert "Fix skipIfXpu and skipIfHpu disables tests when used on class (#151315)"
This reverts commit ee096b89f63394b2c18826288783eef241f3959c.

Reverted https://github.com/pytorch/pytorch/pull/151315 on behalf of https://github.com/jeanschmidt due to Seems to have introduced internal regressions, see [D74668899](https://www.internalfb.com/diff/D74668899). @malfet may you help the author get this PR merged? ([comment](https://github.com/pytorch/pytorch/pull/151315#issuecomment-2880203323))
2025-05-14 13:15:03 +00:00

174 lines
7.1 KiB
Python

# Owner(s): ["module: inductor"]
import os
import unittest
import torch
import torch._inductor.config as inductor_config
from torch._dynamo.device_interface import get_interface_for_device
from torch._inductor.autoheuristic.autoheuristic import AutoHeuristic, LocalFeedback
from torch._inductor.autoheuristic.autoheuristic_utils import AHContext
from torch._inductor.runtime.runtime_utils import cache_dir
from torch._inductor.test_case import run_tests, TestCase
from torch._inductor.utils import get_gpu_shared_memory
from torch.testing._internal.common_utils import skipIfXpu
from torch.testing._internal.inductor_utils import GPU_TYPE, HAS_GPU, IS_A100, IS_H100
@skipIfXpu(msg="AutoHeuristic doesn't currently work on the XPU stack")
class AutoHeuristicTest(TestCase):
def count_lines_in_file(self, file_path):
with open(file_path) as file:
line_count = sum(1 for line in file)
return line_count
def run_mm(self):
def f(a, b):
return torch.mm(a, b)
cf = torch.compile(f)
a = torch.randn(2047, 2048, device=GPU_TYPE, dtype=torch.float16)
b = torch.randn(2048, 2048, device=GPU_TYPE, dtype=torch.float16)
cf(a, b)
def get_path_to_autoheuristic_log(self, name):
device_name = AutoHeuristic.get_device_identifier()
path = cache_dir() + "/autoheuristic/" + device_name + "/" + name + ".txt"
return path
def test_autoheuristic_pad_mm_default(self):
# this test ensures that data is not collected for pad_mm when autoheuristic config is set to its default value
self.run_mm()
self.assertFalse(os.path.exists(self.get_path_to_autoheuristic_log("pad_mm")))
@inductor_config.patch(autoheuristic_collect="foo")
def test_autoheuristic_pad_mm_off(self):
# this test ensures that data is not collected for pad_mm when autoheuristic_collect does not contain "pad_mm"
self.run_mm()
self.assertFalse(os.path.exists(self.get_path_to_autoheuristic_log("pad_mm")))
def assert_autoheuristic_collected_data(self):
self.run_mm()
AutoHeuristic.get_device_identifier()
path = self.get_path_to_autoheuristic_log("pad_mm")
self.assertTrue(os.path.exists(path))
num_lines = self.count_lines_in_file(path)
# 1 line for metadata, 1 line for header, 1 line per choice (orig, padded)
self.assertEqual(num_lines, 4)
@inductor_config.patch(autoheuristic_collect="pad_mm")
def test_autoheuristic_pad_mm_collect_data(self):
# this test ensures that data is collected for pad_mm when autoheuristic_collect="pad_mm"
self.assert_autoheuristic_collected_data()
@inductor_config.patch(autoheuristic_collect="foo,pad_mm")
def test_autoheuristic_pad_mm_collect_data2(self):
# this test ensures that data is collected for "pad_mm" when autoheuristic_collect contains "pad_mm"
self.assert_autoheuristic_collected_data()
@inductor_config.patch(autoheuristic_collect="test")
def test_autoheuristic(self):
# test basic functionality of autoheuristic
def fallback():
return "fallback"
choices = ["a", "b", "c"]
def feedback_fn(choice):
if choice == "a":
return 1
elif choice == "b":
return 2
elif choice == "c":
return 3
else:
raise RuntimeError("unexpected choice")
feedback = LocalFeedback(feedback_fn)
context = AHContext()
context.add_feature("fa", 5)
name = "test"
autoheuristic = AutoHeuristic(fallback, choices, feedback, context, name)
# when autoheuristic is configured to only collect data, we always return fallback
self.assertEqual(autoheuristic.get_choice(), "fallback")
self.assertEqual(autoheuristic.get_collected_feedback("a"), 1)
self.assertEqual(autoheuristic.get_collected_feedback("b"), 2)
self.assertEqual(autoheuristic.get_collected_feedback("c"), 3)
path = self.get_path_to_autoheuristic_log(name)
self.assertTrue(os.path.exists(path))
num_lines = self.count_lines_in_file(path)
self.assertEqual(num_lines, 5)
shared_memory = get_gpu_shared_memory()
(fst, snd) = get_interface_for_device(GPU_TYPE).get_device_capability()
with open(path) as file:
lines = file.readlines()
self.assertTrue('"numerical_features": ["fa"]' in lines[0])
self.assertTrue('"categorical_features": []' in lines[0])
self.assertTrue(f'"shared_memory": {shared_memory}' in lines[0])
self.assertTrue(f'"device_capa": [{fst}, {snd}]' in lines[0])
self.assertTrue('"name": "test"' in lines[0])
self.assertEqual("fa,choice,feedback", lines[1].rstrip())
self.assertEqual("5,a,1", lines[2].rstrip())
self.assertEqual("5,b,2", lines[3].rstrip())
self.assertEqual("5,c,3", lines[4].rstrip())
@unittest.skipIf(not IS_A100, "heuristic only run on A100")
@inductor_config.patch(autoheuristic_use="pad_mm")
def test_autoheuristic_a100(self):
# Make sure heuristic does not break anything
# TODO (AlnisM): Find a way to check whether heuristic is used
self.run_mm()
@unittest.skipIf(not IS_H100, "heuristic only run on H100")
@inductor_config.patch(autoheuristic_use="pad_mm")
def test_autoheuristic_h100(self):
# Make sure heuristic does not break anything
# TODO (AlnisM): Find a way to check whether heuristic is used
self.run_mm()
def run_mixed_mm(self):
def fn(a, b):
return torch.mm(a, b.to(a.dtype))
a = torch.randn(8, 1024, device=GPU_TYPE, dtype=torch.float16)
b = torch.randint(
-128, 127, (1024, 1024), dtype=torch.int8, device=GPU_TYPE
).t()
torch.compile(fn, mode="max-autotune-no-cudagraphs")(a, b)
# have to set autoheuristic_use="" because if autoheuristic_use="mixed_mm",
# autoheuristic creates a precompile key, puts it into the registry, and then
# a choice made by the heuristic might be added to the list of choices
# and if select_algorithm now creates a new precompile key, it will be
# different from the precompile key created by autoheuristic
@inductor_config.patch(
autoheuristic_collect="mixed_mm",
autoheuristic_use="",
fx_graph_cache=False,
fx_graph_remote_cache=False,
)
def test_global_feedback(self):
self.run_mixed_mm()
path = self.get_path_to_autoheuristic_log("mixed_mm")
self.assertTrue(os.path.exists(path))
num_lines = self.count_lines_in_file(path)
# 1 line for metadata, 1 line for header
# 1 line for fallback + at least 1 config
self.assertTrue(num_lines > 4)
@inductor_config.patch(autoheuristic_use="mixed_mm")
@unittest.skipIf(not IS_A100, "heuristic only run on A100")
def test_mixed_mm_a100(self):
self.run_mixed_mm()
# TODO (AlnisM): Find a way to check whether heuristic is used
if __name__ == "__main__":
if HAS_GPU:
run_tests()