mirror of
https://github.com/pytorch/pytorch.git
synced 2025-10-20 21:14:14 +08:00
This PR is part of a series attempting to re-submit #134592 as smaller PRs. In fx tests: - Add and use a common raise_on_run_directly method for when a user runs a test file directly which should not be run this way. Print the file which the user should have run. - Raise a RuntimeError on tests which have been disabled (not run) - Remove any remaining uses of "unittest.main()"" Pull Request resolved: https://github.com/pytorch/pytorch/pull/154715 Approved by: https://github.com/Skylion007
118 lines
4.1 KiB
Python
118 lines
4.1 KiB
Python
# Owner(s): ["module: fx"]
|
|
|
|
import copy
|
|
import unittest
|
|
from collections import defaultdict
|
|
|
|
import torch
|
|
import torch.fx as fx
|
|
from torch._dynamo.source import LocalSource
|
|
from torch.fx.experimental.shape_inference.infer_shape import infer_shape
|
|
from torch.fx.experimental.shape_inference.infer_symbol_values import (
|
|
infer_symbol_values,
|
|
)
|
|
from torch.fx.experimental.symbolic_shapes import DimDynamic, ShapeEnv
|
|
|
|
|
|
class TestShapeInference(unittest.TestCase):
|
|
def test_infer_symbol_values(self):
|
|
def mksym(shape_env, value, source, dynamic_dim) -> None:
|
|
return shape_env.create_symintnode(
|
|
shape_env.create_symbol(
|
|
value,
|
|
source=source,
|
|
dynamic_dim=dynamic_dim,
|
|
),
|
|
hint=value,
|
|
source=source,
|
|
)
|
|
|
|
shape_env = ShapeEnv()
|
|
N = 8
|
|
sample = {f"s{i}": 2 for i in range(N)}
|
|
init_symints = [
|
|
mksym(shape_env, v, LocalSource(k), DimDynamic.DYNAMIC)
|
|
for k, v in sample.items()
|
|
]
|
|
symints = copy.deepcopy(init_symints)
|
|
symbol_to_idx_dict = {f"s{i}": i for i in range(N)}
|
|
padding_constraints = defaultdict(list)
|
|
|
|
# prepare constraints strings
|
|
constraints = []
|
|
constraints.append(
|
|
"The size of tensor a (s1) must match the size of tensor b (1773) at non-singleton dimension 1)"
|
|
)
|
|
constraints.append(
|
|
"Expected size for first two dimensions of batch2 tensor to be: [s0, (s2//2) + 12] but got: [s0, 120]."
|
|
)
|
|
constraints.append("shape '[s0, -1, 32]' is invalid for input of size s0*s3")
|
|
constraints.append(
|
|
"a and b must have same reduction dim, but got [32*s0, s3] X [20, 15]."
|
|
)
|
|
constraints.append(
|
|
"a and b must have same reduction dim, but got [s0, s4 + 1568] X [5728, 1024]."
|
|
)
|
|
constraints.append(
|
|
"Expected size for first two dimensions of batch2 tensor to be: [s0, 40] but got: [s0, s5]."
|
|
)
|
|
constraints.append(
|
|
"shape '[s0, -1, 32]' is invalid for input of size s0*s6 + 1344*s0"
|
|
)
|
|
constraints.append(
|
|
"shape '[-1, 47]' is invalid for input of size 32*s0*s6 + 1344*s0"
|
|
)
|
|
constraints.append(
|
|
"Expected size for first two dimensions of batch2 tensor to be: [s0, 47*s6] but got: [s0*s6, 47]."
|
|
)
|
|
constraints.append("Split sizes add up to 4258 but got the tensor's size of s7")
|
|
|
|
for constraint in constraints:
|
|
infer_symbol_values(
|
|
symints,
|
|
init_symints,
|
|
symbol_to_idx_dict,
|
|
padding_constraints,
|
|
constraint,
|
|
)
|
|
|
|
self.assertEqual(symints[1], 1773)
|
|
self.assertEqual(symints[2], 216)
|
|
self.assertEqual(symints[3], 640)
|
|
self.assertEqual(symints[4], 4160)
|
|
self.assertEqual(symints[5], 40)
|
|
self.assertEqual(symints[6], 160)
|
|
self.assertEqual(symints[7], 4258)
|
|
|
|
def test_infer_shape(self):
|
|
class TestModule(torch.nn.Module):
|
|
def __init__(self) -> None:
|
|
super().__init__()
|
|
self.w_1 = torch.empty([256, 328])
|
|
self.b_1 = torch.empty([256])
|
|
self.w_2 = torch.empty([328, 256])
|
|
self.b_2 = torch.empty([328])
|
|
|
|
def forward(self, x):
|
|
l_1 = torch.nn.functional.linear(x, self.w_1, bias=self.b_1)
|
|
s_1 = torch.sigmoid(l_1)
|
|
l_2 = torch.nn.functional.linear(s_1, self.w_2, bias=self.b_2)
|
|
t_1 = torch.tanh(l_2)
|
|
return t_1
|
|
|
|
def generate_graph_module(model):
|
|
gm = fx.symbolic_trace(model)
|
|
return gm
|
|
|
|
m = TestModule()
|
|
gm = generate_graph_module(m)
|
|
input_tensors = [torch.randn(1, 1)]
|
|
infer_shape(gm, input_tensors)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
raise RuntimeError(
|
|
"This test is not currently used and should be "
|
|
"enabled in discover_tests.py if required."
|
|
)
|