Files
pytorch/test/export/test_export_opinfo.py
Yiming Zhou 6eb8d9671b Enable torch.nn.functional.batch_norm in test_export_opinfo (#164261)
Summary:
There are actually 2 `nn.functional.batch_norm` in op_db. See https://github.com/pytorch/pytorch/blob/main/torch/testing/_internal/common_methods_invocations.py#L16797-L16831

So previously the test failed at `assert len(ops)==1`

Test Plan: python test/export/test_export_opinfo.py TestExportOnFakeCudaCUDA

Differential Revision: D83581427

Pull Request resolved: https://github.com/pytorch/pytorch/pull/164261
Approved by: https://github.com/SherlockNoMad
2025-10-01 21:56:08 +00:00

285 lines
8.1 KiB
Python

# Owner(s): ["oncall: export"]
# ruff: noqa: F841
# flake8: noqa
import itertools
import subprocess
import sys
import unittest
import torch
from torch._subclasses.fake_tensor import FakeTensor, FakeTensorMode
from torch.testing._internal.common_device_type import (
instantiate_device_type_tests,
ops,
)
from torch.testing._internal.common_methods_invocations import (
onlyCUDA,
op_db,
skip,
skipOps,
xfail,
)
from torch.testing._internal.common_utils import run_tests, skipIfRocm, TestCase
from torch.utils import _pytree as pytree
# following are failing with regular torch.export.export
export_failures = {
xfail("allclose"),
xfail("combinations"),
xfail("corrcoef"),
xfail("cov"),
xfail("equal"),
xfail("linalg.lstsq"),
xfail("linalg.lstsq", "grad_oriented"),
xfail("nn.functional.ctc_loss"),
xfail("nn.functional.gaussian_nll_loss"),
xfail("sparse.sampled_addmm"),
xfail("tensor_split"),
}
# following are failing fake export on cuda device
fake_export_failures = {
xfail("geqrf"),
xfail("histogram"),
xfail("masked.amax"),
xfail("masked.amin"),
xfail("masked.argmax"),
xfail("masked.argmin"),
xfail("masked.logaddexp"),
xfail("masked.logsumexp"),
xfail("masked.mean"),
xfail("masked.prod"),
xfail("masked.std"),
xfail("masked.sum"),
xfail("masked.var"),
xfail("nn.functional.grid_sample"),
xfail("to_sparse"),
# following are failing due to OptionalDeviceGuard
xfail("__getitem__"),
xfail("nn.functional.batch_norm"),
xfail("nn.functional.instance_norm"),
xfail("nn.functional.multi_margin_loss"),
xfail("nonzero"),
}
fake_decomposition_failures = {
xfail("linalg.matrix_rank"),
xfail("nn.functional.binary_cross_entropy_with_logits"),
xfail("nn.functional.instance_norm"),
xfail("nn.functional.multi_margin_loss"),
xfail("repeat_interleave"),
xfail("take"),
}
def _test_export_helper(self, dtype, op):
sample_inputs_itr = op.sample_inputs("cpu", dtype, requires_grad=False)
mode = FakeTensorMode(allow_non_fake_inputs=True)
target_device = "cuda:0"
def to_fake_device(x):
return x.to(target_device)
# Limit to first 100 inputs so tests don't take too long
for sample_input in itertools.islice(sample_inputs_itr, 100):
args = tuple([sample_input.input] + list(sample_input.args))
kwargs = sample_input.kwargs
# hack to skip non-tensor in args, as export doesn't support it
if any(not isinstance(arg, torch.Tensor) for arg in args):
continue
if "device" in kwargs:
kwargs["device"] = target_device
with mode:
args, kwargs = pytree.tree_map_only(
torch.Tensor, to_fake_device, (args, kwargs)
)
class Module(torch.nn.Module):
def forward(self, *args):
return op.op(*args, **kwargs)
m = Module()
ep = torch.export.export(m, args)
for node in ep.graph.nodes:
if node.op == "call_function":
fake_tensor = node.meta.get("val", None)
if isinstance(fake_tensor, FakeTensor):
self.assertEqual(
fake_tensor.device, torch.device(target_device)
)
class TestExportOpInfo(TestCase):
@ops(op_db, allowed_dtypes=(torch.float,))
@skipOps(
"TestExportOpInfo", "test_fake_export", export_failures | fake_export_failures
)
def test_fake_export(self, device, dtype, op):
_test_export_helper(self, dtype, op)
instantiate_device_type_tests(TestExportOpInfo, globals(), only_for="cpu")
selected_ops = {
"__getitem__",
"nn.functional.batch_norm",
"nn.functional.conv2d",
"nn.functional.instance_norm",
"nn.functional.multi_margin_loss",
"nn.functional.scaled_dot_product_attention",
"nonzero",
}
selected_op_db = [op for op in op_db if op.name in selected_ops]
class TestExportOnFakeCuda(TestCase):
# In CI, this test runs on a CUDA machine with cuda build
# We set CUDA_VISIBLE_DEVICES="" to simulate a CPU machine with cuda build
# Running this on all ops in op_db is too slow, so we only run on a selected subset
@onlyCUDA
@skipIfRocm
@ops(selected_op_db, allowed_dtypes=(torch.float,))
def test_fake_export(self, device, dtype, op):
test_script = f"""\
import torch
import itertools
from torch.testing._internal.common_methods_invocations import op_db
from torch._subclasses.fake_tensor import FakeTensor, FakeTensorMode
from torch.utils import _pytree as pytree
ops = [op for op in op_db if op.name == "{op.name}"]
assert len(ops) > 0
for op in ops:
sample_inputs_itr = op.sample_inputs("cpu", torch.float, requires_grad=False)
mode = FakeTensorMode(allow_non_fake_inputs=True)
target_device = "cuda:0"
def to_fake_device(x):
return x.to(target_device)
# Limit to first 100 inputs so tests don't take too long
for sample_input in itertools.islice(sample_inputs_itr, 100):
args = tuple([sample_input.input] + list(sample_input.args))
kwargs = sample_input.kwargs
# hack to skip non-tensor in args, as export doesn't support it
if any(not isinstance(arg, torch.Tensor) for arg in args):
continue
if "device" in kwargs:
kwargs["device"] = target_device
with mode:
args, kwargs = pytree.tree_map_only(
torch.Tensor, to_fake_device, (args, kwargs)
)
class Module(torch.nn.Module):
def forward(self, *args):
return op.op(*args, **kwargs)
m = Module()
ep = torch.export.export(m, args)
for node in ep.graph.nodes:
if node.op == "call_function":
fake_tensor = node.meta.get("val", None)
if isinstance(fake_tensor, FakeTensor):
assert fake_tensor.device == torch.device(target_device)
"""
r = (
(
subprocess.check_output(
[sys.executable, "-c", test_script],
env={"CUDA_VISIBLE_DEVICES": ""},
)
)
.decode("ascii")
.strip()
)
self.assertEqual(r, "")
@unittest.skipIf(not torch.backends.cuda.is_built(), "requires CUDA build")
@skipIfRocm
def test_preserve_original_behavior(self):
test_script = f"""\
import torch
from torch._subclasses.fake_tensor import FakeTensor, FakeTensorMode
def cuda_calls_behavior_unchanged():
exception_count = 0
try:
cpu_x = torch.randn(2)
cuda_x = cpu_x.to("cuda")
except Exception as e:
exception_count += 1
try:
torch.randn(2, device="cuda")
except Exception as e:
exception_count += 1
try:
torch.cuda.get_device_capability()
except Exception as e:
exception_count += 1
try:
torch.cuda.set_device(1)
except Exception as e:
exception_count += 1
try:
torch.cuda.current_device()
except Exception as e:
exception_count += 1
assert torch.cuda.is_available() == False
assert torch.cuda.device_count() == 0
assert exception_count == 5
cuda_calls_behavior_unchanged()
cpu_x = torch.randn(2)
with FakeTensorMode(allow_non_fake_inputs=True) as mode:
cuda_x = mode.from_tensor(cpu_x)
cuda_x.fake_device = torch.device("cuda")
cuda_y = cuda_x + cuda_x
assert cuda_y.device.type == "cuda"
# should fail again after exiting the fake mode, with the identical error message
cuda_calls_behavior_unchanged()
"""
r = (
(
subprocess.check_output(
[sys.executable, "-c", test_script],
env={"CUDA_VISIBLE_DEVICES": ""},
)
)
.decode("ascii")
.strip()
)
self.assertEqual(r, "")
instantiate_device_type_tests(TestExportOnFakeCuda, globals(), only_for="cuda")
if __name__ == "__main__":
run_tests()