Files
pytorch/test/export/test_draft_export.py
Pian Pawakapan 474d07554a [dynamic shapes] unbacked-safe slicing (#161414)
Summary:
Generates new unbacked symbols for slice output size & storage offset, when appropriate semantics are unclear. Teaches inductor to codegen the slice with flexible semantics.

Test Plan:
contbuild & OSS CI, see 56218d85e2

Rollback Plan:

Differential Revision: D80948073

Pull Request resolved: https://github.com/pytorch/pytorch/pull/161414
Approved by: https://github.com/laithsakka
2025-09-30 01:15:19 +00:00

715 lines
25 KiB
Python

# Owner(s): ["oncall: export"]
import copy
import re
import tempfile
import unittest
import torch
from torch._subclasses.fake_tensor import FakeTensorMode
from torch.export import Dim, draft_export, export
from torch.export._draft_export import FailureType
from torch.fx.experimental.symbolic_shapes import ShapeEnv
from torch.testing import FileCheck
from torch.testing._internal.common_utils import IS_WINDOWS, run_tests, TestCase
from torch.testing._internal.torchbind_impls import (
_empty_tensor_queue,
init_torchbind_implementations,
)
from torch.utils._pytree import tree_leaves
class TestDraftExport(TestCase):
def setUp(self):
super().setUp()
init_torchbind_implementations()
self.torch_bind_ops = [
torch.ops._TorchScriptTesting.queue_pop,
torch.ops._TorchScriptTesting.queue_push,
torch.ops._TorchScriptTesting.queue_size,
]
def tearDown(self):
return
def test_missing_meta_kernel_custom_op_basic(self):
with torch.library._scoped_library("mylib", "FRAGMENT"):
@torch.library.custom_op("mylib::foo2", mutates_args={})
def foo2_impl(a: torch.Tensor, b: torch.Tensor) -> torch.Tensor:
return a + b
class M(torch.nn.Module):
def forward(self, a, b):
res = torch.ops.mylib.foo2(a, b)
return res
inp = (torch.ones(3, 3), torch.ones(3, 3))
ep = draft_export(M(), inp)
report = ep._report
self.assertEqual(len(report.failures), 1)
self.assertEqual(
report.failures[0].failure_type, FailureType.MISSING_FAKE_KERNEL
)
inp = (torch.randn(3, 3), torch.randn(3, 3))
self.assertEqual(ep.module()(*inp), M()(*inp))
with torch._library.fake_profile.unsafe_generate_fake_kernels(
report.op_profiles
):
ep.run_decompositions()
def test_missing_meta_kernel_impl(self):
with torch.library._scoped_library("mylib", "FRAGMENT") as lib:
torch.library.define(
"mylib::foo",
"(Tensor a, Tensor b) -> Tensor",
tags=torch.Tag.pt2_compliant_tag,
lib=lib,
)
@torch.library.impl("mylib::foo", "cpu", lib=lib)
def foo_impl(a: torch.Tensor, b: torch.Tensor) -> torch.Tensor:
return a + b
class M(torch.nn.Module):
def forward(self, a, b):
res = torch.ops.mylib.foo(a, b)
res = torch.ops.mylib.foo(res, b)
return res
inp = (torch.ones(3, 3), torch.ones(3, 3))
ep = draft_export(M(), inp)
report = ep._report
self.assertEqual(len(report.failures), 1)
self.assertEqual(
report.failures[0].failure_type, FailureType.MISSING_FAKE_KERNEL
)
inp = (torch.randn(3, 3), torch.randn(3, 3))
self.assertEqual(ep.module()(*inp), M()(*inp))
self.assertEqual(len(report.op_profiles), 1)
self.assertEqual(len(report.op_profiles["mylib.foo.default"]), 1)
print(report.op_profiles)
with torch._library.fake_profile.unsafe_generate_fake_kernels(
report.op_profiles
):
ep = ep.run_decompositions()
self.assertEqual(ep.module()(*inp), M()(*inp))
def test_missing_meta_kernel_custom_op_multiple_profiles(self):
with torch.library._scoped_library("mylib", "FRAGMENT"):
@torch.library.custom_op("mylib::foo3", mutates_args={})
def foo3_impl(a: torch.Tensor, b: torch.Tensor) -> torch.Tensor:
return a + b
class M(torch.nn.Module):
def forward(self, a, b, c, d):
res1 = torch.ops.mylib.foo3(a, b)
res2 = torch.ops.mylib.foo3(c, d)
return res1, res2
inp = (
torch.ones(3, 4),
torch.ones(3, 4),
torch.ones(2, 3, 4),
torch.ones(2, 3, 4),
)
ep = draft_export(M(), inp)
report = ep._report
self.assertEqual(len(report.failures), 1)
self.assertEqual(
report.failures[0].failure_type, FailureType.MISSING_FAKE_KERNEL
)
self.assertEqual(len(report.op_profiles), 1)
self.assertEqual(len(report.op_profiles["mylib.foo3.default"]), 2)
with torch._library.fake_profile.unsafe_generate_fake_kernels(
report.op_profiles
):
ep.run_decompositions()
def test_missing_meta_kernel_custom_op_update_profile(self):
with torch.library._scoped_library("mylib", "FRAGMENT"):
@torch.library.custom_op("mylib::foo8", mutates_args={})
def foo8_impl(a: torch.Tensor, b: torch.Tensor) -> torch.Tensor:
return a + b
class M(torch.nn.Module):
def forward(self, a, b):
res = torch.ops.mylib.foo8(a, b)
return res
inp = (
torch.ones(3, 4),
torch.ones(3, 4),
)
ep = draft_export(M(), inp)
report = ep._report
self.assertEqual(len(report.op_profiles), 1)
self.assertEqual(len(report.op_profiles["mylib.foo8.default"]), 1)
new_inp = (
torch.ones(2, 3, 4),
torch.ones(2, 3, 4),
)
with torch._library.fake_profile.unsafe_generate_fake_kernels(
report.op_profiles
):
with FakeTensorMode(allow_non_fake_inputs=True, shape_env=ShapeEnv()):
torch.ops.mylib.foo8(*inp)
with self.assertRaisesRegex(
RuntimeError, "no profiles match the given inputs"
):
torch.ops.mylib.foo8(*new_inp)
ep = draft_export(M(), new_inp)
report = ep._report
self.assertEqual(len(report.op_profiles), 1)
self.assertEqual(len(report.op_profiles["mylib.foo8.default"]), 1)
with (
torch._library.fake_profile.unsafe_generate_fake_kernels(
report.op_profiles
),
FakeTensorMode(allow_non_fake_inputs=True, shape_env=ShapeEnv()),
):
torch.ops.mylib.foo8(*new_inp)
# Existing registration has been updated to match the new
# profile traced with draft-export
with self.assertRaisesRegex(
RuntimeError, "no profiles match the given inputs"
):
torch.ops.mylib.foo8(*inp)
@unittest.skipIf(not torch.cuda.is_available(), "Requires cuda")
def test_missing_meta_kernel_guard(self):
with torch.library._scoped_library("mylib", "FRAGMENT"):
@torch.library.custom_op("mylib::foo4", mutates_args={})
def foo4_impl(a: torch.Tensor, b: torch.Tensor) -> torch.Tensor:
return a + b
class M(torch.nn.Module):
def forward(self, a, b):
res1 = torch.ops.mylib.foo4(a, b)
return res1
inp = (
torch.ones(3, 4),
torch.ones(3, 4),
)
ep = draft_export(
M(),
inp,
dynamic_shapes={
"a": {0: Dim.DYNAMIC, 1: Dim.DYNAMIC},
"b": {0: Dim.DYNAMIC, 1: Dim.DYNAMIC},
},
)
inp = (torch.randn(2, 3), torch.randn(2, 3))
self.assertEqual(ep.module()(*inp), M()(*inp))
m = ep.module()
with self.assertRaisesRegex(RuntimeError, "Tensor device mismatch!"):
bad_device_inps = (
torch.randn(2, 3, device=torch.device("cuda")),
torch.randn(2, 3, device=torch.device("cuda")),
)
m(*bad_device_inps)
with self.assertRaisesRegex(RuntimeError, "Tensor dtype mismatch!"):
bad_dtype_inps = (
torch.randn(2, 3, dtype=torch.float16),
torch.randn(2, 3, dtype=torch.float16),
)
m(*bad_dtype_inps)
def test_fake_infer_dense_in_memory_check(self):
with torch.library._scoped_library("mylib", "FRAGMENT"):
@torch.library.custom_op("mylib::foo5", mutates_args={})
def foo5_impl(a: torch.Tensor) -> torch.Tensor:
return a * 2
@torch.library.custom_op("mylib::foo6", mutates_args={})
def foo6_impl(a: torch.Tensor) -> torch.Tensor:
return (a * 2)[:, :-1, :-1] # not dense in memory
@torch.library.custom_op("mylib::foo7", mutates_args={})
def foo7_impl(a: torch.Tensor) -> torch.Tensor:
return (a * 2)[:, 1:-1, :] # non-zero storage offset
class Foo(torch.nn.Module):
def forward(self, x, opt):
if opt == 0:
return torch.ops.mylib.foo5(x)
elif opt == 1:
return torch.ops.mylib.foo6(x)
else:
return torch.ops.mylib.foo7(x)
draft_export(Foo(), (torch.randn(80, 4, 4), 0))
draft_export(Foo(), (torch.randn(80, 1, 4), 0))
draft_export(Foo(), (torch.randn(1, 4, 1, 1, 4, 1, 4), 0))
with self.assertRaisesRegex(
RuntimeError,
"a return was not dense in memory",
):
draft_export(Foo(), (torch.randn(4, 6, 8), 1))
with self.assertRaisesRegex(
RuntimeError,
"a return has a non-zero storage offset",
):
draft_export(Foo(), (torch.randn(4, 6, 8), 2))
def test_data_dependent_failure(self):
with torch.library._scoped_library("mylib", "FRAGMENT") as lib:
torch.library.define(
"mylib::foo1",
"(Tensor a, Tensor b) -> Tensor",
tags=torch.Tag.pt2_compliant_tag,
lib=lib,
)
@torch.library.impl("mylib::foo1", "cpu", lib=lib)
def foo_impl(a, b):
return a + b
class M(torch.nn.Module):
def forward(self, a, b, c):
res = torch.ops.mylib.foo1(a, b)
c_item = c.item()
if c_item > 0:
return res[:c_item]
inp = (torch.ones(3, 3), torch.ones(3, 3), torch.tensor(3))
ep = draft_export(M(), inp)
report = ep._report
self.assertTrue(len(report.failures) > 0)
self.assertEqual(
report.failures[0].failure_type, FailureType.MISSING_FAKE_KERNEL
)
self.assertEqual(
report.failures[1].failure_type, FailureType.DATA_DEPENDENT_ERROR
)
inp = (torch.randn(3, 3), torch.randn(3, 3), torch.tensor(2))
self.assertEqual(ep.module()(*inp), M()(*inp))
def test_unbacked_div_mod_replacement(self):
class M(torch.nn.Module):
def forward(self, x):
x = torch.zeros(x.item())
x = x.unsqueeze(0).repeat(10, 2)
return x.view(-1, 2, 2345)
ep = draft_export(M(), (torch.tensor([938]),))
report = ep._report
self.assertEqual(len(report.failures), 0)
def test_dedup_data_dependent_failure(self):
class M(torch.nn.Module):
def forward(self, x, y, z):
res = 0
for v in [x, y]:
b = v.item()
if b > 10:
res += v * b
else:
res += v + b
return z * res
inp = (torch.tensor(5), torch.tensor(3), torch.tensor(2))
ep = draft_export(M(), inp)
report = ep._report
self.assertEqual(len(report.failures), 1)
self.assertEqual(
report.failures[0].failure_type, FailureType.DATA_DEPENDENT_ERROR
)
inp = (torch.tensor(4), torch.tensor(2), torch.tensor(6))
self.assertEqual(ep.module()(*inp), M()(*inp))
# the fake tensors on node.meta["val"] should have real_tensor
gm = ep.module()
tensors = [
node.meta.get("val").real_tensor
for node in gm.graph.nodes
if node.op == "placeholder"
]
self.assertTrue(all(isinstance(t, torch.Tensor) for t in tensors))
def test_complex_data_dependent_expr(self):
class M(torch.nn.Module):
def forward(self, x, y):
a = x.item()
a = -a
a = a // 3
a = a + 5
z = torch.cat([y, y])
if a > 0:
return z[:a]
ep = draft_export(
M(),
(torch.tensor(6), torch.randn(5)),
dynamic_shapes={"x": None, "y": {0: Dim.DYNAMIC}},
)
report = ep._report
self.assertTrue(len(report.failures) > 0)
self.assertEqual(
report.failures[0].failure_type, FailureType.DATA_DEPENDENT_ERROR
)
for _ep in [ep, ep.run_decompositions()]:
# unbacked bindings
unbacked_binding_symbols = set()
for node in _ep.graph.nodes:
if bindings := node.meta.get("unbacked_bindings"):
unbacked_binding_symbols.update(bindings.keys())
self.assertEqual(len(unbacked_binding_symbols), 2)
def test_offsets(self):
class M(torch.nn.Module):
def forward(self, x):
a = x.item()
if a == 0:
raise RuntimeError("bad")
return x * a
inp = (torch.tensor(3),)
draft_export(M(), inp)
def test_shape_failure(self):
class M(torch.nn.Module):
def forward(self, a):
assert a.shape[0] == 3
return a * a
inp = (torch.ones(3, 3),)
ep = draft_export(
M(),
inp,
dynamic_shapes={"a": {0: Dim("a0")}},
prefer_deferred_runtime_asserts_over_guards=True,
)
report = ep._report
self.assertEqual(len(report.failures), 1)
self.assertEqual(report.failures[0].failure_type, FailureType.GUARD_ADDED)
inp = (torch.randn(3, 3),)
self.assertEqual(ep.module()(*inp), M()(*inp))
inp = (torch.randn(4, 3),)
with self.assertRaisesRegex(
AssertionError,
re.escape("Guard failed: a.size()[0] <= 3"),
):
# expected <= 3, but got 4
ep.module()(*inp)
def test_side_effect1(self):
class M(torch.nn.Module):
def __init__(self):
super().__init__()
self.register_buffer("a", torch.tensor(2))
def forward(self, b):
a_item = self.a.item()
if a_item == 2:
res = a_item * b
else:
res = (a_item + 1) * b
self.a.add_(1)
a_item = self.a.item()
if a_item == 3:
res = a_item * res
else:
res = (a_item + 1) * res
return res
inp = (torch.ones(3, 3),)
mod = M()
ep = draft_export(mod, inp)
self.assertEqual(mod.a, torch.tensor(2))
FileCheck().check_count("torch.ops.aten.add.default", 0, exactly=True).run(
ep.graph_module.code
)
def test_side_effect_inps(self):
class M(torch.nn.Module):
def __init__(self):
super().__init__()
def forward(self, x):
x.sin_()
return x
inp = (torch.ones(3, 3),)
ep = draft_export(M(), inp)
report = ep._report
self.assertTrue(report.successful())
self.assertEqual(inp[0], torch.ones(3, 3))
def test_masked_linear(self):
class M(torch.nn.Module):
def forward(self, x, mask, weight, bias):
masked = x[mask != 0, :, :]
return torch.nn.functional.linear(masked, weight, bias)
x = torch.zeros(10)
x[0] += 1
inp = (torch.randn(10, 8, 7), x, torch.randn(25, 7), torch.randn(25))
draft_ep = draft_export(M(), inp)
ep = export(M(), inp)
self.assertEqual(draft_ep.module()(*inp), ep.module()(*inp))
x[2] += 1
x[3] += 1
self.assertEqual(draft_ep.module()(*inp), ep.module()(*inp))
def test_torchbind(self):
class Model(torch.nn.Module):
def __init__(self) -> None:
super().__init__()
self.linear = torch.nn.Linear(2, 2)
def forward(self, tq, x):
x_cos = tq.pop() + tq.float_size() + self.linear(x)
if tq.is_empty():
x_sin = self.linear(tq.pop()) - tq.size() + x
else:
x_sin = tq.pop() + tq.size() + x
return x_sin, x_cos, tq
mod = Model()
tq = _empty_tensor_queue()
tq2 = copy.deepcopy(tq)
a = torch.randn(2, 2)
b = torch.randn(2, 2)
tq.push(a)
tq.push(b)
tq3 = copy.deepcopy(tq)
inp = (tq, torch.randn(2, 2))
ep = draft_export(mod, inp)
report = ep._report
self.assertTrue(report.successful())
self.assertEqual(tq2.size(), 0)
self.assertEqual(tq3.size(), 2)
self.assertEqual(tq.size(), 2)
def test_override_size_and_dtype_mismatched_fake_kernels(self):
with torch.library._scoped_library("mylib", "FRAGMENT"):
class M(torch.nn.Module):
def forward(self, a):
return torch.ops.mylib.foo9(a)
@torch.library.custom_op("mylib::foo9", mutates_args={})
def foo(a: torch.Tensor) -> list[torch.Tensor]:
x = a * 2
y = a.repeat(2, 2)
z = a.to(torch.bfloat16)
return [x, y, z]
@torch.library.register_fake("mylib::foo9")
def foo_fake_impl(a):
x = torch.empty_like(a) # good
y = torch.empty_like(a) # size mismatch
z = torch.empty_like(a) # dtype mismatch
return [x, y, z]
mod = M()
inputs = (torch.randn(3, 3),)
with self.assertRaises(RuntimeError):
with torch._functorch.config.patch(
fake_tensor_propagate_real_tensors=True
):
export(mod, inputs, strict=True)
ep = draft_export(mod, inputs)
report = ep._report
for ep_out, eager_out in zip(ep.module()(*inputs), mod(*inputs)):
self.assertTrue(torch.allclose(ep_out, eager_out))
self.assertEqual(ep_out.dtype, eager_out.dtype)
self.assertEqual(len(report.failures), 2)
self.assertEqual(
report.failures[0].failure_type, FailureType.MISMATCHED_FAKE_KERNEL
)
self.assertEqual(
report.failures[1].failure_type, FailureType.MISMATCHED_FAKE_KERNEL
)
self.assertEqual(
sorted([f.data["reason"] for f in report.failures]),
[
"Dtypes torch.bfloat16 and torch.float32 are not equal!",
"mismatch between fake value 3 and real value 6 ",
],
)
with torch._library.fake_profile.unsafe_generate_fake_kernels(
report.op_profiles
):
ep.run_decompositions()
def test_override_incorrectly_aliasing_kernel(self):
with torch.library._scoped_library("mylib", "FRAGMENT"):
@torch.library.custom_op("mylib::foo10", mutates_args={})
def foo(a: torch.Tensor) -> tuple[torch.Tensor, torch.Tensor]:
return a * 2, a + 2
@torch.library.register_fake("mylib::foo10")
def foo_fake_impl(a):
return a, torch.empty_like(a) # incorrectly aliasing
class M(torch.nn.Module):
def forward(self, a):
return torch.ops.mylib.foo10(a)
mod = M()
inputs = (torch.randn(3, 3),)
with self.assertRaisesRegex(
RuntimeError,
"Real tensor propagation found an aliasing mismatch",
):
with torch._functorch.config.patch(
fake_tensor_propagate_real_tensors=True
):
export(mod, inputs, strict=True)
ep = draft_export(mod, inputs)
report = ep._report
for ep_out, eager_out in zip(
tree_leaves(ep.module()(*inputs)), tree_leaves(mod(*inputs))
):
self.assertTrue(torch.allclose(ep_out, eager_out))
self.assertEqual(ep_out.dtype, eager_out.dtype)
self.assertEqual(len(report.failures), 1)
self.assertEqual(
report.failures[0].failure_type, FailureType.MISMATCHED_FAKE_KERNEL
)
self.assertTrue(
"Mismatched aliasing spec between fake kernel and real kernel"
in report.failures[0].data["reason"]
)
def test_override_mismatched_fake_kernel_with_unbacked_symbols(self):
with torch.library._scoped_library("mylib", "FRAGMENT"):
@torch.library.custom_op("mylib::foo11", mutates_args={})
def foo11(a: torch.Tensor, b: torch.Tensor) -> torch.Tensor:
return a[b.item()].to(torch.bfloat16)
@torch.library.register_fake("mylib::foo11")
def foo_fake_impl(a, b):
ctx = torch.library.get_ctx()
u = ctx.new_dynamic_size()
return torch.empty(u, a.shape[1], dtype=a.dtype)
class M(torch.nn.Module):
def forward(self, a, b):
return torch.ops.mylib.foo11(a, b)
mod = M()
inputs = (torch.randn(100, 4), torch.tensor(10))
ep = draft_export(mod, inputs)
report = ep._report
for ep_out, eager_out in zip(ep.module()(*inputs), mod(*inputs)):
self.assertTrue(torch.allclose(ep_out, eager_out))
self.assertEqual(ep_out.dtype, eager_out.dtype)
self.assertEqual(len(report.failures), 1)
self.assertEqual(
report.failures[0].failure_type, FailureType.MISMATCHED_FAKE_KERNEL
)
self.assertEqual(
report.failures[0].data["reason"],
"Dtypes torch.bfloat16 and torch.float32 are not equal!",
)
with torch._library.fake_profile.unsafe_generate_fake_kernels(
report.op_profiles
):
ep.run_decompositions()
# https://github.com/pytorch/pytorch/issues/140625
@unittest.skipIf(IS_WINDOWS, "aoti_compile_and_package not supported on Windows")
def test_constantify_unbacked_symbol(self):
class M(torch.nn.Module):
def forward(self, x, y):
xt = torch.tensor(x.shape)
u0 = xt[0].item()
return y * torch.arange(u0)
mod = M()
example_inputs = (torch.randn(3, 5), torch.randn(3))
draft_ep = draft_export(mod, example_inputs)
with tempfile.NamedTemporaryFile(suffix=".pt2") as f:
torch._inductor.aoti_compile_and_package(
draft_ep,
package_path=f.name,
)
@unittest.skipIf(
not torch.cuda.is_available()
or torch.cuda.get_device_properties(0).total_memory < 2**28,
"Requires 16 MB GPU memory to pass the test; setting it higher to catch violations",
)
def test_cuda_memory_usage(self):
# This used to OOM
class Foo(torch.nn.Module):
def forward(self, x):
for _ in range(100):
x = x + 1e-3
return x
# measure base usage
device = torch.device("cuda:0")
torch.cuda.reset_peak_memory_stats()
base_usage = torch.cuda.memory_allocated(device)
# usage with input tensor allocated
x = torch.randn(2**10, 2**10).to(device)
x_usage = torch.cuda.memory_allocated(device)
# draft export peak memory usage
draft_export(Foo(), (x,), strict=False)
peak_mem_usage = torch.cuda.memory_stats(device)["allocated_bytes.all.peak"]
# right now it's actually exactly 4x;
# I guess original tensor, 2 tensors per add op, 1 for clone stored in node.meta["val"]
self.assertTrue((peak_mem_usage - base_usage) <= (x_usage - base_usage) * 4.0)
if __name__ == "__main__":
run_tests()