Files
pytorch/test/expect/TestSparseMPS.test_print_uncoalesced_mps_float32.expect
Isalia20 dcf385395d [MPS] Move sparsemps testing from test_mps to test_sparse (#161852)
Moves Sparse MPS testing from test_mps to test_sparse. Lots of skips now but I expect to remove them iteratively once ops are implemented

Pull Request resolved: https://github.com/pytorch/pytorch/pull/161852
Approved by: https://github.com/malfet
2025-09-02 19:04:11 +00:00

266 lines
9.0 KiB
Plaintext

# shape: torch.Size([])
# nnz: 2
# sparse_dim: 0
# indices shape: torch.Size([0, 2])
# values shape: torch.Size([2])
########## torch.int32 ##########
# sparse tensor
tensor(indices=tensor([], size=(0, 2)),
values=tensor([0, 1]),
device='mps:0', size=(), nnz=2, dtype=torch.int32,
layout=torch.sparse_coo)
# _indices
tensor([], device='mps:0', size=(0, 2), dtype=torch.int64)
# _values
tensor([0, 1], device='mps:0', dtype=torch.int32)
########## torch.float32 ##########
# sparse tensor
tensor(indices=tensor([], size=(0, 2)),
values=tensor([0., 1.]),
device='mps:0', size=(), nnz=2, layout=torch.sparse_coo)
# after requires_grad_
tensor(indices=tensor([], size=(0, 2)),
values=tensor([0., 1.]),
device='mps:0', size=(), nnz=2, layout=torch.sparse_coo,
requires_grad=True)
# after addition
tensor(indices=tensor([], size=(0, 1)),
values=tensor([2.]),
device='mps:0', size=(), nnz=1, layout=torch.sparse_coo,
grad_fn=<AddBackward0>)
# _indices
tensor([], device='mps:0', size=(0, 2), dtype=torch.int64)
# _values
tensor([0., 1.], device='mps:0')
# shape: torch.Size([0])
# nnz: 10
# sparse_dim: 0
# indices shape: torch.Size([0, 10])
# values shape: torch.Size([10, 0])
########## torch.int32 ##########
# sparse tensor
tensor(indices=tensor([], size=(0, 10)),
values=tensor([], size=(10, 0)),
device='mps:0', size=(0,), nnz=10, dtype=torch.int32,
layout=torch.sparse_coo)
# _indices
tensor([], device='mps:0', size=(0, 10), dtype=torch.int64)
# _values
tensor([], device='mps:0', size=(10, 0), dtype=torch.int32)
########## torch.float32 ##########
# sparse tensor
tensor(indices=tensor([], size=(0, 10)),
values=tensor([], size=(10, 0)),
device='mps:0', size=(0,), nnz=10, layout=torch.sparse_coo)
# after requires_grad_
tensor(indices=tensor([], size=(0, 10)),
values=tensor([], size=(10, 0)),
device='mps:0', size=(0,), nnz=10, layout=torch.sparse_coo,
requires_grad=True)
# after addition
tensor(indices=tensor([], size=(0, 1)),
values=tensor([], size=(1, 0)),
device='mps:0', size=(0,), nnz=1, layout=torch.sparse_coo,
grad_fn=<AddBackward0>)
# _indices
tensor([], device='mps:0', size=(0, 10), dtype=torch.int64)
# _values
tensor([], device='mps:0', size=(10, 0))
# shape: torch.Size([2])
# nnz: 3
# sparse_dim: 0
# indices shape: torch.Size([0, 3])
# values shape: torch.Size([3, 2])
########## torch.int32 ##########
# sparse tensor
tensor(indices=tensor([], size=(0, 3)),
values=tensor([[0, 0],
[0, 1],
[1, 1]]),
device='mps:0', size=(2,), nnz=3, dtype=torch.int32,
layout=torch.sparse_coo)
# _indices
tensor([], device='mps:0', size=(0, 3), dtype=torch.int64)
# _values
tensor([[0, 0],
[0, 1],
[1, 1]], device='mps:0', dtype=torch.int32)
########## torch.float32 ##########
# sparse tensor
tensor(indices=tensor([], size=(0, 3)),
values=tensor([[0.0000, 0.3333],
[0.6667, 1.0000],
[1.3333, 1.6667]]),
device='mps:0', size=(2,), nnz=3, layout=torch.sparse_coo)
# after requires_grad_
tensor(indices=tensor([], size=(0, 3)),
values=tensor([[0.0000, 0.3333],
[0.6667, 1.0000],
[1.3333, 1.6667]]),
device='mps:0', size=(2,), nnz=3, layout=torch.sparse_coo,
requires_grad=True)
# after addition
tensor(indices=tensor([], size=(0, 1)),
values=tensor([[4.0000, 6.0000]]),
device='mps:0', size=(2,), nnz=1, layout=torch.sparse_coo,
grad_fn=<AddBackward0>)
# _indices
tensor([], device='mps:0', size=(0, 3), dtype=torch.int64)
# _values
tensor([[0.0000, 0.3333],
[0.6667, 1.0000],
[1.3333, 1.6667]], device='mps:0')
# shape: torch.Size([100, 3])
# nnz: 3
# sparse_dim: 1
# indices shape: torch.Size([1, 3])
# values shape: torch.Size([3, 3])
########## torch.int32 ##########
# sparse tensor
tensor(indices=tensor([[0, 1, 0]]),
values=tensor([[0, 0, 0],
[0, 0, 1],
[1, 1, 1]]),
device='mps:0', size=(100, 3), nnz=3, dtype=torch.int32,
layout=torch.sparse_coo)
# _indices
tensor([[0, 1, 0]], device='mps:0')
# _values
tensor([[0, 0, 0],
[0, 0, 1],
[1, 1, 1]], device='mps:0', dtype=torch.int32)
########## torch.float32 ##########
# sparse tensor
tensor(indices=tensor([[0, 1, 0]]),
values=tensor([[0.0000, 0.2222, 0.4444],
[0.6667, 0.8889, 1.1111],
[1.3333, 1.5556, 1.7778]]),
device='mps:0', size=(100, 3), nnz=3, layout=torch.sparse_coo)
# after requires_grad_
tensor(indices=tensor([[0, 1, 0]]),
values=tensor([[0.0000, 0.2222, 0.4444],
[0.6667, 0.8889, 1.1111],
[1.3333, 1.5556, 1.7778]]),
device='mps:0', size=(100, 3), nnz=3, layout=torch.sparse_coo,
requires_grad=True)
# after addition
tensor(indices=tensor([[0, 1]]),
values=tensor([[2.6667, 3.5556, 4.4444],
[1.3333, 1.7778, 2.2222]]),
device='mps:0', size=(100, 3), nnz=2, layout=torch.sparse_coo,
grad_fn=<AddBackward0>)
# _indices
tensor([[0, 1, 0]], device='mps:0')
# _values
tensor([[0.0000, 0.2222, 0.4444],
[0.6667, 0.8889, 1.1111],
[1.3333, 1.5556, 1.7778]], device='mps:0')
# shape: torch.Size([100, 20, 3])
# nnz: 0
# sparse_dim: 2
# indices shape: torch.Size([2, 0])
# values shape: torch.Size([0, 3])
########## torch.int32 ##########
# sparse tensor
tensor(indices=tensor([], size=(2, 0)),
values=tensor([], size=(0, 3)),
device='mps:0', size=(100, 20, 3), nnz=0, dtype=torch.int32,
layout=torch.sparse_coo)
# _indices
tensor([], device='mps:0', size=(2, 0), dtype=torch.int64)
# _values
tensor([], device='mps:0', size=(0, 3), dtype=torch.int32)
########## torch.float32 ##########
# sparse tensor
tensor(indices=tensor([], size=(2, 0)),
values=tensor([], size=(0, 3)),
device='mps:0', size=(100, 20, 3), nnz=0, layout=torch.sparse_coo)
# after requires_grad_
tensor(indices=tensor([], size=(2, 0)),
values=tensor([], size=(0, 3)),
device='mps:0', size=(100, 20, 3), nnz=0, layout=torch.sparse_coo,
requires_grad=True)
# after addition
tensor(indices=tensor([], size=(2, 0)),
values=tensor([], size=(0, 3)),
device='mps:0', size=(100, 20, 3), nnz=0, layout=torch.sparse_coo,
grad_fn=<AddBackward0>)
# _indices
tensor([], device='mps:0', size=(2, 0), dtype=torch.int64)
# _values
tensor([], device='mps:0', size=(0, 3))
# shape: torch.Size([10, 0, 3])
# nnz: 3
# sparse_dim: 0
# indices shape: torch.Size([0, 3])
# values shape: torch.Size([3, 10, 0, 3])
########## torch.int32 ##########
# sparse tensor
tensor(indices=tensor([], size=(0, 3)),
values=tensor([], size=(3, 10, 0, 3)),
device='mps:0', size=(10, 0, 3), nnz=3, dtype=torch.int32,
layout=torch.sparse_coo)
# _indices
tensor([], device='mps:0', size=(0, 3), dtype=torch.int64)
# _values
tensor([], device='mps:0', size=(3, 10, 0, 3), dtype=torch.int32)
########## torch.float32 ##########
# sparse tensor
tensor(indices=tensor([], size=(0, 3)),
values=tensor([], size=(3, 10, 0, 3)),
device='mps:0', size=(10, 0, 3), nnz=3, layout=torch.sparse_coo)
# after requires_grad_
tensor(indices=tensor([], size=(0, 3)),
values=tensor([], size=(3, 10, 0, 3)),
device='mps:0', size=(10, 0, 3), nnz=3, layout=torch.sparse_coo,
requires_grad=True)
# after addition
tensor(indices=tensor([], size=(0, 1)),
values=tensor([], size=(1, 10, 0, 3)),
device='mps:0', size=(10, 0, 3), nnz=1, layout=torch.sparse_coo,
grad_fn=<AddBackward0>)
# _indices
tensor([], device='mps:0', size=(0, 3), dtype=torch.int64)
# _values
tensor([], device='mps:0', size=(3, 10, 0, 3))
# shape: torch.Size([10, 0, 3])
# nnz: 0
# sparse_dim: 0
# indices shape: torch.Size([0, 0])
# values shape: torch.Size([0, 10, 0, 3])
########## torch.int32 ##########
# sparse tensor
tensor(indices=tensor([], size=(0, 0)),
values=tensor([], size=(0, 10, 0, 3)),
device='mps:0', size=(10, 0, 3), nnz=0, dtype=torch.int32,
layout=torch.sparse_coo)
# _indices
tensor([], device='mps:0', size=(0, 0), dtype=torch.int64)
# _values
tensor([], device='mps:0', size=(0, 10, 0, 3), dtype=torch.int32)
########## torch.float32 ##########
# sparse tensor
tensor(indices=tensor([], size=(0, 0)),
values=tensor([], size=(0, 10, 0, 3)),
device='mps:0', size=(10, 0, 3), nnz=0, layout=torch.sparse_coo)
# after requires_grad_
tensor(indices=tensor([], size=(0, 0)),
values=tensor([], size=(0, 10, 0, 3)),
device='mps:0', size=(10, 0, 3), nnz=0, layout=torch.sparse_coo,
requires_grad=True)
# after addition
tensor(indices=tensor([], size=(0, 0)),
values=tensor([], size=(0, 10, 0, 3)),
device='mps:0', size=(10, 0, 3), nnz=0, layout=torch.sparse_coo,
grad_fn=<AddBackward0>)
# _indices
tensor([], device='mps:0', size=(0, 0), dtype=torch.int64)
# _values
tensor([], device='mps:0', size=(0, 10, 0, 3))