mirror of
https://github.com/pytorch/pytorch.git
synced 2025-10-20 12:54:11 +08:00
Moves Sparse MPS testing from test_mps to test_sparse. Lots of skips now but I expect to remove them iteratively once ops are implemented Pull Request resolved: https://github.com/pytorch/pytorch/pull/161852 Approved by: https://github.com/malfet
266 lines
9.0 KiB
Plaintext
266 lines
9.0 KiB
Plaintext
# shape: torch.Size([])
|
|
# nnz: 2
|
|
# sparse_dim: 0
|
|
# indices shape: torch.Size([0, 2])
|
|
# values shape: torch.Size([2])
|
|
########## torch.int32 ##########
|
|
# sparse tensor
|
|
tensor(indices=tensor([], size=(0, 2)),
|
|
values=tensor([0, 1]),
|
|
device='mps:0', size=(), nnz=2, dtype=torch.int32,
|
|
layout=torch.sparse_coo)
|
|
# _indices
|
|
tensor([], device='mps:0', size=(0, 2), dtype=torch.int64)
|
|
# _values
|
|
tensor([0, 1], device='mps:0', dtype=torch.int32)
|
|
########## torch.float32 ##########
|
|
# sparse tensor
|
|
tensor(indices=tensor([], size=(0, 2)),
|
|
values=tensor([0., 1.]),
|
|
device='mps:0', size=(), nnz=2, layout=torch.sparse_coo)
|
|
# after requires_grad_
|
|
tensor(indices=tensor([], size=(0, 2)),
|
|
values=tensor([0., 1.]),
|
|
device='mps:0', size=(), nnz=2, layout=torch.sparse_coo,
|
|
requires_grad=True)
|
|
# after addition
|
|
tensor(indices=tensor([], size=(0, 1)),
|
|
values=tensor([2.]),
|
|
device='mps:0', size=(), nnz=1, layout=torch.sparse_coo,
|
|
grad_fn=<AddBackward0>)
|
|
# _indices
|
|
tensor([], device='mps:0', size=(0, 2), dtype=torch.int64)
|
|
# _values
|
|
tensor([0., 1.], device='mps:0')
|
|
|
|
# shape: torch.Size([0])
|
|
# nnz: 10
|
|
# sparse_dim: 0
|
|
# indices shape: torch.Size([0, 10])
|
|
# values shape: torch.Size([10, 0])
|
|
########## torch.int32 ##########
|
|
# sparse tensor
|
|
tensor(indices=tensor([], size=(0, 10)),
|
|
values=tensor([], size=(10, 0)),
|
|
device='mps:0', size=(0,), nnz=10, dtype=torch.int32,
|
|
layout=torch.sparse_coo)
|
|
# _indices
|
|
tensor([], device='mps:0', size=(0, 10), dtype=torch.int64)
|
|
# _values
|
|
tensor([], device='mps:0', size=(10, 0), dtype=torch.int32)
|
|
########## torch.float32 ##########
|
|
# sparse tensor
|
|
tensor(indices=tensor([], size=(0, 10)),
|
|
values=tensor([], size=(10, 0)),
|
|
device='mps:0', size=(0,), nnz=10, layout=torch.sparse_coo)
|
|
# after requires_grad_
|
|
tensor(indices=tensor([], size=(0, 10)),
|
|
values=tensor([], size=(10, 0)),
|
|
device='mps:0', size=(0,), nnz=10, layout=torch.sparse_coo,
|
|
requires_grad=True)
|
|
# after addition
|
|
tensor(indices=tensor([], size=(0, 1)),
|
|
values=tensor([], size=(1, 0)),
|
|
device='mps:0', size=(0,), nnz=1, layout=torch.sparse_coo,
|
|
grad_fn=<AddBackward0>)
|
|
# _indices
|
|
tensor([], device='mps:0', size=(0, 10), dtype=torch.int64)
|
|
# _values
|
|
tensor([], device='mps:0', size=(10, 0))
|
|
|
|
# shape: torch.Size([2])
|
|
# nnz: 3
|
|
# sparse_dim: 0
|
|
# indices shape: torch.Size([0, 3])
|
|
# values shape: torch.Size([3, 2])
|
|
########## torch.int32 ##########
|
|
# sparse tensor
|
|
tensor(indices=tensor([], size=(0, 3)),
|
|
values=tensor([[0, 0],
|
|
[0, 1],
|
|
[1, 1]]),
|
|
device='mps:0', size=(2,), nnz=3, dtype=torch.int32,
|
|
layout=torch.sparse_coo)
|
|
# _indices
|
|
tensor([], device='mps:0', size=(0, 3), dtype=torch.int64)
|
|
# _values
|
|
tensor([[0, 0],
|
|
[0, 1],
|
|
[1, 1]], device='mps:0', dtype=torch.int32)
|
|
########## torch.float32 ##########
|
|
# sparse tensor
|
|
tensor(indices=tensor([], size=(0, 3)),
|
|
values=tensor([[0.0000, 0.3333],
|
|
[0.6667, 1.0000],
|
|
[1.3333, 1.6667]]),
|
|
device='mps:0', size=(2,), nnz=3, layout=torch.sparse_coo)
|
|
# after requires_grad_
|
|
tensor(indices=tensor([], size=(0, 3)),
|
|
values=tensor([[0.0000, 0.3333],
|
|
[0.6667, 1.0000],
|
|
[1.3333, 1.6667]]),
|
|
device='mps:0', size=(2,), nnz=3, layout=torch.sparse_coo,
|
|
requires_grad=True)
|
|
# after addition
|
|
tensor(indices=tensor([], size=(0, 1)),
|
|
values=tensor([[4.0000, 6.0000]]),
|
|
device='mps:0', size=(2,), nnz=1, layout=torch.sparse_coo,
|
|
grad_fn=<AddBackward0>)
|
|
# _indices
|
|
tensor([], device='mps:0', size=(0, 3), dtype=torch.int64)
|
|
# _values
|
|
tensor([[0.0000, 0.3333],
|
|
[0.6667, 1.0000],
|
|
[1.3333, 1.6667]], device='mps:0')
|
|
|
|
# shape: torch.Size([100, 3])
|
|
# nnz: 3
|
|
# sparse_dim: 1
|
|
# indices shape: torch.Size([1, 3])
|
|
# values shape: torch.Size([3, 3])
|
|
########## torch.int32 ##########
|
|
# sparse tensor
|
|
tensor(indices=tensor([[0, 1, 0]]),
|
|
values=tensor([[0, 0, 0],
|
|
[0, 0, 1],
|
|
[1, 1, 1]]),
|
|
device='mps:0', size=(100, 3), nnz=3, dtype=torch.int32,
|
|
layout=torch.sparse_coo)
|
|
# _indices
|
|
tensor([[0, 1, 0]], device='mps:0')
|
|
# _values
|
|
tensor([[0, 0, 0],
|
|
[0, 0, 1],
|
|
[1, 1, 1]], device='mps:0', dtype=torch.int32)
|
|
########## torch.float32 ##########
|
|
# sparse tensor
|
|
tensor(indices=tensor([[0, 1, 0]]),
|
|
values=tensor([[0.0000, 0.2222, 0.4444],
|
|
[0.6667, 0.8889, 1.1111],
|
|
[1.3333, 1.5556, 1.7778]]),
|
|
device='mps:0', size=(100, 3), nnz=3, layout=torch.sparse_coo)
|
|
# after requires_grad_
|
|
tensor(indices=tensor([[0, 1, 0]]),
|
|
values=tensor([[0.0000, 0.2222, 0.4444],
|
|
[0.6667, 0.8889, 1.1111],
|
|
[1.3333, 1.5556, 1.7778]]),
|
|
device='mps:0', size=(100, 3), nnz=3, layout=torch.sparse_coo,
|
|
requires_grad=True)
|
|
# after addition
|
|
tensor(indices=tensor([[0, 1]]),
|
|
values=tensor([[2.6667, 3.5556, 4.4444],
|
|
[1.3333, 1.7778, 2.2222]]),
|
|
device='mps:0', size=(100, 3), nnz=2, layout=torch.sparse_coo,
|
|
grad_fn=<AddBackward0>)
|
|
# _indices
|
|
tensor([[0, 1, 0]], device='mps:0')
|
|
# _values
|
|
tensor([[0.0000, 0.2222, 0.4444],
|
|
[0.6667, 0.8889, 1.1111],
|
|
[1.3333, 1.5556, 1.7778]], device='mps:0')
|
|
|
|
# shape: torch.Size([100, 20, 3])
|
|
# nnz: 0
|
|
# sparse_dim: 2
|
|
# indices shape: torch.Size([2, 0])
|
|
# values shape: torch.Size([0, 3])
|
|
########## torch.int32 ##########
|
|
# sparse tensor
|
|
tensor(indices=tensor([], size=(2, 0)),
|
|
values=tensor([], size=(0, 3)),
|
|
device='mps:0', size=(100, 20, 3), nnz=0, dtype=torch.int32,
|
|
layout=torch.sparse_coo)
|
|
# _indices
|
|
tensor([], device='mps:0', size=(2, 0), dtype=torch.int64)
|
|
# _values
|
|
tensor([], device='mps:0', size=(0, 3), dtype=torch.int32)
|
|
########## torch.float32 ##########
|
|
# sparse tensor
|
|
tensor(indices=tensor([], size=(2, 0)),
|
|
values=tensor([], size=(0, 3)),
|
|
device='mps:0', size=(100, 20, 3), nnz=0, layout=torch.sparse_coo)
|
|
# after requires_grad_
|
|
tensor(indices=tensor([], size=(2, 0)),
|
|
values=tensor([], size=(0, 3)),
|
|
device='mps:0', size=(100, 20, 3), nnz=0, layout=torch.sparse_coo,
|
|
requires_grad=True)
|
|
# after addition
|
|
tensor(indices=tensor([], size=(2, 0)),
|
|
values=tensor([], size=(0, 3)),
|
|
device='mps:0', size=(100, 20, 3), nnz=0, layout=torch.sparse_coo,
|
|
grad_fn=<AddBackward0>)
|
|
# _indices
|
|
tensor([], device='mps:0', size=(2, 0), dtype=torch.int64)
|
|
# _values
|
|
tensor([], device='mps:0', size=(0, 3))
|
|
|
|
# shape: torch.Size([10, 0, 3])
|
|
# nnz: 3
|
|
# sparse_dim: 0
|
|
# indices shape: torch.Size([0, 3])
|
|
# values shape: torch.Size([3, 10, 0, 3])
|
|
########## torch.int32 ##########
|
|
# sparse tensor
|
|
tensor(indices=tensor([], size=(0, 3)),
|
|
values=tensor([], size=(3, 10, 0, 3)),
|
|
device='mps:0', size=(10, 0, 3), nnz=3, dtype=torch.int32,
|
|
layout=torch.sparse_coo)
|
|
# _indices
|
|
tensor([], device='mps:0', size=(0, 3), dtype=torch.int64)
|
|
# _values
|
|
tensor([], device='mps:0', size=(3, 10, 0, 3), dtype=torch.int32)
|
|
########## torch.float32 ##########
|
|
# sparse tensor
|
|
tensor(indices=tensor([], size=(0, 3)),
|
|
values=tensor([], size=(3, 10, 0, 3)),
|
|
device='mps:0', size=(10, 0, 3), nnz=3, layout=torch.sparse_coo)
|
|
# after requires_grad_
|
|
tensor(indices=tensor([], size=(0, 3)),
|
|
values=tensor([], size=(3, 10, 0, 3)),
|
|
device='mps:0', size=(10, 0, 3), nnz=3, layout=torch.sparse_coo,
|
|
requires_grad=True)
|
|
# after addition
|
|
tensor(indices=tensor([], size=(0, 1)),
|
|
values=tensor([], size=(1, 10, 0, 3)),
|
|
device='mps:0', size=(10, 0, 3), nnz=1, layout=torch.sparse_coo,
|
|
grad_fn=<AddBackward0>)
|
|
# _indices
|
|
tensor([], device='mps:0', size=(0, 3), dtype=torch.int64)
|
|
# _values
|
|
tensor([], device='mps:0', size=(3, 10, 0, 3))
|
|
|
|
# shape: torch.Size([10, 0, 3])
|
|
# nnz: 0
|
|
# sparse_dim: 0
|
|
# indices shape: torch.Size([0, 0])
|
|
# values shape: torch.Size([0, 10, 0, 3])
|
|
########## torch.int32 ##########
|
|
# sparse tensor
|
|
tensor(indices=tensor([], size=(0, 0)),
|
|
values=tensor([], size=(0, 10, 0, 3)),
|
|
device='mps:0', size=(10, 0, 3), nnz=0, dtype=torch.int32,
|
|
layout=torch.sparse_coo)
|
|
# _indices
|
|
tensor([], device='mps:0', size=(0, 0), dtype=torch.int64)
|
|
# _values
|
|
tensor([], device='mps:0', size=(0, 10, 0, 3), dtype=torch.int32)
|
|
########## torch.float32 ##########
|
|
# sparse tensor
|
|
tensor(indices=tensor([], size=(0, 0)),
|
|
values=tensor([], size=(0, 10, 0, 3)),
|
|
device='mps:0', size=(10, 0, 3), nnz=0, layout=torch.sparse_coo)
|
|
# after requires_grad_
|
|
tensor(indices=tensor([], size=(0, 0)),
|
|
values=tensor([], size=(0, 10, 0, 3)),
|
|
device='mps:0', size=(10, 0, 3), nnz=0, layout=torch.sparse_coo,
|
|
requires_grad=True)
|
|
# after addition
|
|
tensor(indices=tensor([], size=(0, 0)),
|
|
values=tensor([], size=(0, 10, 0, 3)),
|
|
device='mps:0', size=(10, 0, 3), nnz=0, layout=torch.sparse_coo,
|
|
grad_fn=<AddBackward0>)
|
|
# _indices
|
|
tensor([], device='mps:0', size=(0, 0), dtype=torch.int64)
|
|
# _values
|
|
tensor([], device='mps:0', size=(0, 10, 0, 3))
|