mirror of
https://github.com/pytorch/pytorch.git
synced 2025-10-21 05:34:18 +08:00
This fixes #71725. Differential Revision: [D83857880](https://our.internmc.facebook.com/intern/diff/D83857880) Pull Request resolved: https://github.com/pytorch/pytorch/pull/163671 Approved by: https://github.com/ezyang, https://github.com/albanD
1544 lines
101 KiB
Python
1544 lines
101 KiB
Python
# Owner(s): ["module: dynamo"]
|
|
import copy
|
|
import functools
|
|
import io
|
|
import json
|
|
import logging
|
|
import os
|
|
import re
|
|
import shutil
|
|
import subprocess
|
|
import tempfile
|
|
import unittest.mock
|
|
from contextlib import contextmanager
|
|
|
|
import torch
|
|
import torch._dynamo.test_case
|
|
import torch._dynamo.testing
|
|
import torch._logging.structured
|
|
import torch.distributed as dist
|
|
import torch.fx as fx
|
|
from torch._inductor.test_case import TestCase
|
|
from torch._logging._internal import TorchLogsFormatter
|
|
from torch.nn.parallel import DistributedDataParallel as DDP
|
|
from torch.testing._internal.common_utils import find_free_port, xfailIfS390X
|
|
from torch.testing._internal.triton_utils import requires_cuda_and_triton
|
|
|
|
|
|
if torch.distributed.is_available():
|
|
from torch.testing._internal.distributed.fake_pg import FakeStore
|
|
|
|
HAS_TLPARSE = shutil.which("tlparse") is not None
|
|
requires_tlparse = unittest.skipUnless(HAS_TLPARSE, "requires tlparse")
|
|
requires_distributed = functools.partial(
|
|
unittest.skipIf, not dist.is_available(), "requires distributed"
|
|
)
|
|
|
|
|
|
def example_fn(a):
|
|
output = a.mul(torch.ones(1000, 1000))
|
|
output = output.add(torch.ones(1000, 1000))
|
|
return output
|
|
|
|
|
|
def example_training_fn(a):
|
|
output = a.mul(torch.ones(1000, 1000, requires_grad=True))
|
|
output = output.add(torch.ones(1000, 1000))
|
|
output.sum().backward()
|
|
return output
|
|
|
|
|
|
def dynamo_error_fn(a):
|
|
output = a.mul(torch.ones(1000, 1000))
|
|
output = output.add(torch.ones(10, 10))
|
|
return output
|
|
|
|
|
|
def inductor_error_fn(a):
|
|
output = torch.round(a)
|
|
return output
|
|
|
|
|
|
def inductor_schedule_fn(a):
|
|
output = a.add(torch.ones(1000, 1000, device="cuda"))
|
|
return output
|
|
|
|
|
|
ARGS = (torch.ones(1000, 1000, requires_grad=True),)
|
|
|
|
|
|
def replace_dynamic(buffer, key):
|
|
return re.sub(r'("' + key + r'":\s*)(\d+\.\d+)', r"\1<dynamic>", buffer)
|
|
|
|
|
|
class StructuredTraceTestingFilter(logging.Filter):
|
|
def __init__(self, match_name=None):
|
|
self.match_name = match_name
|
|
|
|
def filter(self, record):
|
|
if "str" in record.metadata:
|
|
return False
|
|
if self.match_name is not None:
|
|
if "artifact" in record.metadata:
|
|
if self.match_name != record.metadata["artifact"]["name"]:
|
|
return False
|
|
elif self.match_name not in record.metadata:
|
|
return False
|
|
return True
|
|
|
|
|
|
class ChromiumEventFilter(logging.Filter):
|
|
def filter(self, record):
|
|
return "chromium_event" not in record.metadata
|
|
|
|
|
|
class StructuredTracePayloadFormatter(logging.Formatter):
|
|
def format(self, record):
|
|
return record.payload.strip()
|
|
|
|
|
|
class StructuredTraceTestingFormatter(logging.Formatter):
|
|
def format(self, record):
|
|
metadata = copy.deepcopy(record.metadata)
|
|
|
|
# Stub out values that are not stable across runs
|
|
# TODO: Check that these match schema
|
|
if "has_payload" in metadata:
|
|
metadata["has_payload"] = "HASH"
|
|
if "dynamo_start" in metadata:
|
|
metadata["dynamo_start"]["stack"] = "STACK"
|
|
if "inductor_output_code" in metadata:
|
|
metadata["inductor_output_code"]["filename"] = "FILENAME"
|
|
if "file_path" in metadata["inductor_output_code"]:
|
|
metadata["inductor_output_code"]["file_path"] = "FILENAME"
|
|
if "stack" in metadata:
|
|
metadata["stack"] = "STACK"
|
|
if "compilation_metrics" in metadata:
|
|
metadata["compilation_metrics"] = "METRICS"
|
|
if "bwd_compilation_metrics" in metadata:
|
|
metadata["bwd_compilation_metrics"] = "METRICS"
|
|
if "compilation_metrics_runtime" in metadata:
|
|
metadata["compilation_metrics_runtime"] = "METRICS"
|
|
if "bwd_compilation_metrics_runtime" in metadata:
|
|
metadata["bwd_compilation_metrics_runtime"] = "METRICS"
|
|
if "describe_storage" in metadata:
|
|
metadata["describe_storage"]["describer_id"] = "ID"
|
|
if "describe_tensor" in metadata:
|
|
metadata["describe_tensor"]["describer_id"] = "ID"
|
|
if "view_func" in metadata["describe_tensor"]:
|
|
metadata["describe_tensor"]["view_func"] = "VIEW_FUNC"
|
|
if "describe_source" in metadata:
|
|
metadata["describe_source"]["describer_id"] = "ID"
|
|
if (
|
|
(k := "create_symbol") in metadata
|
|
or (k := "guard_added_fast") in metadata
|
|
or (k := "create_unbacked_symbol") in metadata
|
|
):
|
|
metadata[k]["user_stack"] = "STACK"
|
|
metadata[k]["stack"] = "STACK"
|
|
|
|
if "dump_file" in metadata:
|
|
# Don't include the actually key number, that's sensitive to other
|
|
# test runs
|
|
metadata["dump_file"]["name"] = "<eval_with_key>"
|
|
return (
|
|
json.dumps(metadata)
|
|
+ "\n"
|
|
+ "\n".join(l.rstrip() for l in record.payload.splitlines())
|
|
)
|
|
|
|
return json.dumps(metadata)
|
|
|
|
|
|
trace_log = logging.getLogger("torch.__trace")
|
|
|
|
chrome_event_filter = ChromiumEventFilter()
|
|
|
|
|
|
def show_chrome_events(fn):
|
|
"""
|
|
Don't hide chrome events for this test
|
|
"""
|
|
|
|
@functools.wraps(fn)
|
|
def wrapper(self, *args, **kwargs):
|
|
self.handler.removeFilter(chrome_event_filter)
|
|
return fn(self, *args, **kwargs)
|
|
|
|
return wrapper
|
|
|
|
|
|
class StructuredTraceTest(TestCase):
|
|
def setUp(self):
|
|
super().setUp()
|
|
torch._dynamo.reset()
|
|
torch._logging.structured.INTERN_TABLE.clear()
|
|
self.buffer = io.StringIO()
|
|
self.old_level = trace_log.level
|
|
trace_log.setLevel(logging.DEBUG)
|
|
|
|
self.handler = logging.StreamHandler(self.buffer)
|
|
self.handler.setFormatter(StructuredTraceTestingFormatter())
|
|
self.handler.addFilter(StructuredTraceTestingFilter())
|
|
self.handler.addFilter(chrome_event_filter)
|
|
trace_log.addHandler(self.handler)
|
|
|
|
self.raw_file = tempfile.NamedTemporaryFile(
|
|
mode="w", delete=True
|
|
) # set this to False to keep temporary files
|
|
self.raw_handler = logging.StreamHandler(self.raw_file)
|
|
self.raw_handler.setFormatter(TorchLogsFormatter(trace=True))
|
|
trace_log.addHandler(self.raw_handler)
|
|
|
|
def tearDown(self):
|
|
trace_log.removeHandler(self.handler)
|
|
trace_log.removeHandler(self.raw_handler)
|
|
self.raw_file.close()
|
|
trace_log.setLevel(self.old_level)
|
|
|
|
def assertParses(self):
|
|
out = tempfile.mkdtemp()
|
|
try:
|
|
subprocess.check_call(
|
|
[
|
|
"tlparse",
|
|
"-o",
|
|
out,
|
|
"--overwrite",
|
|
"--no-browser",
|
|
"--strict",
|
|
self.raw_file.name,
|
|
]
|
|
)
|
|
finally:
|
|
shutil.rmtree(out, ignore_errors=True)
|
|
|
|
def test_compile_id_serialization_deserialization(self):
|
|
cid = torch._guards.CompileId(
|
|
frame_id=1,
|
|
frame_compile_id=2,
|
|
)
|
|
assert cid == torch._guards.CompileId.from_string(str(cid))
|
|
|
|
cid = torch._guards.CompileId(
|
|
compiled_autograd_id=1,
|
|
frame_id=2,
|
|
frame_compile_id=3,
|
|
)
|
|
assert cid == torch._guards.CompileId.from_string(str(cid))
|
|
|
|
cid = torch._guards.CompileId(
|
|
compiled_autograd_id=1,
|
|
frame_id=None,
|
|
frame_compile_id=None,
|
|
)
|
|
assert cid == torch._guards.CompileId.from_string(str(cid))
|
|
|
|
for bad_cid in ["-/-", "-/1", "1/-", "!1/2", "!1/-/-"]:
|
|
with self.assertRaises(ValueError):
|
|
torch._guards.CompileId.from_string(bad_cid)
|
|
|
|
@requires_cuda_and_triton
|
|
def test_schedule(self):
|
|
fn_opt = torch.compile(inductor_schedule_fn, backend="inductor")
|
|
fn_opt(torch.ones(1000, 1000, device="cuda"))
|
|
self.assertExpectedInline(
|
|
self.buffer.getvalue(),
|
|
"""\
|
|
{"dynamo_start": {"stack": "STACK"}, "frame_id": 0, "frame_compile_id": 0, "attempt": 0}
|
|
{"describe_storage": {"id": 0, "describer_id": "ID", "size": 4000000}, "frame_id": 0, "frame_compile_id": 0, "attempt": 0}
|
|
{"describe_tensor": {"id": 0, "ndim": 2, "dtype": "torch.float32", "device": "device(type='cuda', index=0)", "size": [1000, 1000], "dynamo_hint_overrides": {}, "is_leaf": true, "stride": [1000, 1], "storage": 0, "view_func": "VIEW_FUNC", "describer_id": "ID"}, "frame_id": 0, "frame_compile_id": 0, "attempt": 0}
|
|
{"describe_source": {"describer_id": "ID", "id": 0, "source": "L['a']"}, "frame_id": 0, "frame_compile_id": 0, "attempt": 0}
|
|
{"dynamo_output_graph": {"sizes": {"l_a_": [1000, 1000], "ones": [1000, 1000], "output": [1000, 1000]}}, "frame_id": 0, "frame_compile_id": 0, "attempt": 0, "has_payload": "HASH"}
|
|
{"artifact": {"name": "before_pre_grad_graph", "encoding": "string"}, "frame_id": 0, "frame_compile_id": 0, "attempt": 0, "has_payload": "HASH"}
|
|
{"artifact": {"name": "after_pre_grad_graph", "encoding": "string"}, "frame_id": 0, "frame_compile_id": 0, "attempt": 0, "has_payload": "HASH"}
|
|
{"artifact": {"name": "aotautograd_cache_miss", "encoding": "json"}, "frame_id": 0, "frame_compile_id": 0, "attempt": 0, "has_payload": "HASH"}
|
|
{"artifact": {"name": "aot_forward_graph_fw_metadata", "encoding": "string"}, "frame_id": 0, "frame_compile_id": 0, "attempt": 0, "has_payload": "HASH"}
|
|
{"aot_inference_graph": {}, "frame_id": 0, "frame_compile_id": 0, "attempt": 0, "has_payload": "HASH"}
|
|
{"artifact": {"name": "torch._functorch.config", "encoding": "string"}, "frame_id": 0, "frame_compile_id": 0, "attempt": 0, "has_payload": "HASH"}
|
|
{"artifact": {"name": "before_joint_graph", "encoding": "string"}, "frame_id": 0, "frame_compile_id": 0, "attempt": 0, "has_payload": "HASH"}
|
|
{"artifact": {"name": "after_joint_graph", "encoding": "string"}, "frame_id": 0, "frame_compile_id": 0, "attempt": 0, "has_payload": "HASH"}
|
|
{"artifact": {"name": "fx_graph_runnable", "encoding": "string"}, "frame_id": 0, "frame_compile_id": 0, "attempt": 0, "has_payload": "HASH"}
|
|
{"artifact": {"name": "before_post_grad_graph", "encoding": "string"}, "frame_id": 0, "frame_compile_id": 0, "attempt": 0, "has_payload": "HASH"}
|
|
{"artifact": {"name": "after_post_grad_graph", "encoding": "string"}, "frame_id": 0, "frame_compile_id": 0, "attempt": 0, "has_payload": "HASH"}
|
|
{"inductor_output_code": {"filename": "FILENAME", "file_path": "FILENAME"}, "frame_id": 0, "frame_compile_id": 0, "attempt": 0, "has_payload": "HASH"}
|
|
{"artifact": {"name": "triton_kernel_info", "encoding": "json"}, "frame_id": 0, "frame_compile_id": 0, "attempt": 0, "has_payload": "HASH"}
|
|
{"artifact": {"name": "fx_graph_cache_miss", "encoding": "json"}, "frame_id": 0, "frame_compile_id": 0, "attempt": 0, "has_payload": "HASH"}
|
|
{"dynamo_cpp_guards_str": {}, "frame_id": 0, "frame_compile_id": 0, "attempt": 0, "has_payload": "HASH"}
|
|
{"compilation_metrics": "METRICS", "frame_id": 0, "frame_compile_id": 0, "attempt": 0}
|
|
{"compilation_metrics_runtime": "METRICS", "frame_id": 0, "frame_compile_id": 0}
|
|
""", # noqa: B950
|
|
)
|
|
|
|
self.assertParses()
|
|
|
|
@requires_cuda_and_triton
|
|
def test_cudagraphs(self):
|
|
fn_opt = torch.compile(mode="reduce-overhead")(inductor_schedule_fn)
|
|
fn_opt(torch.ones(1000, 1000, device="cuda"))
|
|
self.assertExpectedInline(
|
|
self.buffer.getvalue(),
|
|
"""\
|
|
{"dynamo_start": {"stack": "STACK"}, "frame_id": 0, "frame_compile_id": 0, "attempt": 0}
|
|
{"describe_storage": {"id": 0, "describer_id": "ID", "size": 4000000}, "frame_id": 0, "frame_compile_id": 0, "attempt": 0}
|
|
{"describe_tensor": {"id": 0, "ndim": 2, "dtype": "torch.float32", "device": "device(type='cuda', index=0)", "size": [1000, 1000], "dynamo_hint_overrides": {}, "is_leaf": true, "stride": [1000, 1], "storage": 0, "view_func": "VIEW_FUNC", "describer_id": "ID"}, "frame_id": 0, "frame_compile_id": 0, "attempt": 0}
|
|
{"describe_source": {"describer_id": "ID", "id": 0, "source": "L['a']"}, "frame_id": 0, "frame_compile_id": 0, "attempt": 0}
|
|
{"dynamo_output_graph": {"sizes": {"l_a_": [1000, 1000], "ones": [1000, 1000], "output": [1000, 1000]}}, "frame_id": 0, "frame_compile_id": 0, "attempt": 0, "has_payload": "HASH"}
|
|
{"artifact": {"name": "before_pre_grad_graph", "encoding": "string"}, "frame_id": 0, "frame_compile_id": 0, "attempt": 0, "has_payload": "HASH"}
|
|
{"artifact": {"name": "after_pre_grad_graph", "encoding": "string"}, "frame_id": 0, "frame_compile_id": 0, "attempt": 0, "has_payload": "HASH"}
|
|
{"artifact": {"name": "aotautograd_cache_miss", "encoding": "json"}, "frame_id": 0, "frame_compile_id": 0, "attempt": 0, "has_payload": "HASH"}
|
|
{"artifact": {"name": "aot_forward_graph_fw_metadata", "encoding": "string"}, "frame_id": 0, "frame_compile_id": 0, "attempt": 0, "has_payload": "HASH"}
|
|
{"aot_inference_graph": {}, "frame_id": 0, "frame_compile_id": 0, "attempt": 0, "has_payload": "HASH"}
|
|
{"artifact": {"name": "torch._functorch.config", "encoding": "string"}, "frame_id": 0, "frame_compile_id": 0, "attempt": 0, "has_payload": "HASH"}
|
|
{"artifact": {"name": "before_joint_graph", "encoding": "string"}, "frame_id": 0, "frame_compile_id": 0, "attempt": 0, "has_payload": "HASH"}
|
|
{"artifact": {"name": "after_joint_graph", "encoding": "string"}, "frame_id": 0, "frame_compile_id": 0, "attempt": 0, "has_payload": "HASH"}
|
|
{"artifact": {"name": "fx_graph_runnable", "encoding": "string"}, "frame_id": 0, "frame_compile_id": 0, "attempt": 0, "has_payload": "HASH"}
|
|
{"artifact": {"name": "before_post_grad_graph", "encoding": "string"}, "frame_id": 0, "frame_compile_id": 0, "attempt": 0, "has_payload": "HASH"}
|
|
{"artifact": {"name": "after_post_grad_graph", "encoding": "string"}, "frame_id": 0, "frame_compile_id": 0, "attempt": 0, "has_payload": "HASH"}
|
|
{"inductor_output_code": {"filename": "FILENAME", "file_path": "FILENAME"}, "frame_id": 0, "frame_compile_id": 0, "attempt": 0, "has_payload": "HASH"}
|
|
{"artifact": {"name": "triton_kernel_info", "encoding": "json"}, "frame_id": 0, "frame_compile_id": 0, "attempt": 0, "has_payload": "HASH"}
|
|
{"artifact": {"name": "fx_graph_cache_miss", "encoding": "json"}, "frame_id": 0, "frame_compile_id": 0, "attempt": 0, "has_payload": "HASH"}
|
|
{"dynamo_cpp_guards_str": {}, "frame_id": 0, "frame_compile_id": 0, "attempt": 0, "has_payload": "HASH"}
|
|
{"compilation_metrics": "METRICS", "frame_id": 0, "frame_compile_id": 0, "attempt": 0}
|
|
{"compilation_metrics_runtime": "METRICS", "frame_id": 0, "frame_compile_id": 0}
|
|
""", # noqa: B950
|
|
)
|
|
|
|
self.assertParses()
|
|
|
|
@requires_tlparse
|
|
def test_recompiles(self):
|
|
def fn(x, y):
|
|
return torch.add(x, y)
|
|
|
|
fn_opt = torch.compile(fn, backend="inductor")
|
|
fn_opt(torch.ones(1000, 1000), torch.ones(1000, 1000))
|
|
fn_opt(torch.ones(1000, 1000), 1)
|
|
|
|
self.assertExpectedInline(
|
|
self.buffer.getvalue(),
|
|
"""\
|
|
{"dynamo_start": {"stack": "STACK"}, "frame_id": 0, "frame_compile_id": 0, "attempt": 0}
|
|
{"describe_storage": {"id": 0, "describer_id": "ID", "size": 4000000}, "frame_id": 0, "frame_compile_id": 0, "attempt": 0}
|
|
{"describe_tensor": {"id": 0, "ndim": 2, "dtype": "torch.float32", "device": "device(type='cpu')", "size": [1000, 1000], "dynamo_hint_overrides": {}, "is_leaf": true, "stride": [1000, 1], "storage": 0, "view_func": "VIEW_FUNC", "describer_id": "ID"}, "frame_id": 0, "frame_compile_id": 0, "attempt": 0}
|
|
{"describe_source": {"describer_id": "ID", "id": 0, "source": "L['x']"}, "frame_id": 0, "frame_compile_id": 0, "attempt": 0}
|
|
{"describe_storage": {"id": 1, "describer_id": "ID", "size": 4000000}, "frame_id": 0, "frame_compile_id": 0, "attempt": 0}
|
|
{"describe_tensor": {"id": 1, "ndim": 2, "dtype": "torch.float32", "device": "device(type='cpu')", "size": [1000, 1000], "dynamo_hint_overrides": {}, "is_leaf": true, "stride": [1000, 1], "storage": 1, "view_func": "VIEW_FUNC", "describer_id": "ID"}, "frame_id": 0, "frame_compile_id": 0, "attempt": 0}
|
|
{"describe_source": {"describer_id": "ID", "id": 1, "source": "L['y']"}, "frame_id": 0, "frame_compile_id": 0, "attempt": 0}
|
|
{"dynamo_output_graph": {"sizes": {"l_x_": [1000, 1000], "l_y_": [1000, 1000], "add": [1000, 1000]}}, "frame_id": 0, "frame_compile_id": 0, "attempt": 0, "has_payload": "HASH"}
|
|
{"artifact": {"name": "before_pre_grad_graph", "encoding": "string"}, "frame_id": 0, "frame_compile_id": 0, "attempt": 0, "has_payload": "HASH"}
|
|
{"artifact": {"name": "after_pre_grad_graph", "encoding": "string"}, "frame_id": 0, "frame_compile_id": 0, "attempt": 0, "has_payload": "HASH"}
|
|
{"artifact": {"name": "aotautograd_cache_miss", "encoding": "json"}, "frame_id": 0, "frame_compile_id": 0, "attempt": 0, "has_payload": "HASH"}
|
|
{"artifact": {"name": "aot_forward_graph_fw_metadata", "encoding": "string"}, "frame_id": 0, "frame_compile_id": 0, "attempt": 0, "has_payload": "HASH"}
|
|
{"aot_inference_graph": {}, "frame_id": 0, "frame_compile_id": 0, "attempt": 0, "has_payload": "HASH"}
|
|
{"artifact": {"name": "torch._functorch.config", "encoding": "string"}, "frame_id": 0, "frame_compile_id": 0, "attempt": 0, "has_payload": "HASH"}
|
|
{"artifact": {"name": "before_joint_graph", "encoding": "string"}, "frame_id": 0, "frame_compile_id": 0, "attempt": 0, "has_payload": "HASH"}
|
|
{"artifact": {"name": "after_joint_graph", "encoding": "string"}, "frame_id": 0, "frame_compile_id": 0, "attempt": 0, "has_payload": "HASH"}
|
|
{"artifact": {"name": "fx_graph_runnable", "encoding": "string"}, "frame_id": 0, "frame_compile_id": 0, "attempt": 0, "has_payload": "HASH"}
|
|
{"artifact": {"name": "before_post_grad_graph", "encoding": "string"}, "frame_id": 0, "frame_compile_id": 0, "attempt": 0, "has_payload": "HASH"}
|
|
{"artifact": {"name": "after_post_grad_graph", "encoding": "string"}, "frame_id": 0, "frame_compile_id": 0, "attempt": 0, "has_payload": "HASH"}
|
|
{"inductor_output_code": {"filename": "FILENAME", "file_path": "FILENAME"}, "frame_id": 0, "frame_compile_id": 0, "attempt": 0, "has_payload": "HASH"}
|
|
{"artifact": {"name": "fx_graph_cache_miss", "encoding": "json"}, "frame_id": 0, "frame_compile_id": 0, "attempt": 0, "has_payload": "HASH"}
|
|
{"dynamo_cpp_guards_str": {}, "frame_id": 0, "frame_compile_id": 0, "attempt": 0, "has_payload": "HASH"}
|
|
{"compilation_metrics": "METRICS", "frame_id": 0, "frame_compile_id": 0, "attempt": 0}
|
|
{"artifact": {"name": "recompile_reasons", "encoding": "json"}, "frame_id": 0, "frame_compile_id": 1, "attempt": 0, "has_payload": "HASH"}
|
|
{"dynamo_start": {"stack": "STACK"}, "frame_id": 0, "frame_compile_id": 1, "attempt": 0}
|
|
{"describe_storage": {"id": 0, "describer_id": "ID", "size": 4000000}, "frame_id": 0, "frame_compile_id": 1, "attempt": 0}
|
|
{"describe_tensor": {"id": 0, "ndim": 2, "dtype": "torch.float32", "device": "device(type='cpu')", "size": [1000, 1000], "dynamo_hint_overrides": {}, "is_leaf": true, "stride": [1000, 1], "storage": 0, "view_func": "VIEW_FUNC", "describer_id": "ID"}, "frame_id": 0, "frame_compile_id": 1, "attempt": 0}
|
|
{"describe_source": {"describer_id": "ID", "id": 0, "source": "L['x']"}, "frame_id": 0, "frame_compile_id": 1, "attempt": 0}
|
|
{"create_symbol": {"symbol": "s48", "val": "1", "vr": "[-int_oo, int_oo]", "source": "L['y']", "user_stack": "STACK", "stack": "STACK"}, "frame_id": 0, "frame_compile_id": 1, "attempt": 0}
|
|
{"dynamo_output_graph": {"sizes": {"l_x_": [1000, 1000], "add": [1000, 1000]}}, "frame_id": 0, "frame_compile_id": 1, "attempt": 0, "has_payload": "HASH"}
|
|
{"artifact": {"name": "before_pre_grad_graph", "encoding": "string"}, "frame_id": 0, "frame_compile_id": 1, "attempt": 0, "has_payload": "HASH"}
|
|
{"artifact": {"name": "after_pre_grad_graph", "encoding": "string"}, "frame_id": 0, "frame_compile_id": 1, "attempt": 0, "has_payload": "HASH"}
|
|
{"artifact": {"name": "aotautograd_cache_miss", "encoding": "json"}, "frame_id": 0, "frame_compile_id": 1, "attempt": 0, "has_payload": "HASH"}
|
|
{"artifact": {"name": "aot_forward_graph_fw_metadata", "encoding": "string"}, "frame_id": 0, "frame_compile_id": 1, "attempt": 0, "has_payload": "HASH"}
|
|
{"aot_inference_graph": {}, "frame_id": 0, "frame_compile_id": 1, "attempt": 0, "has_payload": "HASH"}
|
|
{"artifact": {"name": "torch._functorch.config", "encoding": "string"}, "frame_id": 0, "frame_compile_id": 1, "attempt": 0, "has_payload": "HASH"}
|
|
{"artifact": {"name": "before_joint_graph", "encoding": "string"}, "frame_id": 0, "frame_compile_id": 1, "attempt": 0, "has_payload": "HASH"}
|
|
{"artifact": {"name": "after_joint_graph", "encoding": "string"}, "frame_id": 0, "frame_compile_id": 1, "attempt": 0, "has_payload": "HASH"}
|
|
{"artifact": {"name": "fx_graph_runnable", "encoding": "string"}, "frame_id": 0, "frame_compile_id": 1, "attempt": 0, "has_payload": "HASH"}
|
|
{"artifact": {"name": "before_post_grad_graph", "encoding": "string"}, "frame_id": 0, "frame_compile_id": 1, "attempt": 0, "has_payload": "HASH"}
|
|
{"artifact": {"name": "after_post_grad_graph", "encoding": "string"}, "frame_id": 0, "frame_compile_id": 1, "attempt": 0, "has_payload": "HASH"}
|
|
{"inductor_output_code": {"filename": "FILENAME", "file_path": "FILENAME"}, "frame_id": 0, "frame_compile_id": 1, "attempt": 0, "has_payload": "HASH"}
|
|
{"artifact": {"name": "fx_graph_cache_miss", "encoding": "json"}, "frame_id": 0, "frame_compile_id": 1, "attempt": 0, "has_payload": "HASH"}
|
|
{"dynamo_cpp_guards_str": {}, "frame_id": 0, "frame_compile_id": 1, "attempt": 0, "has_payload": "HASH"}
|
|
{"compilation_metrics": "METRICS", "frame_id": 0, "frame_compile_id": 1, "attempt": 0}
|
|
""", # noqa: B950
|
|
)
|
|
|
|
self.assertParses()
|
|
|
|
@requires_tlparse
|
|
def test_example_fn(self):
|
|
fn_opt = torch.compile(example_fn, backend="inductor")
|
|
fn_opt(torch.ones(1000, 1000))
|
|
self.assertExpectedInline(
|
|
self.buffer.getvalue(),
|
|
"""\
|
|
{"dynamo_start": {"stack": "STACK"}, "frame_id": 0, "frame_compile_id": 0, "attempt": 0}
|
|
{"describe_storage": {"id": 0, "describer_id": "ID", "size": 4000000}, "frame_id": 0, "frame_compile_id": 0, "attempt": 0}
|
|
{"describe_tensor": {"id": 0, "ndim": 2, "dtype": "torch.float32", "device": "device(type='cpu')", "size": [1000, 1000], "dynamo_hint_overrides": {}, "is_leaf": true, "stride": [1000, 1], "storage": 0, "view_func": "VIEW_FUNC", "describer_id": "ID"}, "frame_id": 0, "frame_compile_id": 0, "attempt": 0}
|
|
{"describe_source": {"describer_id": "ID", "id": 0, "source": "L['a']"}, "frame_id": 0, "frame_compile_id": 0, "attempt": 0}
|
|
{"dynamo_output_graph": {"sizes": {"l_a_": [1000, 1000], "ones": [1000, 1000], "output": [1000, 1000], "ones_1": [1000, 1000], "output_1": [1000, 1000]}}, "frame_id": 0, "frame_compile_id": 0, "attempt": 0, "has_payload": "HASH"}
|
|
{"artifact": {"name": "before_pre_grad_graph", "encoding": "string"}, "frame_id": 0, "frame_compile_id": 0, "attempt": 0, "has_payload": "HASH"}
|
|
{"artifact": {"name": "after_pre_grad_graph", "encoding": "string"}, "frame_id": 0, "frame_compile_id": 0, "attempt": 0, "has_payload": "HASH"}
|
|
{"artifact": {"name": "aotautograd_cache_miss", "encoding": "json"}, "frame_id": 0, "frame_compile_id": 0, "attempt": 0, "has_payload": "HASH"}
|
|
{"artifact": {"name": "aot_forward_graph_fw_metadata", "encoding": "string"}, "frame_id": 0, "frame_compile_id": 0, "attempt": 0, "has_payload": "HASH"}
|
|
{"aot_inference_graph": {}, "frame_id": 0, "frame_compile_id": 0, "attempt": 0, "has_payload": "HASH"}
|
|
{"artifact": {"name": "torch._functorch.config", "encoding": "string"}, "frame_id": 0, "frame_compile_id": 0, "attempt": 0, "has_payload": "HASH"}
|
|
{"artifact": {"name": "before_joint_graph", "encoding": "string"}, "frame_id": 0, "frame_compile_id": 0, "attempt": 0, "has_payload": "HASH"}
|
|
{"artifact": {"name": "after_joint_graph", "encoding": "string"}, "frame_id": 0, "frame_compile_id": 0, "attempt": 0, "has_payload": "HASH"}
|
|
{"artifact": {"name": "fx_graph_runnable", "encoding": "string"}, "frame_id": 0, "frame_compile_id": 0, "attempt": 0, "has_payload": "HASH"}
|
|
{"artifact": {"name": "before_post_grad_graph", "encoding": "string"}, "frame_id": 0, "frame_compile_id": 0, "attempt": 0, "has_payload": "HASH"}
|
|
{"artifact": {"name": "after_post_grad_graph", "encoding": "string"}, "frame_id": 0, "frame_compile_id": 0, "attempt": 0, "has_payload": "HASH"}
|
|
{"inductor_output_code": {"filename": "FILENAME", "file_path": "FILENAME"}, "frame_id": 0, "frame_compile_id": 0, "attempt": 0, "has_payload": "HASH"}
|
|
{"artifact": {"name": "fx_graph_cache_miss", "encoding": "json"}, "frame_id": 0, "frame_compile_id": 0, "attempt": 0, "has_payload": "HASH"}
|
|
{"dynamo_cpp_guards_str": {}, "frame_id": 0, "frame_compile_id": 0, "attempt": 0, "has_payload": "HASH"}
|
|
{"compilation_metrics": "METRICS", "frame_id": 0, "frame_compile_id": 0, "attempt": 0}
|
|
""", # noqa: B950
|
|
)
|
|
|
|
self.assertParses()
|
|
|
|
@requires_tlparse
|
|
def test_example_training_fn(self):
|
|
fn_opt = torch.compile(example_training_fn, backend="inductor")
|
|
fn_opt(torch.ones(1000, 1000, requires_grad=True))
|
|
buffer = self.buffer.getvalue()
|
|
buffer = replace_dynamic(buffer, "inductor_compile_time_s")
|
|
buffer = replace_dynamic(buffer, "code_gen_time_s")
|
|
buffer = replace_dynamic(buffer, "structured_logging_overhead_s")
|
|
self.assertExpectedInline(
|
|
buffer,
|
|
"""\
|
|
{"dynamo_start": {"stack": "STACK"}, "frame_id": 0, "frame_compile_id": 0, "attempt": 0}
|
|
{"describe_storage": {"id": 0, "describer_id": "ID", "size": 4000000}, "frame_id": 0, "frame_compile_id": 0, "attempt": 0}
|
|
{"describe_tensor": {"id": 0, "ndim": 2, "dtype": "torch.float32", "device": "device(type='cpu')", "size": [1000, 1000], "dynamo_hint_overrides": {}, "is_leaf": true, "requires_grad": true, "stride": [1000, 1], "storage": 0, "view_func": "VIEW_FUNC", "describer_id": "ID"}, "frame_id": 0, "frame_compile_id": 0, "attempt": 0}
|
|
{"describe_source": {"describer_id": "ID", "id": 0, "source": "L['a']"}, "frame_id": 0, "frame_compile_id": 0, "attempt": 0}
|
|
{"artifact": {"name": "dynamo_graph_break_reason", "encoding": "string"}, "frame_id": 0, "frame_compile_id": 0, "attempt": 0, "has_payload": "HASH"}
|
|
{"describe_storage": {"id": 0, "describer_id": "ID", "size": 4000000}, "frame_id": 0, "frame_compile_id": 0, "attempt": 1}
|
|
{"describe_tensor": {"id": 0, "ndim": 2, "dtype": "torch.float32", "device": "device(type='cpu')", "size": [1000, 1000], "dynamo_hint_overrides": {}, "is_leaf": true, "requires_grad": true, "stride": [1000, 1], "storage": 0, "view_func": "VIEW_FUNC", "describer_id": "ID"}, "frame_id": 0, "frame_compile_id": 0, "attempt": 1}
|
|
{"describe_source": {"describer_id": "ID", "id": 0, "source": "L['a']"}, "frame_id": 0, "frame_compile_id": 0, "attempt": 1}
|
|
{"dynamo_cpp_guards_str": {}, "frame_id": 0, "frame_compile_id": 0, "attempt": 1, "has_payload": "HASH"}
|
|
{"compilation_metrics": "METRICS", "frame_id": 0, "frame_compile_id": 0, "attempt": 1}
|
|
{"dynamo_start": {"stack": "STACK"}, "frame_id": 1, "frame_compile_id": 0, "attempt": 0}
|
|
{"artifact": {"name": "dynamo_graph_break_reason", "encoding": "string"}, "frame_id": 1, "frame_compile_id": 0, "attempt": 0, "has_payload": "HASH"}
|
|
{"describe_storage": {"id": 0, "describer_id": "ID", "size": 4000000}, "frame_id": 1, "frame_compile_id": 0, "attempt": 1}
|
|
{"describe_tensor": {"id": 0, "ndim": 2, "dtype": "torch.float32", "device": "device(type='cpu')", "size": [1000, 1000], "dynamo_hint_overrides": {}, "is_leaf": true, "requires_grad": true, "stride": [1000, 1], "storage": 0, "view_func": "VIEW_FUNC", "describer_id": "ID"}, "frame_id": 1, "frame_compile_id": 0, "attempt": 1}
|
|
{"describe_source": {"describer_id": "ID", "id": 0, "source": "L['___stack1']"}, "frame_id": 1, "frame_compile_id": 0, "attempt": 1}
|
|
{"dynamo_cpp_guards_str": {}, "frame_id": 1, "frame_compile_id": 0, "attempt": 1, "has_payload": "HASH"}
|
|
{"compilation_metrics": "METRICS", "frame_id": 1, "frame_compile_id": 0, "attempt": 1}
|
|
{"dynamo_start": {"stack": "STACK"}, "frame_id": 2, "frame_compile_id": 0, "attempt": 0}
|
|
{"describe_storage": {"id": 0, "describer_id": "ID", "size": 4000000}, "frame_id": 2, "frame_compile_id": 0, "attempt": 0}
|
|
{"describe_tensor": {"id": 0, "ndim": 2, "dtype": "torch.float32", "device": "device(type='cpu')", "size": [1000, 1000], "dynamo_hint_overrides": {}, "requires_grad": true, "stride": [1000, 1], "storage": 0, "view_func": "VIEW_FUNC", "describer_id": "ID"}, "frame_id": 2, "frame_compile_id": 0, "attempt": 0}
|
|
{"describe_source": {"describer_id": "ID", "id": 0, "source": "L['___stack0']"}, "frame_id": 2, "frame_compile_id": 0, "attempt": 0}
|
|
{"artifact": {"name": "dynamo_graph_break_reason", "encoding": "string"}, "frame_id": 2, "frame_compile_id": 0, "attempt": 0, "has_payload": "HASH"}
|
|
{"describe_storage": {"id": 0, "describer_id": "ID", "size": 4000000}, "frame_id": 2, "frame_compile_id": 0, "attempt": 1}
|
|
{"describe_tensor": {"id": 0, "ndim": 2, "dtype": "torch.float32", "device": "device(type='cpu')", "size": [1000, 1000], "dynamo_hint_overrides": {}, "requires_grad": true, "stride": [1000, 1], "storage": 0, "view_func": "VIEW_FUNC", "describer_id": "ID"}, "frame_id": 2, "frame_compile_id": 0, "attempt": 1}
|
|
{"describe_source": {"describer_id": "ID", "id": 0, "source": "L['___stack0']"}, "frame_id": 2, "frame_compile_id": 0, "attempt": 1}
|
|
{"dynamo_output_graph": {"sizes": {"l_stack0_": [1000, 1000], "ones": [1000, 1000], "output": [1000, 1000], "sum_1": []}}, "frame_id": 2, "frame_compile_id": 0, "attempt": 1, "has_payload": "HASH"}
|
|
{"artifact": {"name": "before_pre_grad_graph", "encoding": "string"}, "frame_id": 2, "frame_compile_id": 0, "attempt": 1, "has_payload": "HASH"}
|
|
{"artifact": {"name": "after_pre_grad_graph", "encoding": "string"}, "frame_id": 2, "frame_compile_id": 0, "attempt": 1, "has_payload": "HASH"}
|
|
{"artifact": {"name": "aotautograd_cache_miss", "encoding": "json"}, "frame_id": 2, "frame_compile_id": 0, "attempt": 1, "has_payload": "HASH"}
|
|
{"aot_joint_graph": {}, "frame_id": 2, "frame_compile_id": 0, "attempt": 1, "has_payload": "HASH"}
|
|
{"artifact": {"name": "torch._functorch.config", "encoding": "string"}, "frame_id": 2, "frame_compile_id": 0, "attempt": 1, "has_payload": "HASH"}
|
|
{"artifact": {"name": "aot_forward_graph_fw_metadata", "encoding": "string"}, "frame_id": 2, "frame_compile_id": 0, "attempt": 1, "has_payload": "HASH"}
|
|
{"aot_forward_graph": {}, "frame_id": 2, "frame_compile_id": 0, "attempt": 1, "has_payload": "HASH"}
|
|
{"aot_backward_graph": {}, "frame_id": 2, "frame_compile_id": 0, "attempt": 1, "has_payload": "HASH"}
|
|
{"artifact": {"name": "fx_graph_runnable", "encoding": "string"}, "frame_id": 2, "frame_compile_id": 0, "attempt": 1, "has_payload": "HASH"}
|
|
{"artifact": {"name": "before_post_grad_graph", "encoding": "string"}, "frame_id": 2, "frame_compile_id": 0, "attempt": 1, "has_payload": "HASH"}
|
|
{"artifact": {"name": "after_post_grad_graph", "encoding": "string"}, "frame_id": 2, "frame_compile_id": 0, "attempt": 1, "has_payload": "HASH"}
|
|
{"inductor_output_code": {"filename": "FILENAME", "file_path": "FILENAME"}, "frame_id": 2, "frame_compile_id": 0, "attempt": 1, "has_payload": "HASH"}
|
|
{"artifact": {"name": "fx_graph_cache_miss", "encoding": "json"}, "frame_id": 2, "frame_compile_id": 0, "attempt": 1, "has_payload": "HASH"}
|
|
{"dynamo_cpp_guards_str": {}, "frame_id": 2, "frame_compile_id": 0, "attempt": 1, "has_payload": "HASH"}
|
|
{"compilation_metrics": "METRICS", "frame_id": 2, "frame_compile_id": 0, "attempt": 1}
|
|
{"dynamo_start": {"stack": "STACK"}, "frame_id": 3, "frame_compile_id": 0, "attempt": 0}
|
|
{"compilation_metrics": "METRICS", "frame_id": 3, "frame_compile_id": 0, "attempt": 0}
|
|
{"artifact": {"name": "fx_graph_runnable", "encoding": "string"}, "frame_id": 2, "frame_compile_id": 0, "attempt": 1, "has_payload": "HASH"}
|
|
{"artifact": {"name": "before_post_grad_graph", "encoding": "string"}, "frame_id": 2, "frame_compile_id": 0, "attempt": 1, "has_payload": "HASH"}
|
|
{"artifact": {"name": "after_post_grad_graph", "encoding": "string"}, "frame_id": 2, "frame_compile_id": 0, "attempt": 1, "has_payload": "HASH"}
|
|
{"inductor_output_code": {"filename": "FILENAME", "file_path": "FILENAME"}, "frame_id": 2, "frame_compile_id": 0, "attempt": 1, "has_payload": "HASH"}
|
|
{"artifact": {"name": "fx_graph_cache_miss", "encoding": "json"}, "frame_id": 2, "frame_compile_id": 0, "attempt": 1, "has_payload": "HASH"}
|
|
{"bwd_compilation_metrics": "METRICS", "frame_id": 2, "frame_compile_id": 0, "attempt": 1}
|
|
{"dynamo_start": {"stack": "STACK"}, "frame_id": 4, "frame_compile_id": 0, "attempt": 0}
|
|
{"describe_storage": {"id": 0, "describer_id": "ID", "size": 4000000}, "frame_id": 4, "frame_compile_id": 0, "attempt": 0}
|
|
{"describe_tensor": {"id": 0, "ndim": 2, "dtype": "torch.float32", "device": "device(type='cpu')", "size": [1000, 1000], "dynamo_hint_overrides": {}, "requires_grad": true, "stride": [1000, 1], "storage": 0, "view_func": "VIEW_FUNC", "describer_id": "ID"}, "frame_id": 4, "frame_compile_id": 0, "attempt": 0}
|
|
{"describe_source": {"describer_id": "ID", "id": 0, "source": "L['output']"}, "frame_id": 4, "frame_compile_id": 0, "attempt": 0}
|
|
{"compilation_metrics": "METRICS", "frame_id": 4, "frame_compile_id": 0, "attempt": 0}
|
|
""", # noqa: B950
|
|
)
|
|
|
|
self.assertParses()
|
|
|
|
@requires_tlparse
|
|
def test_dynamo_error(self):
|
|
try:
|
|
fn_opt = torch.compile(dynamo_error_fn, backend="inductor")
|
|
fn_opt(*ARGS)
|
|
except Exception:
|
|
pass
|
|
self.assertExpectedInline(
|
|
self.buffer.getvalue(),
|
|
"""\
|
|
{"dynamo_start": {"stack": "STACK"}, "frame_id": 0, "frame_compile_id": 0, "attempt": 0}
|
|
{"describe_storage": {"id": 0, "describer_id": "ID", "size": 4000000}, "frame_id": 0, "frame_compile_id": 0, "attempt": 0}
|
|
{"describe_tensor": {"id": 0, "ndim": 2, "dtype": "torch.float32", "device": "device(type='cpu')", "size": [1000, 1000], "dynamo_hint_overrides": {}, "is_leaf": true, "requires_grad": true, "stride": [1000, 1], "storage": 0, "view_func": "VIEW_FUNC", "describer_id": "ID"}, "frame_id": 0, "frame_compile_id": 0, "attempt": 0}
|
|
{"describe_source": {"describer_id": "ID", "id": 0, "source": "L['a']"}, "frame_id": 0, "frame_compile_id": 0, "attempt": 0}
|
|
{"artifact": {"name": "dynamo_error", "encoding": "string"}, "frame_id": 0, "frame_compile_id": 0, "attempt": 0, "has_payload": "HASH"}
|
|
{"compilation_metrics": "METRICS", "frame_id": 0, "frame_compile_id": 0, "attempt": 0}
|
|
""", # noqa: B950
|
|
)
|
|
|
|
self.assertParses()
|
|
|
|
@requires_tlparse
|
|
def test_inductor_error(self):
|
|
import torch._inductor.lowering
|
|
|
|
def throw(x):
|
|
raise AssertionError
|
|
|
|
# inject an error in the lowerings
|
|
dict_entries = {}
|
|
for x in list(torch._inductor.lowering.lowerings.keys()):
|
|
if "round" in x.__name__:
|
|
dict_entries[x] = throw
|
|
|
|
with unittest.mock.patch.dict(torch._inductor.lowering.lowerings, dict_entries):
|
|
try:
|
|
fn_opt = torch.compile(inductor_error_fn, backend="inductor")
|
|
fn_opt(*ARGS)
|
|
except Exception:
|
|
pass
|
|
|
|
self.assertExpectedInline(
|
|
self.buffer.getvalue(),
|
|
"""\
|
|
{"dynamo_start": {"stack": "STACK"}, "frame_id": 0, "frame_compile_id": 0, "attempt": 0}
|
|
{"describe_storage": {"id": 0, "describer_id": "ID", "size": 4000000}, "frame_id": 0, "frame_compile_id": 0, "attempt": 0}
|
|
{"describe_tensor": {"id": 0, "ndim": 2, "dtype": "torch.float32", "device": "device(type='cpu')", "size": [1000, 1000], "dynamo_hint_overrides": {}, "is_leaf": true, "requires_grad": true, "stride": [1000, 1], "storage": 0, "view_func": "VIEW_FUNC", "describer_id": "ID"}, "frame_id": 0, "frame_compile_id": 0, "attempt": 0}
|
|
{"describe_source": {"describer_id": "ID", "id": 0, "source": "L['a']"}, "frame_id": 0, "frame_compile_id": 0, "attempt": 0}
|
|
{"dynamo_output_graph": {"sizes": {"l_a_": [1000, 1000], "output": [1000, 1000]}}, "frame_id": 0, "frame_compile_id": 0, "attempt": 0, "has_payload": "HASH"}
|
|
{"artifact": {"name": "before_pre_grad_graph", "encoding": "string"}, "frame_id": 0, "frame_compile_id": 0, "attempt": 0, "has_payload": "HASH"}
|
|
{"artifact": {"name": "after_pre_grad_graph", "encoding": "string"}, "frame_id": 0, "frame_compile_id": 0, "attempt": 0, "has_payload": "HASH"}
|
|
{"artifact": {"name": "aotautograd_cache_miss", "encoding": "json"}, "frame_id": 0, "frame_compile_id": 0, "attempt": 0, "has_payload": "HASH"}
|
|
{"aot_joint_graph": {}, "frame_id": 0, "frame_compile_id": 0, "attempt": 0, "has_payload": "HASH"}
|
|
{"artifact": {"name": "torch._functorch.config", "encoding": "string"}, "frame_id": 0, "frame_compile_id": 0, "attempt": 0, "has_payload": "HASH"}
|
|
{"artifact": {"name": "aot_forward_graph_fw_metadata", "encoding": "string"}, "frame_id": 0, "frame_compile_id": 0, "attempt": 0, "has_payload": "HASH"}
|
|
{"aot_forward_graph": {}, "frame_id": 0, "frame_compile_id": 0, "attempt": 0, "has_payload": "HASH"}
|
|
{"aot_backward_graph": {}, "frame_id": 0, "frame_compile_id": 0, "attempt": 0, "has_payload": "HASH"}
|
|
{"artifact": {"name": "fx_graph_runnable", "encoding": "string"}, "frame_id": 0, "frame_compile_id": 0, "attempt": 0, "has_payload": "HASH"}
|
|
{"artifact": {"name": "before_post_grad_graph", "encoding": "string"}, "frame_id": 0, "frame_compile_id": 0, "attempt": 0, "has_payload": "HASH"}
|
|
{"artifact": {"name": "after_post_grad_graph", "encoding": "string"}, "frame_id": 0, "frame_compile_id": 0, "attempt": 0, "has_payload": "HASH"}
|
|
{"artifact": {"name": "dynamo_error", "encoding": "string"}, "frame_id": 0, "frame_compile_id": 0, "attempt": 0, "has_payload": "HASH"}
|
|
{"compilation_metrics": "METRICS", "frame_id": 0, "frame_compile_id": 0, "attempt": 0}
|
|
""", # noqa: B950
|
|
)
|
|
|
|
self.assertParses()
|
|
|
|
@requires_distributed()
|
|
@requires_cuda_and_triton
|
|
def test_ddp_graphs(self):
|
|
class ToyModel(torch.nn.Module):
|
|
def __init__(self) -> None:
|
|
super().__init__()
|
|
self.layers = torch.nn.Sequential(
|
|
torch.nn.Linear(1024, 1024),
|
|
torch.nn.Linear(1024, 1024),
|
|
)
|
|
|
|
def forward(self, x):
|
|
return self.layers(x)
|
|
|
|
# TODO: this isn't safely bracketed, will leak
|
|
os.environ["MASTER_ADDR"] = "localhost"
|
|
os.environ["MASTER_PORT"] = str(find_free_port())
|
|
dist.init_process_group("gloo", rank=0, world_size=1)
|
|
|
|
model = DDP(ToyModel().to("cuda:0"), device_ids=[0], bucket_cap_mb=4)
|
|
ddp_model = torch.compile(model, backend="inductor")
|
|
|
|
ddp_model(torch.randn(1024, 1024, device="cuda:0"))
|
|
|
|
dist.destroy_process_group()
|
|
|
|
if not torch._dynamo.config.inline_inbuilt_nn_modules:
|
|
self.assertExpectedInline(
|
|
self.buffer.getvalue(),
|
|
"""\
|
|
{"dynamo_start": {"stack": "STACK"}, "rank": 0, "frame_id": 0, "frame_compile_id": 0, "attempt": 0}
|
|
{"artifact": {"name": "dynamo_graph_break_reason", "encoding": "string"}, "rank": 0, "frame_id": 0, "frame_compile_id": 0, "attempt": 0, "has_payload": "HASH"}
|
|
{"dynamo_cpp_guards_str": {}, "rank": 0, "frame_id": 0, "frame_compile_id": 0, "attempt": 1, "has_payload": "HASH"}
|
|
{"compilation_metrics": "METRICS", "rank": 0, "frame_id": 0, "frame_compile_id": 0, "attempt": 1}
|
|
{"dynamo_start": {"stack": "STACK"}, "rank": 0, "frame_id": 1, "frame_compile_id": 0, "attempt": 0}
|
|
{"artifact": {"name": "dynamo_graph_break_reason", "encoding": "string"}, "rank": 0, "frame_id": 1, "frame_compile_id": 0, "attempt": 0, "has_payload": "HASH"}
|
|
{"dynamo_cpp_guards_str": {}, "rank": 0, "frame_id": 1, "frame_compile_id": 0, "attempt": 1, "has_payload": "HASH"}
|
|
{"compilation_metrics": "METRICS", "rank": 0, "frame_id": 1, "frame_compile_id": 0, "attempt": 1}
|
|
{"dynamo_start": {"stack": "STACK"}, "rank": 0, "frame_id": 2, "frame_compile_id": 0, "attempt": 0}
|
|
{"artifact": {"name": "dynamo_graph_break_reason", "encoding": "string"}, "rank": 0, "frame_id": 2, "frame_compile_id": 0, "attempt": 0, "has_payload": "HASH"}
|
|
{"dynamo_cpp_guards_str": {}, "rank": 0, "frame_id": 2, "frame_compile_id": 0, "attempt": 1, "has_payload": "HASH"}
|
|
{"compilation_metrics": "METRICS", "rank": 0, "frame_id": 2, "frame_compile_id": 0, "attempt": 1}
|
|
{"dynamo_start": {"stack": "STACK"}, "rank": 0, "frame_id": 3, "frame_compile_id": 0, "attempt": 0}
|
|
{"describe_storage": {"id": 0, "describer_id": "ID", "size": 4194304}, "rank": 0, "frame_id": 3, "frame_compile_id": 0, "attempt": 0}
|
|
{"describe_tensor": {"id": 0, "ndim": 2, "dtype": "torch.float32", "device": "device(type='cuda', index=0)", "size": [1024, 1024], "is_leaf": true, "stride": [1024, 1], "storage": 0, "view_func": "VIEW_FUNC", "describer_id": "ID"}, "rank": 0, "frame_id": 3, "frame_compile_id": 0, "attempt": 0}
|
|
{"describe_source": {"describer_id": "ID", "id": 0, "source": "L['x']"}, "rank": 0, "frame_id": 3, "frame_compile_id": 0, "attempt": 0}
|
|
{"dynamo_output_graph": {"sizes": {"l_x_": [1024, 1024], "l__self___layers_0": [1024, 1024], "l__self___layers_1": [1024, 1024]}}, "rank": 0, "frame_id": 3, "frame_compile_id": 0, "attempt": 0, "has_payload": "HASH"}
|
|
{"optimize_ddp_split_graph": {}, "rank": 0, "frame_id": 3, "frame_compile_id": 0, "attempt": 0, "has_payload": "HASH"}
|
|
{"optimize_ddp_split_child": {"name": "submod_0"}, "rank": 0, "frame_id": 3, "frame_compile_id": 0, "attempt": 0, "has_payload": "HASH"}
|
|
{"optimize_ddp_split_child": {"name": "submod_1"}, "rank": 0, "frame_id": 3, "frame_compile_id": 0, "attempt": 0, "has_payload": "HASH"}
|
|
{"describe_storage": {"id": 0, "describer_id": "ID", "size": 4194304}, "rank": 0, "frame_id": 3, "frame_compile_id": 0, "attempt": 0}
|
|
{"describe_tensor": {"id": 0, "ndim": 2, "dtype": "torch.float32", "device": "device(type='cuda', index=0)", "size": [1024, 1024], "is_leaf": true, "stride": [1024, 1], "storage": 0, "view_func": "VIEW_FUNC", "describer_id": "ID"}, "rank": 0, "frame_id": 3, "frame_compile_id": 0, "attempt": 0}
|
|
{"describe_source": {"describer_id": "ID", "id": 0, "source": "L['x']"}, "rank": 0, "frame_id": 3, "frame_compile_id": 0, "attempt": 0}
|
|
{"artifact": {"name": "before_pre_grad_graph", "encoding": "string"}, "rank": 0, "frame_id": 3, "frame_compile_id": 0, "attempt": 0, "has_payload": "HASH"}
|
|
{"artifact": {"name": "after_pre_grad_graph", "encoding": "string"}, "rank": 0, "frame_id": 3, "frame_compile_id": 0, "attempt": 0, "has_payload": "HASH"}
|
|
{"aot_joint_graph": {}, "rank": 0, "frame_id": 3, "frame_compile_id": 0, "attempt": 0, "has_payload": "HASH"}
|
|
{"artifact": {"name": "torch._functorch.config", "encoding": "string"}, "rank": 0, "frame_id": 3, "frame_compile_id": 0, "attempt": 0, "has_payload": "HASH"}
|
|
{"artifact": {"name": "aot_forward_graph_fw_metadata", "encoding": "string"}, "rank": 0, "frame_id": 3, "frame_compile_id": 0, "attempt": 0, "has_payload": "HASH"}
|
|
{"aot_forward_graph": {}, "rank": 0, "frame_id": 3, "frame_compile_id": 0, "attempt": 0, "has_payload": "HASH"}
|
|
{"aot_backward_graph": {}, "rank": 0, "frame_id": 3, "frame_compile_id": 0, "attempt": 0, "has_payload": "HASH"}
|
|
{"artifact": {"name": "fx_graph_runnable", "encoding": "string"}, "rank": 0, "frame_id": 3, "frame_compile_id": 0, "attempt": 0, "has_payload": "HASH"}
|
|
{"artifact": {"name": "before_post_grad_graph", "encoding": "string"}, "rank": 0, "frame_id": 3, "frame_compile_id": 0, "attempt": 0, "has_payload": "HASH"}
|
|
{"artifact": {"name": "after_post_grad_graph", "encoding": "string"}, "rank": 0, "frame_id": 3, "frame_compile_id": 0, "attempt": 0, "has_payload": "HASH"}
|
|
{"inductor_output_code": {"filename": "FILENAME", "file_path": "FILENAME"}, "rank": 0, "frame_id": 3, "frame_compile_id": 0, "attempt": 0, "has_payload": "HASH"}
|
|
{"artifact": {"name": "fx_graph_cache_miss", "encoding": "json"}, "rank": 0, "frame_id": 3, "frame_compile_id": 0, "attempt": 0, "has_payload": "HASH"}
|
|
{"artifact": {"name": "aotautograd_cache_bypass", "encoding": "json"}, "rank": 0, "frame_id": 3, "frame_compile_id": 0, "attempt": 0, "has_payload": "HASH"}
|
|
{"artifact": {"name": "before_pre_grad_graph", "encoding": "string"}, "rank": 0, "frame_id": 3, "frame_compile_id": 0, "attempt": 0, "has_payload": "HASH"}
|
|
{"artifact": {"name": "after_pre_grad_graph", "encoding": "string"}, "rank": 0, "frame_id": 3, "frame_compile_id": 0, "attempt": 0, "has_payload": "HASH"}
|
|
{"aot_joint_graph": {}, "rank": 0, "frame_id": 3, "frame_compile_id": 0, "attempt": 0, "has_payload": "HASH"}
|
|
{"artifact": {"name": "torch._functorch.config", "encoding": "string"}, "rank": 0, "frame_id": 3, "frame_compile_id": 0, "attempt": 0, "has_payload": "HASH"}
|
|
{"artifact": {"name": "aot_forward_graph_fw_metadata", "encoding": "string"}, "rank": 0, "frame_id": 3, "frame_compile_id": 0, "attempt": 0, "has_payload": "HASH"}
|
|
{"aot_forward_graph": {}, "rank": 0, "frame_id": 3, "frame_compile_id": 0, "attempt": 0, "has_payload": "HASH"}
|
|
{"aot_backward_graph": {}, "rank": 0, "frame_id": 3, "frame_compile_id": 0, "attempt": 0, "has_payload": "HASH"}
|
|
{"artifact": {"name": "fx_graph_runnable", "encoding": "string"}, "rank": 0, "frame_id": 3, "frame_compile_id": 0, "attempt": 0, "has_payload": "HASH"}
|
|
{"artifact": {"name": "before_post_grad_graph", "encoding": "string"}, "rank": 0, "frame_id": 3, "frame_compile_id": 0, "attempt": 0, "has_payload": "HASH"}
|
|
{"artifact": {"name": "after_post_grad_graph", "encoding": "string"}, "rank": 0, "frame_id": 3, "frame_compile_id": 0, "attempt": 0, "has_payload": "HASH"}
|
|
{"inductor_output_code": {"filename": "FILENAME", "file_path": "FILENAME"}, "rank": 0, "frame_id": 3, "frame_compile_id": 0, "attempt": 0, "has_payload": "HASH"}
|
|
{"artifact": {"name": "fx_graph_cache_miss", "encoding": "json"}, "rank": 0, "frame_id": 3, "frame_compile_id": 0, "attempt": 0, "has_payload": "HASH"}
|
|
{"artifact": {"name": "aotautograd_cache_bypass", "encoding": "json"}, "rank": 0, "frame_id": 3, "frame_compile_id": 0, "attempt": 0, "has_payload": "HASH"}
|
|
{"dynamo_cpp_guards_str": {}, "rank": 0, "frame_id": 3, "frame_compile_id": 0, "attempt": 0, "has_payload": "HASH"}
|
|
{"compilation_metrics": "METRICS", "rank": 0, "frame_id": 3, "frame_compile_id": 0, "attempt": 0}
|
|
""", # noqa: B950
|
|
)
|
|
else:
|
|
self.assertExpectedInline(
|
|
self.buffer.getvalue(),
|
|
"""\
|
|
{"dynamo_start": {"stack": "STACK"}, "rank": 0, "frame_id": 0, "frame_compile_id": 0, "attempt": 0}
|
|
{"artifact": {"name": "dynamo_graph_break_reason", "encoding": "string"}, "rank": 0, "frame_id": 0, "frame_compile_id": 0, "attempt": 0, "has_payload": "HASH"}
|
|
{"describe_storage": {"id": 0, "describer_id": "ID", "size": 4194304}, "rank": 0, "frame_id": 0, "frame_compile_id": 0, "attempt": 1}
|
|
{"describe_tensor": {"id": 0, "ndim": 2, "dtype": "torch.float32", "device": "device(type='cuda', index=0)", "size": [1024, 1024], "dynamo_hint_overrides": {}, "is_leaf": true, "stride": [1024, 1], "storage": 0, "view_func": "VIEW_FUNC", "describer_id": "ID"}, "rank": 0, "frame_id": 0, "frame_compile_id": 0, "attempt": 1}
|
|
{"describe_source": {"describer_id": "ID", "id": 0, "source": "L['args'][0]"}, "rank": 0, "frame_id": 0, "frame_compile_id": 0, "attempt": 1}
|
|
{"dynamo_cpp_guards_str": {}, "rank": 0, "frame_id": 0, "frame_compile_id": 0, "attempt": 1, "has_payload": "HASH"}
|
|
{"compilation_metrics": "METRICS", "rank": 0, "frame_id": 0, "frame_compile_id": 0, "attempt": 1}
|
|
{"dynamo_start": {"stack": "STACK"}, "rank": 0, "frame_id": 1, "frame_compile_id": 0, "attempt": 0}
|
|
{"artifact": {"name": "dynamo_graph_break_reason", "encoding": "string"}, "rank": 0, "frame_id": 1, "frame_compile_id": 0, "attempt": 0, "has_payload": "HASH"}
|
|
{"dynamo_cpp_guards_str": {}, "rank": 0, "frame_id": 1, "frame_compile_id": 0, "attempt": 1, "has_payload": "HASH"}
|
|
{"compilation_metrics": "METRICS", "rank": 0, "frame_id": 1, "frame_compile_id": 0, "attempt": 1}
|
|
{"dynamo_start": {"stack": "STACK"}, "rank": 0, "frame_id": 2, "frame_compile_id": 0, "attempt": 0}
|
|
{"artifact": {"name": "dynamo_graph_break_reason", "encoding": "string"}, "rank": 0, "frame_id": 2, "frame_compile_id": 0, "attempt": 0, "has_payload": "HASH"}
|
|
{"dynamo_cpp_guards_str": {}, "rank": 0, "frame_id": 2, "frame_compile_id": 0, "attempt": 1, "has_payload": "HASH"}
|
|
{"compilation_metrics": "METRICS", "rank": 0, "frame_id": 2, "frame_compile_id": 0, "attempt": 1}
|
|
{"dynamo_start": {"stack": "STACK"}, "rank": 0, "frame_id": 3, "frame_compile_id": 0, "attempt": 0}
|
|
{"compilation_metrics": "METRICS", "rank": 0, "frame_id": 3, "frame_compile_id": 0, "attempt": 0}
|
|
{"dynamo_start": {"stack": "STACK"}, "rank": 0, "frame_id": 4, "frame_compile_id": 0, "attempt": 0}
|
|
{"describe_storage": {"id": 0, "describer_id": "ID", "size": 4194304}, "rank": 0, "frame_id": 4, "frame_compile_id": 0, "attempt": 0}
|
|
{"describe_tensor": {"id": 0, "ndim": 2, "dtype": "torch.float32", "device": "device(type='cuda', index=0)", "size": [1024, 1024], "dynamo_hint_overrides": {}, "is_leaf": true, "requires_grad": true, "is_parameter": true, "stride": [1024, 1], "storage": 0, "view_func": "VIEW_FUNC", "describer_id": "ID"}, "rank": 0, "frame_id": 4, "frame_compile_id": 0, "attempt": 0}
|
|
{"describe_source": {"describer_id": "ID", "id": 0, "source": "L['self']._modules['layers']._modules['0']._parameters['weight']"}, "rank": 0, "frame_id": 4, "frame_compile_id": 0, "attempt": 0}
|
|
{"describe_storage": {"id": 1, "describer_id": "ID", "size": 4096}, "rank": 0, "frame_id": 4, "frame_compile_id": 0, "attempt": 0}
|
|
{"describe_tensor": {"id": 1, "ndim": 1, "dtype": "torch.float32", "device": "device(type='cuda', index=0)", "size": [1024], "dynamo_hint_overrides": {}, "is_leaf": true, "requires_grad": true, "is_parameter": true, "stride": [1], "storage": 1, "view_func": "VIEW_FUNC", "describer_id": "ID"}, "rank": 0, "frame_id": 4, "frame_compile_id": 0, "attempt": 0}
|
|
{"describe_source": {"describer_id": "ID", "id": 1, "source": "L['self']._modules['layers']._modules['0']._parameters['bias']"}, "rank": 0, "frame_id": 4, "frame_compile_id": 0, "attempt": 0}
|
|
{"describe_storage": {"id": 2, "describer_id": "ID", "size": 4194304}, "rank": 0, "frame_id": 4, "frame_compile_id": 0, "attempt": 0}
|
|
{"describe_tensor": {"id": 2, "ndim": 2, "dtype": "torch.float32", "device": "device(type='cuda', index=0)", "size": [1024, 1024], "dynamo_hint_overrides": {}, "is_leaf": true, "stride": [1024, 1], "storage": 2, "view_func": "VIEW_FUNC", "describer_id": "ID"}, "rank": 0, "frame_id": 4, "frame_compile_id": 0, "attempt": 0}
|
|
{"describe_source": {"describer_id": "ID", "id": 2, "source": "L['x']"}, "rank": 0, "frame_id": 4, "frame_compile_id": 0, "attempt": 0}
|
|
{"describe_storage": {"id": 3, "describer_id": "ID", "size": 4194304}, "rank": 0, "frame_id": 4, "frame_compile_id": 0, "attempt": 0}
|
|
{"describe_tensor": {"id": 8, "ndim": 2, "dtype": "torch.float32", "device": "device(type='cuda', index=0)", "size": [1024, 1024], "dynamo_hint_overrides": {}, "is_leaf": true, "requires_grad": true, "is_parameter": true, "stride": [1024, 1], "storage": 3, "view_func": "VIEW_FUNC", "describer_id": "ID"}, "rank": 0, "frame_id": 4, "frame_compile_id": 0, "attempt": 0}
|
|
{"describe_source": {"describer_id": "ID", "id": 8, "source": "L['self']._modules['layers']._modules['1']._parameters['weight']"}, "rank": 0, "frame_id": 4, "frame_compile_id": 0, "attempt": 0}
|
|
{"describe_storage": {"id": 4, "describer_id": "ID", "size": 4096}, "rank": 0, "frame_id": 4, "frame_compile_id": 0, "attempt": 0}
|
|
{"describe_tensor": {"id": 9, "ndim": 1, "dtype": "torch.float32", "device": "device(type='cuda', index=0)", "size": [1024], "dynamo_hint_overrides": {}, "is_leaf": true, "requires_grad": true, "is_parameter": true, "stride": [1], "storage": 4, "view_func": "VIEW_FUNC", "describer_id": "ID"}, "rank": 0, "frame_id": 4, "frame_compile_id": 0, "attempt": 0}
|
|
{"describe_source": {"describer_id": "ID", "id": 9, "source": "L['self']._modules['layers']._modules['1']._parameters['bias']"}, "rank": 0, "frame_id": 4, "frame_compile_id": 0, "attempt": 0}
|
|
{"dynamo_output_graph": {"sizes": {"l_self_modules_layers_modules_0_parameters_weight_": [1024, 1024], "l_self_modules_layers_modules_0_parameters_bias_": [1024], "l_x_": [1024, 1024], "l_self_modules_layers_modules_1_parameters_weight_": [1024, 1024], "l_self_modules_layers_modules_1_parameters_bias_": [1024], "input_1": [1024, 1024], "input_2": [1024, 1024]}}, "rank": 0, "frame_id": 4, "frame_compile_id": 0, "attempt": 0, "has_payload": "HASH"}
|
|
{"optimize_ddp_split_graph": {}, "rank": 0, "frame_id": 4, "frame_compile_id": 0, "attempt": 0, "has_payload": "HASH"}
|
|
{"optimize_ddp_split_child": {"name": "submod_0"}, "rank": 0, "frame_id": 4, "frame_compile_id": 0, "attempt": 0, "has_payload": "HASH"}
|
|
{"optimize_ddp_split_child": {"name": "submod_1"}, "rank": 0, "frame_id": 4, "frame_compile_id": 0, "attempt": 0, "has_payload": "HASH"}
|
|
{"describe_storage": {"id": 0, "describer_id": "ID", "size": 4194304}, "rank": 0, "frame_id": 4, "frame_compile_id": 0, "attempt": 0}
|
|
{"describe_tensor": {"id": 0, "ndim": 2, "dtype": "torch.float32", "device": "device(type='cuda', index=0)", "size": [1024, 1024], "dynamo_hint_overrides": {}, "is_leaf": true, "stride": [1024, 1], "storage": 0, "view_func": "VIEW_FUNC", "describer_id": "ID"}, "rank": 0, "frame_id": 4, "frame_compile_id": 0, "attempt": 0}
|
|
{"describe_source": {"describer_id": "ID", "id": 0, "source": "L['x']"}, "rank": 0, "frame_id": 4, "frame_compile_id": 0, "attempt": 0}
|
|
{"describe_storage": {"id": 1, "describer_id": "ID", "size": 4194304}, "rank": 0, "frame_id": 4, "frame_compile_id": 0, "attempt": 0}
|
|
{"describe_tensor": {"id": 1, "ndim": 2, "dtype": "torch.float32", "device": "device(type='cuda', index=0)", "size": [1024, 1024], "dynamo_hint_overrides": {}, "is_leaf": true, "requires_grad": true, "is_parameter": true, "stride": [1024, 1], "storage": 1, "view_func": "VIEW_FUNC", "describer_id": "ID"}, "rank": 0, "frame_id": 4, "frame_compile_id": 0, "attempt": 0}
|
|
{"describe_source": {"describer_id": "ID", "id": 1, "source": "L['self']._modules['layers']._modules['0']._parameters['weight']"}, "rank": 0, "frame_id": 4, "frame_compile_id": 0, "attempt": 0}
|
|
{"describe_storage": {"id": 2, "describer_id": "ID", "size": 4096}, "rank": 0, "frame_id": 4, "frame_compile_id": 0, "attempt": 0}
|
|
{"describe_tensor": {"id": 2, "ndim": 1, "dtype": "torch.float32", "device": "device(type='cuda', index=0)", "size": [1024], "dynamo_hint_overrides": {}, "is_leaf": true, "requires_grad": true, "is_parameter": true, "stride": [1], "storage": 2, "view_func": "VIEW_FUNC", "describer_id": "ID"}, "rank": 0, "frame_id": 4, "frame_compile_id": 0, "attempt": 0}
|
|
{"describe_source": {"describer_id": "ID", "id": 2, "source": "L['self']._modules['layers']._modules['0']._parameters['bias']"}, "rank": 0, "frame_id": 4, "frame_compile_id": 0, "attempt": 0}
|
|
{"artifact": {"name": "before_pre_grad_graph", "encoding": "string"}, "rank": 0, "frame_id": 4, "frame_compile_id": 0, "attempt": 0, "has_payload": "HASH"}
|
|
{"artifact": {"name": "after_pre_grad_graph", "encoding": "string"}, "rank": 0, "frame_id": 4, "frame_compile_id": 0, "attempt": 0, "has_payload": "HASH"}
|
|
{"artifact": {"name": "aotautograd_cache_bypass", "encoding": "json"}, "rank": 0, "frame_id": 4, "frame_compile_id": 0, "attempt": 0, "has_payload": "HASH"}
|
|
{"aot_joint_graph": {}, "rank": 0, "frame_id": 4, "frame_compile_id": 0, "attempt": 0, "has_payload": "HASH"}
|
|
{"artifact": {"name": "torch._functorch.config", "encoding": "string"}, "rank": 0, "frame_id": 4, "frame_compile_id": 0, "attempt": 0, "has_payload": "HASH"}
|
|
{"artifact": {"name": "aot_forward_graph_fw_metadata", "encoding": "string"}, "rank": 0, "frame_id": 4, "frame_compile_id": 0, "attempt": 0, "has_payload": "HASH"}
|
|
{"aot_forward_graph": {}, "rank": 0, "frame_id": 4, "frame_compile_id": 0, "attempt": 0, "has_payload": "HASH"}
|
|
{"aot_backward_graph": {}, "rank": 0, "frame_id": 4, "frame_compile_id": 0, "attempt": 0, "has_payload": "HASH"}
|
|
{"artifact": {"name": "fx_graph_runnable", "encoding": "string"}, "rank": 0, "frame_id": 4, "frame_compile_id": 0, "attempt": 0, "has_payload": "HASH"}
|
|
{"artifact": {"name": "before_post_grad_graph", "encoding": "string"}, "rank": 0, "frame_id": 4, "frame_compile_id": 0, "attempt": 0, "has_payload": "HASH"}
|
|
{"artifact": {"name": "after_post_grad_graph", "encoding": "string"}, "rank": 0, "frame_id": 4, "frame_compile_id": 0, "attempt": 0, "has_payload": "HASH"}
|
|
{"inductor_output_code": {"filename": "FILENAME", "file_path": "FILENAME"}, "rank": 0, "frame_id": 4, "frame_compile_id": 0, "attempt": 0, "has_payload": "HASH"}
|
|
{"artifact": {"name": "fx_graph_cache_miss", "encoding": "json"}, "rank": 0, "frame_id": 4, "frame_compile_id": 0, "attempt": 0, "has_payload": "HASH"}
|
|
{"describe_storage": {"id": 16, "describer_id": "ID", "size": 4194304}, "rank": 0, "frame_id": 4, "frame_compile_id": 0, "attempt": 0}
|
|
{"describe_tensor": {"id": 28, "ndim": 2, "dtype": "torch.float32", "device": "device(type='cuda', index=0)", "size": [1024, 1024], "dynamo_hint_overrides": {}, "is_leaf": true, "requires_grad": true, "is_parameter": true, "stride": [1024, 1], "storage": 16, "view_func": "VIEW_FUNC", "describer_id": "ID"}, "rank": 0, "frame_id": 4, "frame_compile_id": 0, "attempt": 0}
|
|
{"describe_source": {"describer_id": "ID", "id": 28, "source": "L['self']._modules['layers']._modules['1']._parameters['weight']"}, "rank": 0, "frame_id": 4, "frame_compile_id": 0, "attempt": 0}
|
|
{"describe_storage": {"id": 17, "describer_id": "ID", "size": 4096}, "rank": 0, "frame_id": 4, "frame_compile_id": 0, "attempt": 0}
|
|
{"describe_tensor": {"id": 29, "ndim": 1, "dtype": "torch.float32", "device": "device(type='cuda', index=0)", "size": [1024], "dynamo_hint_overrides": {}, "is_leaf": true, "requires_grad": true, "is_parameter": true, "stride": [1], "storage": 17, "view_func": "VIEW_FUNC", "describer_id": "ID"}, "rank": 0, "frame_id": 4, "frame_compile_id": 0, "attempt": 0}
|
|
{"describe_source": {"describer_id": "ID", "id": 29, "source": "L['self']._modules['layers']._modules['1']._parameters['bias']"}, "rank": 0, "frame_id": 4, "frame_compile_id": 0, "attempt": 0}
|
|
{"artifact": {"name": "before_pre_grad_graph", "encoding": "string"}, "rank": 0, "frame_id": 4, "frame_compile_id": 0, "attempt": 0, "has_payload": "HASH"}
|
|
{"artifact": {"name": "after_pre_grad_graph", "encoding": "string"}, "rank": 0, "frame_id": 4, "frame_compile_id": 0, "attempt": 0, "has_payload": "HASH"}
|
|
{"artifact": {"name": "aotautograd_cache_bypass", "encoding": "json"}, "rank": 0, "frame_id": 4, "frame_compile_id": 0, "attempt": 0, "has_payload": "HASH"}
|
|
{"aot_joint_graph": {}, "rank": 0, "frame_id": 4, "frame_compile_id": 0, "attempt": 0, "has_payload": "HASH"}
|
|
{"artifact": {"name": "torch._functorch.config", "encoding": "string"}, "rank": 0, "frame_id": 4, "frame_compile_id": 0, "attempt": 0, "has_payload": "HASH"}
|
|
{"artifact": {"name": "aot_forward_graph_fw_metadata", "encoding": "string"}, "rank": 0, "frame_id": 4, "frame_compile_id": 0, "attempt": 0, "has_payload": "HASH"}
|
|
{"aot_forward_graph": {}, "rank": 0, "frame_id": 4, "frame_compile_id": 0, "attempt": 0, "has_payload": "HASH"}
|
|
{"aot_backward_graph": {}, "rank": 0, "frame_id": 4, "frame_compile_id": 0, "attempt": 0, "has_payload": "HASH"}
|
|
{"artifact": {"name": "fx_graph_runnable", "encoding": "string"}, "rank": 0, "frame_id": 4, "frame_compile_id": 0, "attempt": 0, "has_payload": "HASH"}
|
|
{"artifact": {"name": "before_post_grad_graph", "encoding": "string"}, "rank": 0, "frame_id": 4, "frame_compile_id": 0, "attempt": 0, "has_payload": "HASH"}
|
|
{"artifact": {"name": "after_post_grad_graph", "encoding": "string"}, "rank": 0, "frame_id": 4, "frame_compile_id": 0, "attempt": 0, "has_payload": "HASH"}
|
|
{"inductor_output_code": {"filename": "FILENAME", "file_path": "FILENAME"}, "rank": 0, "frame_id": 4, "frame_compile_id": 0, "attempt": 0, "has_payload": "HASH"}
|
|
{"artifact": {"name": "fx_graph_cache_miss", "encoding": "json"}, "rank": 0, "frame_id": 4, "frame_compile_id": 0, "attempt": 0, "has_payload": "HASH"}
|
|
{"dynamo_cpp_guards_str": {}, "rank": 0, "frame_id": 4, "frame_compile_id": 0, "attempt": 0, "has_payload": "HASH"}
|
|
{"compilation_metrics": "METRICS", "rank": 0, "frame_id": 4, "frame_compile_id": 0, "attempt": 0}
|
|
""", # noqa: B950
|
|
)
|
|
|
|
self.assertParses()
|
|
|
|
@requires_tlparse
|
|
def test_graph_breaks(self):
|
|
@torch.compile(backend="inductor")
|
|
def fn(x):
|
|
torch._dynamo.graph_break()
|
|
return x + 1
|
|
|
|
fn(torch.ones(1))
|
|
|
|
self.assertExpectedInline(
|
|
self.buffer.getvalue(),
|
|
"""\
|
|
{"dynamo_start": {"stack": "STACK"}, "frame_id": 0, "frame_compile_id": 0, "attempt": 0}
|
|
{"artifact": {"name": "dynamo_graph_break_reason", "encoding": "string"}, "frame_id": 0, "frame_compile_id": 0, "attempt": 0, "has_payload": "HASH"}
|
|
{"dynamo_cpp_guards_str": {}, "frame_id": 0, "frame_compile_id": 0, "attempt": 1, "has_payload": "HASH"}
|
|
{"compilation_metrics": "METRICS", "frame_id": 0, "frame_compile_id": 0, "attempt": 1}
|
|
{"dynamo_start": {"stack": "STACK"}, "frame_id": 1, "frame_compile_id": 0, "attempt": 0}
|
|
{"describe_storage": {"id": 0, "describer_id": "ID", "size": 4}, "frame_id": 1, "frame_compile_id": 0, "attempt": 0}
|
|
{"describe_tensor": {"id": 0, "ndim": 1, "dtype": "torch.float32", "device": "device(type='cpu')", "size": [1], "dynamo_hint_overrides": {}, "is_leaf": true, "stride": [1], "storage": 0, "view_func": "VIEW_FUNC", "describer_id": "ID"}, "frame_id": 1, "frame_compile_id": 0, "attempt": 0}
|
|
{"describe_source": {"describer_id": "ID", "id": 0, "source": "L['x']"}, "frame_id": 1, "frame_compile_id": 0, "attempt": 0}
|
|
{"dynamo_output_graph": {"sizes": {"l_x_": [1], "add": [1]}}, "frame_id": 1, "frame_compile_id": 0, "attempt": 0, "has_payload": "HASH"}
|
|
{"artifact": {"name": "before_pre_grad_graph", "encoding": "string"}, "frame_id": 1, "frame_compile_id": 0, "attempt": 0, "has_payload": "HASH"}
|
|
{"artifact": {"name": "after_pre_grad_graph", "encoding": "string"}, "frame_id": 1, "frame_compile_id": 0, "attempt": 0, "has_payload": "HASH"}
|
|
{"artifact": {"name": "aotautograd_cache_miss", "encoding": "json"}, "frame_id": 1, "frame_compile_id": 0, "attempt": 0, "has_payload": "HASH"}
|
|
{"artifact": {"name": "aot_forward_graph_fw_metadata", "encoding": "string"}, "frame_id": 1, "frame_compile_id": 0, "attempt": 0, "has_payload": "HASH"}
|
|
{"aot_inference_graph": {}, "frame_id": 1, "frame_compile_id": 0, "attempt": 0, "has_payload": "HASH"}
|
|
{"artifact": {"name": "torch._functorch.config", "encoding": "string"}, "frame_id": 1, "frame_compile_id": 0, "attempt": 0, "has_payload": "HASH"}
|
|
{"artifact": {"name": "before_joint_graph", "encoding": "string"}, "frame_id": 1, "frame_compile_id": 0, "attempt": 0, "has_payload": "HASH"}
|
|
{"artifact": {"name": "after_joint_graph", "encoding": "string"}, "frame_id": 1, "frame_compile_id": 0, "attempt": 0, "has_payload": "HASH"}
|
|
{"artifact": {"name": "fx_graph_runnable", "encoding": "string"}, "frame_id": 1, "frame_compile_id": 0, "attempt": 0, "has_payload": "HASH"}
|
|
{"artifact": {"name": "before_post_grad_graph", "encoding": "string"}, "frame_id": 1, "frame_compile_id": 0, "attempt": 0, "has_payload": "HASH"}
|
|
{"artifact": {"name": "after_post_grad_graph", "encoding": "string"}, "frame_id": 1, "frame_compile_id": 0, "attempt": 0, "has_payload": "HASH"}
|
|
{"inductor_output_code": {"filename": "FILENAME", "file_path": "FILENAME"}, "frame_id": 1, "frame_compile_id": 0, "attempt": 0, "has_payload": "HASH"}
|
|
{"artifact": {"name": "fx_graph_cache_miss", "encoding": "json"}, "frame_id": 1, "frame_compile_id": 0, "attempt": 0, "has_payload": "HASH"}
|
|
{"dynamo_cpp_guards_str": {}, "frame_id": 1, "frame_compile_id": 0, "attempt": 0, "has_payload": "HASH"}
|
|
{"compilation_metrics": "METRICS", "frame_id": 1, "frame_compile_id": 0, "attempt": 0}
|
|
""", # noqa: B950
|
|
)
|
|
|
|
self.assertParses()
|
|
|
|
# TODO: bring in the trace_source tests once we start emitting bytecode
|
|
|
|
@requires_tlparse
|
|
def test_graph_sizes_dynamic(self):
|
|
def fn(a, b):
|
|
return a @ b
|
|
|
|
fn_opt = torch.compile(fn, backend="eager", dynamic=False)
|
|
fn_opt(torch.randn(10, 20), torch.randn(20, 30))
|
|
|
|
fn_opt2 = torch.compile(fn, backend="eager", dynamic=True)
|
|
fn_opt2(torch.randn(5, 10), torch.randn(10, 15))
|
|
|
|
self.assertExpectedInline(
|
|
self.buffer.getvalue(),
|
|
"""\
|
|
{"dynamo_start": {"stack": "STACK"}, "frame_id": 0, "frame_compile_id": 0, "attempt": 0}
|
|
{"describe_storage": {"id": 0, "describer_id": "ID", "size": 800}, "frame_id": 0, "frame_compile_id": 0, "attempt": 0}
|
|
{"describe_tensor": {"id": 0, "ndim": 2, "dtype": "torch.float32", "device": "device(type='cpu')", "size": [10, 20], "dynamo_hint_overrides": {}, "is_leaf": true, "stride": [20, 1], "storage": 0, "view_func": "VIEW_FUNC", "describer_id": "ID"}, "frame_id": 0, "frame_compile_id": 0, "attempt": 0}
|
|
{"describe_source": {"describer_id": "ID", "id": 0, "source": "L['a']"}, "frame_id": 0, "frame_compile_id": 0, "attempt": 0}
|
|
{"describe_storage": {"id": 1, "describer_id": "ID", "size": 2400}, "frame_id": 0, "frame_compile_id": 0, "attempt": 0}
|
|
{"describe_tensor": {"id": 1, "ndim": 2, "dtype": "torch.float32", "device": "device(type='cpu')", "size": [20, 30], "dynamo_hint_overrides": {}, "is_leaf": true, "stride": [30, 1], "storage": 1, "view_func": "VIEW_FUNC", "describer_id": "ID"}, "frame_id": 0, "frame_compile_id": 0, "attempt": 0}
|
|
{"describe_source": {"describer_id": "ID", "id": 1, "source": "L['b']"}, "frame_id": 0, "frame_compile_id": 0, "attempt": 0}
|
|
{"dynamo_output_graph": {"sizes": {"l_a_": [10, 20], "l_b_": [20, 30], "matmul": [10, 30]}}, "frame_id": 0, "frame_compile_id": 0, "attempt": 0, "has_payload": "HASH"}
|
|
{"dynamo_cpp_guards_str": {}, "frame_id": 0, "frame_compile_id": 0, "attempt": 0, "has_payload": "HASH"}
|
|
{"compilation_metrics": "METRICS", "frame_id": 0, "frame_compile_id": 0, "attempt": 0}
|
|
{"artifact": {"name": "recompile_reasons", "encoding": "json"}, "frame_id": 0, "frame_compile_id": 1, "attempt": 0, "has_payload": "HASH"}
|
|
{"dynamo_start": {"stack": "STACK"}, "frame_id": 0, "frame_compile_id": 1, "attempt": 0}
|
|
{"describe_storage": {"id": 0, "describer_id": "ID", "size": 200}, "frame_id": 0, "frame_compile_id": 1, "attempt": 0}
|
|
{"describe_tensor": {"id": 0, "ndim": 2, "dtype": "torch.float32", "device": "device(type='cpu')", "size": [5, 10], "dynamo_hint_overrides": {}, "is_leaf": true, "stride": [10, 1], "storage": 0, "view_func": "VIEW_FUNC", "describer_id": "ID"}, "frame_id": 0, "frame_compile_id": 1, "attempt": 0}
|
|
{"describe_source": {"describer_id": "ID", "id": 0, "source": "L['a']"}, "frame_id": 0, "frame_compile_id": 1, "attempt": 0}
|
|
{"create_symbol": {"symbol": "s97", "val": "5", "vr": "[2, int_oo]", "source": "L['a'].size()[0]", "user_stack": "STACK", "stack": "STACK"}, "frame_id": 0, "frame_compile_id": 1, "attempt": 0}
|
|
{"create_symbol": {"symbol": "s98", "val": "10", "vr": "[2, int_oo]", "source": "L['a'].size()[1]", "user_stack": "STACK", "stack": "STACK"}, "frame_id": 0, "frame_compile_id": 1, "attempt": 0}
|
|
{"describe_storage": {"id": 1, "describer_id": "ID", "size": 600}, "frame_id": 0, "frame_compile_id": 1, "attempt": 0}
|
|
{"describe_tensor": {"id": 1, "ndim": 2, "dtype": "torch.float32", "device": "device(type='cpu')", "size": [10, 15], "dynamo_hint_overrides": {}, "is_leaf": true, "stride": [15, 1], "storage": 1, "view_func": "VIEW_FUNC", "describer_id": "ID"}, "frame_id": 0, "frame_compile_id": 1, "attempt": 0}
|
|
{"describe_source": {"describer_id": "ID", "id": 1, "source": "L['b']"}, "frame_id": 0, "frame_compile_id": 1, "attempt": 0}
|
|
{"create_symbol": {"symbol": "s52", "val": "10", "vr": "[2, int_oo]", "source": "L['b'].size()[0]", "user_stack": "STACK", "stack": "STACK"}, "frame_id": 0, "frame_compile_id": 1, "attempt": 0}
|
|
{"create_symbol": {"symbol": "s20", "val": "15", "vr": "[2, int_oo]", "source": "L['b'].size()[1]", "user_stack": "STACK", "stack": "STACK"}, "frame_id": 0, "frame_compile_id": 1, "attempt": 0}
|
|
{"guard_added_fast": {"expr": "Eq(s98, s52)", "user_stack": "STACK", "stack": "STACK"}, "frame_id": 0, "frame_compile_id": 1, "attempt": 0}
|
|
{"dynamo_output_graph": {"sizes": {"l_a_": ["s97", "s52"], "l_b_": ["s52", "s20"], "matmul": ["s97", "s20"]}}, "frame_id": 0, "frame_compile_id": 1, "attempt": 0, "has_payload": "HASH"}
|
|
{"dynamo_cpp_guards_str": {}, "frame_id": 0, "frame_compile_id": 1, "attempt": 0, "has_payload": "HASH"}
|
|
{"compilation_metrics": "METRICS", "frame_id": 0, "frame_compile_id": 1, "attempt": 0}
|
|
""", # noqa: B950
|
|
)
|
|
|
|
self.assertParses()
|
|
|
|
@requires_tlparse
|
|
def test_guards_recompiles(self):
|
|
def fn(x, ys, zs):
|
|
return inner(x, ys, zs)
|
|
|
|
def inner(x, ys, zs):
|
|
for y, z in zip(ys, zs):
|
|
x += y * z
|
|
return x
|
|
|
|
ys = [1.0, 2.0]
|
|
zs = [3.0]
|
|
x = torch.tensor([1.0])
|
|
|
|
fn_opt = torch.compile(fn, backend="eager")
|
|
fn_opt(x, ys, zs)
|
|
fn_opt(x, ys[:1], zs)
|
|
|
|
self.assertExpectedInline(
|
|
self.buffer.getvalue(),
|
|
"""\
|
|
{"dynamo_start": {"stack": "STACK"}, "frame_id": 0, "frame_compile_id": 0, "attempt": 0}
|
|
{"describe_storage": {"id": 0, "describer_id": "ID", "size": 4}, "frame_id": 0, "frame_compile_id": 0, "attempt": 0}
|
|
{"describe_tensor": {"id": 0, "ndim": 1, "dtype": "torch.float32", "device": "device(type='cpu')", "size": [1], "dynamo_hint_overrides": {}, "is_leaf": true, "stride": [1], "storage": 0, "view_func": "VIEW_FUNC", "describer_id": "ID"}, "frame_id": 0, "frame_compile_id": 0, "attempt": 0}
|
|
{"describe_source": {"describer_id": "ID", "id": 0, "source": "L['x']"}, "frame_id": 0, "frame_compile_id": 0, "attempt": 0}
|
|
{"dynamo_output_graph": {"sizes": {"l_x_": [1], "x": [1]}}, "frame_id": 0, "frame_compile_id": 0, "attempt": 0, "has_payload": "HASH"}
|
|
{"dynamo_cpp_guards_str": {}, "frame_id": 0, "frame_compile_id": 0, "attempt": 0, "has_payload": "HASH"}
|
|
{"compilation_metrics": "METRICS", "frame_id": 0, "frame_compile_id": 0, "attempt": 0}
|
|
{"artifact": {"name": "recompile_reasons", "encoding": "json"}, "frame_id": 0, "frame_compile_id": 1, "attempt": 0, "has_payload": "HASH"}
|
|
{"dynamo_start": {"stack": "STACK"}, "frame_id": 0, "frame_compile_id": 1, "attempt": 0}
|
|
{"describe_storage": {"id": 0, "describer_id": "ID", "size": 4}, "frame_id": 0, "frame_compile_id": 1, "attempt": 0}
|
|
{"describe_tensor": {"id": 0, "ndim": 1, "dtype": "torch.float32", "device": "device(type='cpu')", "size": [1], "dynamo_hint_overrides": {}, "is_leaf": true, "stride": [1], "storage": 0, "view_func": "VIEW_FUNC", "describer_id": "ID"}, "frame_id": 0, "frame_compile_id": 1, "attempt": 0}
|
|
{"describe_source": {"describer_id": "ID", "id": 0, "source": "L['x']"}, "frame_id": 0, "frame_compile_id": 1, "attempt": 0}
|
|
{"dynamo_output_graph": {"sizes": {"l_x_": [1], "x": [1]}}, "frame_id": 0, "frame_compile_id": 1, "attempt": 0, "has_payload": "HASH"}
|
|
{"dynamo_cpp_guards_str": {}, "frame_id": 0, "frame_compile_id": 1, "attempt": 0, "has_payload": "HASH"}
|
|
{"compilation_metrics": "METRICS", "frame_id": 0, "frame_compile_id": 1, "attempt": 0}
|
|
""", # noqa: B950
|
|
)
|
|
|
|
self.assertParses()
|
|
|
|
def test_dump_file(self):
|
|
def f(x, y):
|
|
return x.add(y)
|
|
|
|
gm = fx.symbolic_trace(f)
|
|
torch.compile(gm, backend="eager")(torch.randn(3), torch.randn(3))
|
|
|
|
self.assertExpectedInline(
|
|
self.buffer.getvalue(),
|
|
"""\
|
|
{"dynamo_start": {"stack": "STACK"}, "frame_id": 0, "frame_compile_id": 0, "attempt": 0}
|
|
{"dump_file": {"name": "<eval_with_key>"}, "frame_id": 0, "frame_compile_id": 0, "attempt": 0, "has_payload": "HASH"}
|
|
|
|
|
|
|
|
def forward(self, x, y):
|
|
add = x.add(y); x = y = None
|
|
return add
|
|
|
|
{"describe_storage": {"id": 0, "describer_id": "ID", "size": 12}, "frame_id": 0, "frame_compile_id": 0, "attempt": 0}
|
|
{"describe_tensor": {"id": 0, "ndim": 1, "dtype": "torch.float32", "device": "device(type='cpu')", "size": [3], "dynamo_hint_overrides": {}, "is_leaf": true, "stride": [1], "storage": 0, "view_func": "VIEW_FUNC", "describer_id": "ID"}, "frame_id": 0, "frame_compile_id": 0, "attempt": 0}
|
|
{"describe_source": {"describer_id": "ID", "id": 0, "source": "L['x']"}, "frame_id": 0, "frame_compile_id": 0, "attempt": 0}
|
|
{"describe_storage": {"id": 1, "describer_id": "ID", "size": 12}, "frame_id": 0, "frame_compile_id": 0, "attempt": 0}
|
|
{"describe_tensor": {"id": 1, "ndim": 1, "dtype": "torch.float32", "device": "device(type='cpu')", "size": [3], "dynamo_hint_overrides": {}, "is_leaf": true, "stride": [1], "storage": 1, "view_func": "VIEW_FUNC", "describer_id": "ID"}, "frame_id": 0, "frame_compile_id": 0, "attempt": 0}
|
|
{"describe_source": {"describer_id": "ID", "id": 1, "source": "L['y']"}, "frame_id": 0, "frame_compile_id": 0, "attempt": 0}
|
|
{"dynamo_output_graph": {"sizes": {"l_x_": [3], "l_y_": [3], "add": [3]}}, "frame_id": 0, "frame_compile_id": 0, "attempt": 0, "has_payload": "HASH"}
|
|
{"dynamo_cpp_guards_str": {}, "frame_id": 0, "frame_compile_id": 0, "attempt": 0, "has_payload": "HASH"}
|
|
{"compilation_metrics": "METRICS", "frame_id": 0, "frame_compile_id": 0, "attempt": 0}
|
|
""", # noqa: B950
|
|
)
|
|
|
|
@requires_tlparse
|
|
@torch._inductor.config.patch("fx_graph_cache", True)
|
|
def test_codecache(self):
|
|
def fn(a):
|
|
return a.sin()
|
|
|
|
x = torch.tensor([1.0])
|
|
fn_opt = torch.compile(fn, backend="inductor")
|
|
fn_opt(x)
|
|
torch._dynamo.reset()
|
|
# Trigger a cache hit
|
|
fn_opt(x)
|
|
|
|
# Should print twice, including inductor_output_code
|
|
self.assertExpectedInline(
|
|
self.buffer.getvalue(),
|
|
"""\
|
|
{"dynamo_start": {"stack": "STACK"}, "frame_id": 0, "frame_compile_id": 0, "attempt": 0}
|
|
{"describe_storage": {"id": 0, "describer_id": "ID", "size": 4}, "frame_id": 0, "frame_compile_id": 0, "attempt": 0}
|
|
{"describe_tensor": {"id": 0, "ndim": 1, "dtype": "torch.float32", "device": "device(type='cpu')", "size": [1], "dynamo_hint_overrides": {}, "is_leaf": true, "stride": [1], "storage": 0, "view_func": "VIEW_FUNC", "describer_id": "ID"}, "frame_id": 0, "frame_compile_id": 0, "attempt": 0}
|
|
{"describe_source": {"describer_id": "ID", "id": 0, "source": "L['a']"}, "frame_id": 0, "frame_compile_id": 0, "attempt": 0}
|
|
{"dynamo_output_graph": {"sizes": {"l_a_": [1], "sin": [1]}}, "frame_id": 0, "frame_compile_id": 0, "attempt": 0, "has_payload": "HASH"}
|
|
{"artifact": {"name": "before_pre_grad_graph", "encoding": "string"}, "frame_id": 0, "frame_compile_id": 0, "attempt": 0, "has_payload": "HASH"}
|
|
{"artifact": {"name": "after_pre_grad_graph", "encoding": "string"}, "frame_id": 0, "frame_compile_id": 0, "attempt": 0, "has_payload": "HASH"}
|
|
{"artifact": {"name": "aotautograd_cache_miss", "encoding": "json"}, "frame_id": 0, "frame_compile_id": 0, "attempt": 0, "has_payload": "HASH"}
|
|
{"artifact": {"name": "aot_forward_graph_fw_metadata", "encoding": "string"}, "frame_id": 0, "frame_compile_id": 0, "attempt": 0, "has_payload": "HASH"}
|
|
{"aot_inference_graph": {}, "frame_id": 0, "frame_compile_id": 0, "attempt": 0, "has_payload": "HASH"}
|
|
{"artifact": {"name": "torch._functorch.config", "encoding": "string"}, "frame_id": 0, "frame_compile_id": 0, "attempt": 0, "has_payload": "HASH"}
|
|
{"artifact": {"name": "before_joint_graph", "encoding": "string"}, "frame_id": 0, "frame_compile_id": 0, "attempt": 0, "has_payload": "HASH"}
|
|
{"artifact": {"name": "after_joint_graph", "encoding": "string"}, "frame_id": 0, "frame_compile_id": 0, "attempt": 0, "has_payload": "HASH"}
|
|
{"artifact": {"name": "fx_graph_runnable", "encoding": "string"}, "frame_id": 0, "frame_compile_id": 0, "attempt": 0, "has_payload": "HASH"}
|
|
{"artifact": {"name": "before_post_grad_graph", "encoding": "string"}, "frame_id": 0, "frame_compile_id": 0, "attempt": 0, "has_payload": "HASH"}
|
|
{"artifact": {"name": "after_post_grad_graph", "encoding": "string"}, "frame_id": 0, "frame_compile_id": 0, "attempt": 0, "has_payload": "HASH"}
|
|
{"inductor_output_code": {"filename": "FILENAME", "file_path": "FILENAME"}, "frame_id": 0, "frame_compile_id": 0, "attempt": 0, "has_payload": "HASH"}
|
|
{"artifact": {"name": "fx_graph_cache_miss", "encoding": "json"}, "frame_id": 0, "frame_compile_id": 0, "attempt": 0, "has_payload": "HASH"}
|
|
{"dynamo_cpp_guards_str": {}, "frame_id": 0, "frame_compile_id": 0, "attempt": 0, "has_payload": "HASH"}
|
|
{"compilation_metrics": "METRICS", "frame_id": 0, "frame_compile_id": 0, "attempt": 0}
|
|
{"dynamo_start": {"stack": "STACK"}, "frame_id": 0, "frame_compile_id": 0, "attempt": 0}
|
|
{"describe_storage": {"id": 0, "describer_id": "ID", "size": 4}, "frame_id": 0, "frame_compile_id": 0, "attempt": 0}
|
|
{"describe_tensor": {"id": 0, "ndim": 1, "dtype": "torch.float32", "device": "device(type='cpu')", "size": [1], "dynamo_hint_overrides": {}, "is_leaf": true, "stride": [1], "storage": 0, "view_func": "VIEW_FUNC", "describer_id": "ID"}, "frame_id": 0, "frame_compile_id": 0, "attempt": 0}
|
|
{"describe_source": {"describer_id": "ID", "id": 0, "source": "L['a']"}, "frame_id": 0, "frame_compile_id": 0, "attempt": 0}
|
|
{"dynamo_output_graph": {"sizes": {"l_a_": [1], "sin": [1]}}, "frame_id": 0, "frame_compile_id": 0, "attempt": 0, "has_payload": "HASH"}
|
|
{"artifact": {"name": "before_pre_grad_graph", "encoding": "string"}, "frame_id": 0, "frame_compile_id": 0, "attempt": 0, "has_payload": "HASH"}
|
|
{"artifact": {"name": "after_pre_grad_graph", "encoding": "string"}, "frame_id": 0, "frame_compile_id": 0, "attempt": 0, "has_payload": "HASH"}
|
|
{"artifact": {"name": "aot_forward_graph_fw_metadata", "encoding": "string"}, "frame_id": 0, "frame_compile_id": 0, "attempt": 0, "has_payload": "HASH"}
|
|
{"aot_inference_graph": {}, "frame_id": 0, "frame_compile_id": 0, "attempt": 0, "has_payload": "HASH"}
|
|
{"artifact": {"name": "fx_graph_runnable", "encoding": "string"}, "frame_id": 0, "frame_compile_id": 0, "attempt": 0, "has_payload": "HASH"}
|
|
{"inductor_post_grad_graph": {}, "frame_id": 0, "frame_compile_id": 0, "attempt": 0, "has_payload": "HASH"}
|
|
{"inductor_output_code": {"filename": "FILENAME", "file_path": "FILENAME"}, "frame_id": 0, "frame_compile_id": 0, "attempt": 0, "has_payload": "HASH"}
|
|
{"artifact": {"name": "inductor_provenance_tracking_node_mappings", "encoding": "json"}, "frame_id": 0, "frame_compile_id": 0, "attempt": 0}
|
|
{"artifact": {"name": "inductor_provenance_tracking_kernel_stack_traces", "encoding": "json"}, "frame_id": 0, "frame_compile_id": 0, "attempt": 0}
|
|
{"artifact": {"name": "fx_graph_cache_hit", "encoding": "json"}, "frame_id": 0, "frame_compile_id": 0, "attempt": 0, "has_payload": "HASH"}
|
|
{"artifact": {"name": "aotautograd_cache_hit", "encoding": "json"}, "frame_id": 0, "frame_compile_id": 0, "attempt": 0, "has_payload": "HASH"}
|
|
{"dynamo_cpp_guards_str": {}, "frame_id": 0, "frame_compile_id": 0, "attempt": 0, "has_payload": "HASH"}
|
|
{"compilation_metrics": "METRICS", "frame_id": 0, "frame_compile_id": 0, "attempt": 0}
|
|
""", # noqa: B950
|
|
)
|
|
self.assertParses()
|
|
|
|
@requires_tlparse
|
|
def test_make_fx_fail_partial(self):
|
|
from torch.fx.experimental.proxy_tensor import make_fx
|
|
|
|
payload_buffer = io.StringIO()
|
|
payload_handler = logging.StreamHandler(payload_buffer)
|
|
payload_handler.setFormatter(StructuredTracePayloadFormatter())
|
|
payload_handler.addFilter(StructuredTraceTestingFilter("make_fx_fail_partial"))
|
|
trace_log.addHandler(payload_handler)
|
|
|
|
def f(x):
|
|
y = x + 1 # noqa: F841
|
|
raise RuntimeError("boo")
|
|
|
|
try:
|
|
make_fx(f)(torch.randn(2))
|
|
except RuntimeError:
|
|
pass
|
|
|
|
self.assertExpectedInline(
|
|
self.buffer.getvalue(),
|
|
"""\
|
|
{"artifact": {"name": "make_fx_fail_partial", "encoding": "string"}, "stack": "STACK", "has_payload": "HASH"}
|
|
""",
|
|
)
|
|
|
|
self.assertExpectedInline(
|
|
payload_buffer.getvalue(),
|
|
"""\
|
|
def forward(self, x_1: "f32[2][1]cpu"):
|
|
# No stacktrace found for following nodes
|
|
add: "f32[2][1]cpu" = torch.ops.aten.add.Tensor(x_1, 1); x_1 = add = None
|
|
""",
|
|
)
|
|
|
|
@requires_tlparse
|
|
@torch._inductor.config.patch("fx_graph_cache", True)
|
|
@show_chrome_events
|
|
def test_chromium_event(self):
|
|
def fn(a):
|
|
return a.sin()
|
|
|
|
x = torch.tensor([1.0])
|
|
fn_opt = torch.compile(fn, backend="inductor")
|
|
fn_opt(x)
|
|
torch._dynamo.reset()
|
|
# Trigger a cache hit
|
|
fn_opt(x)
|
|
# Should print twice, including inductor_output_code
|
|
self.assertParses()
|
|
chromium_event = (
|
|
'{"chromium_event": {}, "frame_id": 0, "frame_compile_id": 0, '
|
|
'"attempt": 0, "has_payload": "HASH"}'
|
|
)
|
|
self.assertTrue(chromium_event in self.buffer.getvalue())
|
|
|
|
@requires_tlparse
|
|
@torch._dynamo.config.patch("compiled_autograd", True)
|
|
@torch._inductor.config.patch("fx_graph_cache", True)
|
|
@show_chrome_events
|
|
def test_compiled_autograd_id(self):
|
|
def fn(a):
|
|
return a.sin().sum().backward()
|
|
|
|
x = torch.tensor([1.0], requires_grad=True)
|
|
fn_opt = torch._dynamo.optimize("inductor")(fn)
|
|
fn_opt(x)
|
|
torch._dynamo.reset()
|
|
# Trigger a cache hit
|
|
fn_opt(x)
|
|
# Should print twice, including inductor_output_code
|
|
self.assertParses()
|
|
chromium_events = [
|
|
(
|
|
'{"chromium_event": {}, "frame_id": 0, "frame_compile_id": 0, '
|
|
'"attempt": 0, "has_payload": "HASH"}'
|
|
),
|
|
(
|
|
'{"compiled_autograd_graph": {}, "compiled_autograd_id": 0, '
|
|
'"attempt": 0, "has_payload": "HASH"}'
|
|
),
|
|
(
|
|
'{"chromium_event": {}, "compiled_autograd_id": 0, "frame_id": 2, "frame_compile_id": 0, '
|
|
'"attempt": 0, "has_payload": "HASH"}'
|
|
),
|
|
]
|
|
logs = self.buffer.getvalue()
|
|
self.assertTrue(all(event in logs for event in chromium_events))
|
|
|
|
@xfailIfS390X
|
|
@requires_tlparse
|
|
@torch._dynamo.config.patch("compiled_autograd", True)
|
|
def test_compiled_autograd_attribution(self):
|
|
# multiple dynamo recompiles should still be attributed to the parent compiled autograd id
|
|
def fn():
|
|
class MySin(torch.autograd.Function):
|
|
@staticmethod
|
|
def forward(ctx, x):
|
|
ctx.save_for_backward(x)
|
|
return torch.sin(x)
|
|
|
|
@staticmethod
|
|
def backward(ctx, gO):
|
|
print("graph break")
|
|
(x,) = ctx.saved_tensors
|
|
print("graph break")
|
|
return gO * torch.cos(x)
|
|
|
|
grads = []
|
|
for i in [10, 100, 10, 15, 20, 25]:
|
|
x = torch.arange(0.0, i, requires_grad=True)
|
|
out = MySin.apply(x)
|
|
loss = out.sum()
|
|
loss.backward()
|
|
grads.append(x.grad)
|
|
|
|
return grads
|
|
|
|
fn_opt = torch.compile(fn)
|
|
fn_opt()
|
|
self.assertParses()
|
|
expected = [
|
|
'{"dynamo_start": {"stack": "STACK"}, "frame_id": 0, "frame_compile_id": 0, "attempt": 0}',
|
|
'{"dynamo_start": {"stack": "STACK"}, "frame_id": 1, "frame_compile_id": 0, "attempt": 0}',
|
|
'{"dynamo_start": {"stack": "STACK"}, "frame_id": 2, "frame_compile_id": 0, "attempt": 0}',
|
|
'{"dynamo_start": {"stack": "STACK"}, "compiled_autograd_id": 0, "frame_id": 3, "frame_compile_id": 0, "attempt": 0}',
|
|
'{"dynamo_start": {"stack": "STACK"}, "compiled_autograd_id": 0, "frame_id": 4, "frame_compile_id": 0, "attempt": 0}',
|
|
'{"dynamo_start": {"stack": "STACK"}, "compiled_autograd_id": 0, "frame_id": 5, "frame_compile_id": 0, "attempt": 0}',
|
|
'{"dynamo_start": {"stack": "STACK"}, "compiled_autograd_id": 0, "frame_id": 6, "frame_compile_id": 0, "attempt": 0}',
|
|
'{"dynamo_start": {"stack": "STACK"}, "compiled_autograd_id": 0, "frame_id": 7, "frame_compile_id": 0, "attempt": 0}',
|
|
'{"dynamo_start": {"stack": "STACK"}, "compiled_autograd_id": 0, "frame_id": 8, "frame_compile_id": 0, "attempt": 0}',
|
|
'{"dynamo_start": {"stack": "STACK"}, "compiled_autograd_id": 0, "frame_id": 9, "frame_compile_id": 0, "attempt": 0}',
|
|
'{"dynamo_start": {"stack": "STACK"}, "frame_id": 1, "frame_compile_id": 1, "attempt": 0}',
|
|
'{"dynamo_start": {"stack": "STACK"}, "compiled_autograd_id": 1, "frame_id": 6, "frame_compile_id": 1, "attempt": 0}',
|
|
'{"dynamo_start": {"stack": "STACK"}, "compiled_autograd_id": 1, "frame_id": 9, "frame_compile_id": 1, "attempt": 0}',
|
|
'{"dynamo_start": {"stack": "STACK"}, "compiled_autograd_id": 1, "frame_id": 13, "frame_compile_id": 0, "attempt": 0}',
|
|
'{"dynamo_start": {"stack": "STACK"}, "compiled_autograd_id": 1, "frame_id": 12, "frame_compile_id": 1, "attempt": 0}',
|
|
'{"dynamo_start": {"stack": "STACK"}, "compiled_autograd_id": 1, "frame_id": 13, "frame_compile_id": 1, "attempt": 0}',
|
|
]
|
|
logs = self.buffer.getvalue()
|
|
self.assertTrue(all(event in logs for event in expected))
|
|
|
|
@requires_tlparse
|
|
@show_chrome_events
|
|
def test_compiled_autograd_chromium(self):
|
|
with torch._dynamo.compiled_autograd._enable(torch.compile):
|
|
for i in [10, 100, 10, 15, 20, 25]:
|
|
x = torch.arange(0.0, i, requires_grad=True)
|
|
loss = x.sum()
|
|
loss.backward()
|
|
|
|
self.assertParses()
|
|
expected = [
|
|
'{"chromium_event": {}, "compiled_autograd_id": 0, "attempt": 0, "has_payload": "HASH"}',
|
|
'{"chromium_event": {}, "compiled_autograd_id": 0, "frame_id": 0, "frame_compile_id": 0, "attempt": 0, '
|
|
'"has_payload": "HASH"}',
|
|
'{"chromium_event": {}, "compiled_autograd_id": 0, "frame_id": 0, "frame_compile_id": 1, "attempt": 0, '
|
|
'"has_payload": "HASH"}',
|
|
]
|
|
logs = self.buffer.getvalue()
|
|
self.assertTrue(all(event in logs for event in expected))
|
|
|
|
def test_recompile_user_contexts(self):
|
|
# test that user_context is called only once per recompile
|
|
num_calls = 0
|
|
|
|
def f(x):
|
|
return x + 1
|
|
|
|
f = torch.compile(f)
|
|
|
|
def user_context() -> str:
|
|
nonlocal num_calls
|
|
num_calls += 1
|
|
return "user_context: " + str(num_calls)
|
|
|
|
torch._dynamo.register_hook_for_recompile_user_context(user_context)
|
|
|
|
for _ in range(10):
|
|
f(torch.randn(1, 5))
|
|
|
|
# first compile
|
|
self.assertEqual(num_calls, 1)
|
|
|
|
for i in range(2, 10):
|
|
f(torch.randn(i, 5))
|
|
|
|
# first compile + recompile once
|
|
self.assertEqual(num_calls, 2)
|
|
|
|
def test_recompile_user_contexts_iteration(self):
|
|
class Step:
|
|
def __init__(self):
|
|
self.step = 0
|
|
|
|
def next_step(self):
|
|
self.step += 1
|
|
|
|
step = Step()
|
|
|
|
def f(x):
|
|
return x + 1
|
|
|
|
f = torch.compile(f)
|
|
|
|
def user_context() -> str:
|
|
return "user_context: " + str(step.step)
|
|
|
|
torch._dynamo.register_hook_for_recompile_user_context(user_context)
|
|
|
|
for i in range(10):
|
|
f(torch.randn(i + 2 // 3, 5))
|
|
step.next_step()
|
|
|
|
@contextmanager
|
|
def _setup_collective_schedule_capture(self):
|
|
"""Helper to turn on and capture the 'inductor_collective_schedule' structured trace."""
|
|
payload_buffer = io.StringIO()
|
|
payload_handler = logging.StreamHandler(payload_buffer)
|
|
payload_handler.setLevel(logging.DEBUG)
|
|
payload_handler.setFormatter(StructuredTracePayloadFormatter())
|
|
payload_handler.addFilter(
|
|
StructuredTraceTestingFilter("inductor_collective_schedule")
|
|
)
|
|
trace_log.addHandler(payload_handler)
|
|
try:
|
|
yield payload_buffer
|
|
finally:
|
|
trace_log.removeHandler(payload_handler)
|
|
|
|
@requires_tlparse
|
|
def test_collective_schedule_empty(self):
|
|
"""Verify logging when no collective kernels are present (empty schedule)."""
|
|
with self._setup_collective_schedule_capture() as payload_buffer:
|
|
from torch._inductor.debug import log_collective_schedule
|
|
|
|
log_collective_schedule([])
|
|
|
|
# With no collectives, artifact should not be logged and payload should be empty
|
|
self.assertNotIn('"inductor_collective_schedule"', self.buffer.getvalue())
|
|
self.assertEqual(payload_buffer.getvalue().strip(), "")
|
|
|
|
@requires_tlparse
|
|
@requires_distributed()
|
|
@torch._inductor.config.patch("fx_graph_cache", False)
|
|
def test_collective_schedule_real(self):
|
|
"""Test collective schedule with _c10d_functional ops that work with FakeStore."""
|
|
import torch.distributed as dist
|
|
|
|
store = FakeStore()
|
|
dist.init_process_group(backend="fake", rank=0, world_size=2, store=store)
|
|
|
|
class CollectiveModule(torch.nn.Module):
|
|
def forward(self, x):
|
|
# Use _c10d_functional ops that actually trigger collective kernels
|
|
y = torch.ops._c10d_functional.all_reduce.default(x, "sum", "0")
|
|
y = torch.ops._c10d_functional.wait_tensor.default(y)
|
|
return y * 2
|
|
|
|
try:
|
|
with self._setup_collective_schedule_capture() as payload_buffer:
|
|
torch._dynamo.reset()
|
|
|
|
mod = CollectiveModule()
|
|
compiled = torch.compile(mod, backend="inductor")
|
|
|
|
compiled(torch.randn(4, 4))
|
|
|
|
# Verify collective schedule artifact was logged
|
|
self.assertIn('"inductor_collective_schedule"', self.buffer.getvalue())
|
|
|
|
payload_content = payload_buffer.getvalue().strip()
|
|
schedule = json.loads(payload_content)
|
|
self.assertIsInstance(schedule, list)
|
|
|
|
# Verify expected collective operations are present
|
|
self.assertExpectedInline(
|
|
str(schedule),
|
|
"""\
|
|
['torch.ops._c10d_functional.all_reduce_.default', 'torch.ops._c10d_functional.wait_tensor.default']\
|
|
""",
|
|
)
|
|
self.assertParses()
|
|
finally:
|
|
dist.destroy_process_group()
|
|
|
|
@contextmanager
|
|
def _setup_runtime_estimates_capture(self):
|
|
"""Helper to turn on and capture the combined 'inductor_runtime_and_tensor_meta' structured trace."""
|
|
payload_buffer = io.StringIO()
|
|
payload_handler = logging.StreamHandler(payload_buffer)
|
|
payload_handler.setLevel(logging.DEBUG)
|
|
payload_handler.setFormatter(StructuredTracePayloadFormatter())
|
|
payload_handler.addFilter(
|
|
StructuredTraceTestingFilter("inductor_runtime_and_tensor_meta")
|
|
)
|
|
trace_log.addHandler(payload_handler)
|
|
try:
|
|
yield payload_buffer
|
|
finally:
|
|
trace_log.removeHandler(payload_handler)
|
|
|
|
@requires_tlparse
|
|
@requires_distributed()
|
|
@requires_cuda_and_triton
|
|
@torch._inductor.config.patch("fx_graph_cache", False)
|
|
@torch._inductor.config.patch("log_tlparse", True)
|
|
def test_runtime_estimates_simple(self):
|
|
"""Test runtime estimates logging with simple compute and collective ops."""
|
|
import torch.distributed as dist
|
|
|
|
store = FakeStore()
|
|
dist.init_process_group(backend="fake", rank=0, world_size=2, store=store)
|
|
|
|
class SimpleModule(torch.nn.Module):
|
|
def __init__(self):
|
|
super().__init__()
|
|
self.linear = torch.nn.Linear(4, 4)
|
|
|
|
def forward(self, x):
|
|
h = self.linear(x)
|
|
h = torch.relu(h)
|
|
|
|
h = torch.ops._c10d_functional.all_reduce.default(h, "sum", "0")
|
|
h = torch.ops._c10d_functional.wait_tensor.default(h)
|
|
return h
|
|
|
|
try:
|
|
with self._setup_runtime_estimates_capture() as payload_buffer:
|
|
torch._dynamo.reset()
|
|
|
|
mod = SimpleModule().cuda()
|
|
compiled = torch.compile(mod, backend="inductor")
|
|
compiled(torch.randn(4, 4, device="cuda"))
|
|
|
|
# Verify runtime + tensor meta artifact was logged
|
|
self.assertIn(
|
|
'"inductor_runtime_and_tensor_meta"', self.buffer.getvalue()
|
|
)
|
|
|
|
payload_content = payload_buffer.getvalue().strip()
|
|
if payload_content:
|
|
data = json.loads(payload_content)
|
|
self.assertIn("ops", data)
|
|
ops = data["ops"]
|
|
|
|
# Verify runtime estimates
|
|
compute_ops = [op for op in ops if op["type"] == "compute"]
|
|
collective_ops = [op for op in ops if op["type"] == "collective"]
|
|
|
|
self.assertTrue(len(compute_ops) > 0 or len(collective_ops) > 0)
|
|
|
|
# Just check each op has an estimated runtime value (any value, including 0)
|
|
for op in ops:
|
|
self.assertIn("estimated_runtime_ns", op)
|
|
self.assertIsNotNone(op["estimated_runtime_ns"])
|
|
|
|
self.assertParses()
|
|
finally:
|
|
dist.destroy_process_group()
|
|
|
|
@requires_tlparse
|
|
@requires_distributed()
|
|
@requires_cuda_and_triton
|
|
@torch._inductor.config.patch("fx_graph_cache", False)
|
|
@torch._inductor.config.patch("log_tlparse", True)
|
|
def test_runtime_estimates_mixed(self):
|
|
"""Test runtime estimates logging with mixed compute and collective sequence."""
|
|
import torch.distributed as dist
|
|
|
|
store = FakeStore()
|
|
dist.init_process_group(backend="fake", rank=0, world_size=2, store=store)
|
|
|
|
class MixedModule(torch.nn.Module):
|
|
def __init__(self):
|
|
super().__init__()
|
|
self.norm = torch.nn.LayerNorm(4)
|
|
|
|
def forward(self, x):
|
|
h = self.norm(x)
|
|
h = torch.nn.functional.gelu(h)
|
|
|
|
h = torch.ops._c10d_functional.all_reduce.default(h, "sum", "0")
|
|
h = torch.ops._c10d_functional.wait_tensor.default(h)
|
|
|
|
h = h * 0.5
|
|
|
|
gathered = torch.ops._c10d_functional.all_gather_into_tensor.default(
|
|
h, 2, "0"
|
|
)
|
|
gathered = torch.ops._c10d_functional.wait_tensor.default(gathered)
|
|
|
|
return gathered.sum(dim=0)
|
|
|
|
try:
|
|
with self._setup_runtime_estimates_capture() as payload_buffer:
|
|
torch._dynamo.reset()
|
|
|
|
mod = MixedModule().cuda()
|
|
compiled = torch.compile(mod, backend="inductor")
|
|
compiled(torch.randn(4, 4, device="cuda"))
|
|
|
|
# Verify artifact was logged
|
|
self.assertIn(
|
|
'"inductor_runtime_and_tensor_meta"', self.buffer.getvalue()
|
|
)
|
|
|
|
payload_content = payload_buffer.getvalue().strip()
|
|
if payload_content:
|
|
data = json.loads(payload_content)
|
|
self.assertIn("ops", data)
|
|
ops = data["ops"]
|
|
|
|
# Should have both compute and collective ops
|
|
op_types = {op["type"] for op in ops}
|
|
self.assertIn("compute", op_types)
|
|
self.assertIn("collective", op_types)
|
|
|
|
# Just check each op has an estimated runtime value (any value, including 0)
|
|
for op in ops:
|
|
self.assertIn("estimated_runtime_ns", op)
|
|
self.assertIsNotNone(op["estimated_runtime_ns"])
|
|
|
|
self.assertParses()
|
|
finally:
|
|
dist.destroy_process_group()
|
|
|
|
@requires_tlparse
|
|
@requires_distributed()
|
|
@requires_cuda_and_triton
|
|
@torch._inductor.config.patch("fx_graph_cache", False)
|
|
@torch._inductor.config.patch("log_tlparse", True)
|
|
def test_tensor_metadata_logging_multiple_ops(self):
|
|
import torch.distributed as dist
|
|
|
|
store = FakeStore()
|
|
dist.init_process_group(backend="fake", rank=0, world_size=2, store=store)
|
|
|
|
class Mixed(torch.nn.Module):
|
|
def __init__(self):
|
|
super().__init__()
|
|
self.linear = torch.nn.Linear(4, 4)
|
|
|
|
def forward(self, x):
|
|
y = torch.relu(self.linear(x))
|
|
y = torch.ops._c10d_functional.all_reduce.default(y, "sum", "0")
|
|
y = torch.ops._c10d_functional.wait_tensor.default(y)
|
|
return y + 1
|
|
|
|
try:
|
|
with self._setup_runtime_estimates_capture() as payload_buffer:
|
|
torch._dynamo.reset()
|
|
mod = Mixed().cuda()
|
|
compiled = torch.compile(mod, backend="inductor")
|
|
compiled(torch.randn(4, 4, device="cuda"))
|
|
payload = payload_buffer.getvalue().strip()
|
|
if payload:
|
|
data = json.loads(payload)
|
|
types = sorted({op.get("type") for op in data.get("ops", [])})
|
|
self.assertExpectedInline(
|
|
str(types), """['collective', 'compute']"""
|
|
)
|
|
self.assertParses()
|
|
finally:
|
|
dist.destroy_process_group()
|
|
|
|
@requires_tlparse
|
|
@torch._inductor.config.patch("log_tlparse", True)
|
|
def test_tensor_metadata_logging(self):
|
|
"""Emit unified runtime+tensor-metadata artifact and assert a stable simplified JSON inline."""
|
|
with self._setup_runtime_estimates_capture() as payload_buffer:
|
|
|
|
def f(x):
|
|
y = x.transpose(0, 1)
|
|
z = y.mean(dim=0)
|
|
w = z.to(torch.float16)
|
|
return w
|
|
|
|
compiled = torch.compile(f, backend="inductor", fullgraph=True)
|
|
compiled(torch.ones(2, 3))
|
|
|
|
# Verify artifact was logged
|
|
self.assertIn('"inductor_runtime_and_tensor_meta"', self.buffer.getvalue())
|
|
|
|
payload = payload_buffer.getvalue().strip()
|
|
if payload:
|
|
data = json.loads(payload)
|
|
ops = data.get("ops", [])
|
|
|
|
simplified_ops = []
|
|
for op in ops:
|
|
outs = [
|
|
{
|
|
"shape": out.get("shape", []),
|
|
"stride": out.get("stride", []),
|
|
"dtype": out.get("dtype", None),
|
|
}
|
|
for out in op.get("outputs", [])
|
|
]
|
|
if outs:
|
|
simplified_ops.append(
|
|
{
|
|
"type": op.get("type", ""),
|
|
"outputs": outs,
|
|
}
|
|
)
|
|
|
|
self.assertExpectedInline(
|
|
{"ops": simplified_ops[-1:]} if simplified_ops else {"ops": []},
|
|
"""{'ops': [{'type': 'compute', 'outputs': [{'shape': [2], 'stride': [1], 'dtype': 'float16'}]}]}""",
|
|
)
|
|
|
|
self.assertParses()
|
|
|
|
@requires_tlparse
|
|
@torch._inductor.config.patch("log_tlparse", True)
|
|
def test_tensor_metadata_logging_dynamic_shapes(self):
|
|
"""Same as test_tensor_metadata_logging, but with dynamic shapes enabled to cover to_size_hints."""
|
|
with self._setup_runtime_estimates_capture() as payload_buffer:
|
|
|
|
def f(x):
|
|
y = x.transpose(0, 1)
|
|
z = y.mean(dim=0)
|
|
w = z.to(torch.float16)
|
|
return w
|
|
|
|
compiled = torch.compile(f, backend="inductor", dynamic=True)
|
|
compiled(torch.ones(2, 3))
|
|
|
|
# Verify artifact was logged
|
|
self.assertIn('"inductor_runtime_and_tensor_meta"', self.buffer.getvalue())
|
|
|
|
payload = payload_buffer.getvalue().strip()
|
|
if payload:
|
|
data = json.loads(payload)
|
|
ops = data.get("ops", [])
|
|
|
|
simplified_ops = []
|
|
for op in ops:
|
|
outs = [
|
|
{
|
|
"shape": out.get("shape", []),
|
|
"stride": out.get("stride", []),
|
|
"dtype": out.get("dtype", None),
|
|
}
|
|
for out in op.get("outputs", [])
|
|
]
|
|
if outs:
|
|
simplified_ops.append(
|
|
{
|
|
"type": op.get("type", ""),
|
|
"outputs": outs,
|
|
}
|
|
)
|
|
|
|
self.assertExpectedInline(
|
|
{"ops": simplified_ops[-1:]} if simplified_ops else {"ops": []},
|
|
(
|
|
"{'ops': [{'type': 'compute', 'outputs': ["
|
|
"{'shape': [2], 'stride': [1], 'dtype': 'float32'}, "
|
|
"{'shape': [2], 'stride': [1], 'dtype': 'float16'}]}]}"
|
|
),
|
|
)
|
|
|
|
self.assertParses()
|
|
|
|
@contextmanager
|
|
def _setup_graph_execution_capture(self):
|
|
"""Helper to capture the 'graph_execution' structured trace."""
|
|
payload_buffer = io.StringIO()
|
|
payload_handler = logging.StreamHandler(payload_buffer)
|
|
payload_handler.setLevel(logging.DEBUG)
|
|
payload_handler.setFormatter(StructuredTracePayloadFormatter())
|
|
payload_handler.addFilter(StructuredTraceTestingFilter("graph_execution"))
|
|
trace_log.addHandler(payload_handler)
|
|
try:
|
|
yield payload_buffer
|
|
finally:
|
|
trace_log.removeHandler(payload_handler)
|
|
|
|
@requires_tlparse
|
|
@torch._inductor.config.patch(force_disable_caches=True)
|
|
def test_graph_execution_order(self):
|
|
"""Verify graph execution order is aggregated into a single artifact."""
|
|
torch._dynamo.reset()
|
|
with self._setup_graph_execution_capture() as payload_buffer:
|
|
|
|
def fn(x):
|
|
y = x + 1
|
|
torch._dynamo.graph_break()
|
|
return y + 2
|
|
|
|
compiled = torch.compile(fn, backend="inductor")
|
|
from torch._inductor.debug import record_and_log_graph_execution_order
|
|
|
|
with record_and_log_graph_execution_order():
|
|
compiled(torch.randn(1))
|
|
|
|
payload_content = payload_buffer.getvalue().strip()
|
|
payload = json.loads(payload_content)
|
|
executions = payload["graph_execution_order"]
|
|
self.assertTrue(all(isinstance(e["compile_id"], str) for e in executions))
|
|
self.assertExpectedInline(
|
|
json.dumps(payload),
|
|
"""{"graph_execution_order": [{"compile_id": "0/0"}, {"compile_id": "1/0"}]}""",
|
|
)
|
|
self.assertParses()
|
|
|
|
|
|
if __name__ == "__main__":
|
|
from torch._dynamo.test_case import run_tests
|
|
|
|
run_tests()
|