Files
pytorch/test/dynamo/test_aot_autograd.py

1726 lines
60 KiB
Python

# Owner(s): ["module: dynamo"]
import copy
import re
import unittest
from textwrap import dedent
from unittest.mock import patch
import torch
import torch._dynamo
import torch._dynamo.test_case
import torch._inductor.test_case
import torch.fx.traceback as fx_traceback
import torch.utils._pytree as pytree
from torch._dynamo.testing import (
CompileCounter,
CompileCounterWithBackend,
expectedFailureDynamic,
rand_strided,
)
from torch._functorch.aot_autograd import _aot_export_function, create_functional_call
from torch._guards import CompileContext, StorageOverlap, TracingContext
from torch._subclasses.fake_tensor import FakeTensorMode
from torch.fx.experimental.proxy_tensor import make_fx
from torch.profiler import profile
from torch.testing import FileCheck
from torch.testing._internal.common_utils import compare_equal_outs_and_grads
def maybe_dupe_op(x):
y = x + 1
z = x + 2
if x.numel() < 5:
return y, y
else:
return y, z
def is_dynamic_shape_test(test_name):
return test_name.endswith("_dynamic_shapes")
aten = torch.ops.aten
lib = torch.library.Library("custom", "DEF") # noqa: TOR901
lib.define("maybe_dupe_op(Tensor a) -> (Tensor, Tensor)")
lib.impl("maybe_dupe_op", maybe_dupe_op, "CPU")
lib.impl("maybe_dupe_op", maybe_dupe_op, "Meta")
class AotAutogradFallbackTests(torch._inductor.test_case.TestCase):
def test_LSTM(self):
# https://github.com/pytorch/torchdynamo/issues/1147
class Repro(torch.nn.Module):
def __init__(self) -> None:
super().__init__()
self.self_mod_model_lstm_lstm = torch.nn.LSTM(
64, 64, num_layers=2, bidirectional=True
)
def forward(self, permute: torch.Tensor):
self_mod_model_lstm_lstm = self.self_mod_model_lstm_lstm(permute)
return (self_mod_model_lstm_lstm,)
mod = Repro()
aot_mod = torch.compile(mod, backend="aot_eager")
args = [((92, 4, 64), (1, 5888, 92), torch.float32, "cpu", False)]
args = [
rand_strided(sh, st, dt, dev).requires_grad_(rg)
for (sh, st, dt, dev, rg) in args
]
eager_result = mod(*args)
aot_result = aot_mod(*args)
self.assertTrue(torch._dynamo.testing.same(eager_result, aot_result))
def test_mutation(self):
# https://github.com/pytorch/torchdynamo/issues/1301
def fn(param, y):
prev_grad = torch.is_grad_enabled()
try:
torch.set_grad_enabled(False)
param.add_(y)
finally:
torch.set_grad_enabled(prev_grad)
return y
y = torch.randn(4)
x = torch.nn.Parameter(torch.randn(4))
aot_fn = torch.compile(fn, backend="aot_eager")
# This should not error: we mutated an autograd leaf under no_grad mode.
aot_fn(x, y)
def test_mutation1(self):
def fn(_stack0: torch.Tensor, diagonal_chunked_attention_scores: torch.Tensor):
getitem = diagonal_chunked_attention_scores[
(
slice(None, None, None),
slice(None, None, None),
slice(None, 256, None),
slice(None, 257, None),
)
]
_stack0[
(
slice(None, None, None),
slice(None, -1, None),
slice(None, None, None),
slice(256, None, None),
)
] = getitem
view = _stack0.view(1, 12, 1024, 513)
return (view,)
x = torch.randn(torch.Size([12, 4, 256, 513]))
y = torch.randn(torch.Size([12, 3, 512, 513]))
aot_fn = torch.compile(fn, backend="aot_eager")
aot_fn(x, y)
def test_negative_testing_mutation(self):
def fn(_stack0: torch.Tensor, diagonal_chunked_attention_scores: torch.Tensor):
getitem = diagonal_chunked_attention_scores[
(
slice(None, None, None),
slice(None, None, None),
slice(None, 256, None),
slice(None, 257, None),
)
]
_stack0 = torch.sin(_stack0)
_stack0[
(
slice(None, None, None),
slice(None, -1, None),
slice(None, None, None),
slice(256, None, None),
)
] = getitem
view = _stack0.view(1, 12, 1024, 513)
return (view,)
x = torch.randn(torch.Size([12, 4, 256, 513]))
y = torch.randn(torch.Size([12, 3, 512, 513]))
aot_fn = torch.compile(fn, backend="aot_eager")
aot_fn(x, y)
def test_negative_testing(self):
def fn(x, y):
return torch.sin(x).add_(y)
y = torch.randn(4)
x = torch.randn(4)
aot_fn = torch.compile(fn, backend="aot_eager")
aot_fn(x, y)
def test_call_fn_with_non_const_inputs_aot_safe(self):
class ModuleSpecialFwd(torch.nn.Module):
def __init__(self) -> None:
super().__init__()
self.conv = torch.nn.Conv2d(
in_channels=3, out_channels=20, kernel_size=(5, 5)
)
def _conv_forward(self, x):
return self.conv._conv_forward(x, self.conv.weight, self.conv.bias)
def forward(self, x):
return self._conv_forward(x)
# Init mod
mod = ModuleSpecialFwd()
rx = torch.randn([3, 10, 10])
# Run it for real
real = mod(rx)
# Run it in export
graph, _ = torch._dynamo.export(mod)(rx)
# Run exported graph with AOT
self.assertTrue(torch._dynamo.testing.same(real, graph(rx)))
aot_fn = torch.compile(graph, backend="aot_eager")
aot_fn(rx)
def test_call_fn_with_non_const_inputs_aot_unsafe(self):
class ModuleSpecialFwd(torch.nn.Module):
def _some_bad_fwd(self, param, y):
prev_grad = torch.is_grad_enabled()
try:
torch.set_grad_enabled(False)
param.add_(y)
finally:
torch.set_grad_enabled(prev_grad)
return y
def forward(self, x, y):
return self._some_bad_fwd(x, y)
# Init mod
mod = ModuleSpecialFwd()
x = torch.nn.Parameter(torch.randn(4))
y = torch.randn([4])
# Run it for real
real = mod(x, y)
# Run it in export
graph, _ = torch._dynamo.export(mod)(x, y)
# Assert equal
self.assertTrue(torch._dynamo.testing.same(real, graph(x, y)))
# Run exported graph with AOT
aot_fn = torch.compile(graph, backend="aot_eager")
# This should not error: we mutated an autograd leaf under no_grad mode.
aot_fn(x, y)
def test_call_fn_with_non_const_inputs_aot_unsafe_control_flow(self):
class ModuleSpecialFwd(torch.nn.Module):
def _some_bad_fwd(self, param, y):
if y[0][0] < 3:
return y + param
return param * y
def forward(self, x, y):
a = x * y
a = self._some_bad_fwd(a, a)
b = x + y
return a * b
# Init mod
mod = ModuleSpecialFwd()
x = torch.nn.Parameter(torch.randn([2, 2]))
y = torch.randn([2, 2])
# Run it for real
real = mod(x, y)
# Run it through optimize, with our capturing fn
gms = []
counter = CompileCounter()
def capturing_fn(gm, inputs):
nonlocal gms
gms.append(gm)
return counter(gm, inputs)
optimized_mod = torch.compile(mod, backend=capturing_fn)
# Assert equal
self.assertTrue(torch._dynamo.testing.same(real, optimized_mod(x, y)))
# Uncomment to reproduce commented out graphs below.
# for gm in gms:
# print("GM CODE", gm.code)
self.assertEqual(counter.frame_count, 4)
self.assertEqual(counter.op_count, 7)
# Graph 1
# def forward(self, x : torch.nn.parameter.Parameter, y : torch.Tensor):
# mul = x * y; x = y = None
# return (mul,)
# BREAK
# Graph 2
# def forward(self, y : torch.Tensor):
# getitem = y[0]; y = None
# getitem_1 = getitem[0]; getitem = None
# lt = getitem_1 < 3; getitem_1 = None
# return (lt,)
# BREAK
# Graph 3
# def forward(self, param : torch.Tensor, y : torch.Tensor):
# add = y + param; y = param = None
# return (add,)
# BREAK
# Graph 4
# def forward(self, _stack0 : torch.Tensor, x : torch.nn.parameter.Parameter, y : torch.Tensor):
# add = x + y; x = y = None
# mul = _stack0 * add; _stack0 = add = None
# return (mul,)
# Run fn with AOT
torch._dynamo.reset()
aot_fn = torch.compile(optimized_mod, backend="aot_eager")
aot_fn(x, y)
# Note: Dynamo recompilation guarding invalid grad
#
# This test is a spiritual equivalent to test_invalid_requires_grad_fake in test_autodispatch.py
# The point of this test is to invoke aot_autograd in a way that would normally trigger an assertion
# (This is what test_invalid_requires_grad_fake) does. However, the point of this test is to prove
# that we do not hit this assertion, as dynamo recompiles correctly and protects this condition.
#
# Subnote: The reason for us having test_invalid_requires_grad_fake utilizing fake tensors
# is because dynamo sends fake tensors down to aot_autograd.
@patch("torch._functorch.config.debug_assert", True)
def test_requires_grad_fake_via_dynamo_recompiles(self):
class F(torch.nn.Module):
def forward(self, x, y):
return (x + y,)
x = torch.randn(3, 3, requires_grad=True)
y = torch.randn(3, 3, requires_grad=True)
z = torch.randn(3, 3, requires_grad=False)
cc = torch._dynamo.testing.CompileCounterWithBackend("aot_eager")
failure_reason = None
def guard_fail_fn(failure):
nonlocal failure_reason
failure_reason = failure[0]
fxy = torch._dynamo.optimize(cc, guard_fail_fn=guard_fail_fn)(F())
compare_equal_outs_and_grads(self, F(), fxy, (x, y))
compare_equal_outs_and_grads(self, F(), fxy, (x, z))
self.assertIn(
"""tensor 'y' requires_grad mismatch. expected requires_grad=1""",
failure_reason,
)
# Reset failure reason
failure_reason = None
self.assertEqual(cc.frame_count, 2)
torch._dynamo.reset() # for new backend
cc = torch._dynamo.testing.CompileCounterWithBackend("aot_eager")
fxz = torch._dynamo.optimize(cc, guard_fail_fn=guard_fail_fn)(F())
compare_equal_outs_and_grads(self, F(), fxz, (x, z))
compare_equal_outs_and_grads(self, F(), fxz, (x, z))
self.assertEqual(cc.frame_count, 1)
self.assertTrue(failure_reason is None)
def test_double_backward_errors(self):
# Remove this test after we get double backward to actually work
for grad_output in (torch.tensor(1.0, requires_grad=True), None):
x = torch.tensor(1.0, requires_grad=True)
err = "torch.compile with aot_autograd does not currently support double backward"
# The following cases should be equivalent:
# (1) double backward entirely inside compiled function
def f1(x):
y = x.sin().exp()
(gx,) = torch.autograd.grad(
y, x, create_graph=True, grad_outputs=grad_output
)
torch.autograd.grad(gx, x)
return gx
compiled_f1 = torch.compile(backend="aot_eager")(f1)
f1(x)
with self.assertRaisesRegex(RuntimeError, err):
compiled_f1(x)
# (2) the second half of double backward outside compiled function
def f2(x):
y = x.sin().exp()
(gx,) = torch.autograd.grad(
y, x, create_graph=True, grad_outputs=grad_output
)
return gx
compiled_f2 = torch.compile(backend="aot_eager")(f2)
gx = compiled_f2(x)
with self.assertRaisesRegex(RuntimeError, err):
torch.autograd.grad(gx, x)
# (3) double backward entirely outside compiled function
def f3(x):
y = x.sin().exp()
return y
compiled_f3 = torch.compile(backend="aot_eager")(f3)
y = compiled_f3(x)
(gx,) = torch.autograd.grad(
y, x, create_graph=True, grad_outputs=grad_output
)
with self.assertRaisesRegex(RuntimeError, err):
torch.autograd.grad(gx, x)
# create_graph=False
def f4(x):
y = x.sin().exp()
return y
compiled_f4 = torch.compile(backend="aot_eager")(f4)
x = torch.tensor(1.0, requires_grad=True)
y = compiled_f4(x)
(gx,) = torch.autograd.grad(y, x, create_graph=False, grad_outputs=grad_output)
@patch("torch._functorch.config.debug_assert", True)
def test_arg_dupe_via_dynamo_recompiles(self):
class F(torch.nn.Module):
def forward(self, x, y):
x = x.trunc_()
y = y.trunc_()
return (x + y,)
x = torch.randn(3, 3, requires_grad=True)
x1, x2, x3, x4 = x.clone(), x.clone(), x.clone(), x.clone()
y = torch.randn(3, 3, requires_grad=True)
y1, y2, y4 = y.clone(), y.clone(), y.clone()
cc = torch._dynamo.testing.CompileCounterWithBackend("aot_eager")
failure_reason = None
def guard_fail_fn(failure):
nonlocal failure_reason
failure_reason = failure[0]
fxy = torch._dynamo.optimize(cc, guard_fail_fn=guard_fail_fn)(F())
# Note: to prevent a recompilation between the two calls,
# we need to clone x and y on each use.
# fxy mutates the input's metadata, so otherwise dynamo will end up recompiling.
fxy(x1, y1)
fxy(x2, y2)
self.assertTrue(failure_reason is None)
# Reset failure reason
failure_reason = None
self.assertEqual(cc.frame_count, 1)
torch._dynamo.reset() # for new backend
cc = torch._dynamo.testing.CompileCounterWithBackend("aot_eager")
fxx = torch._dynamo.optimize(cc, guard_fail_fn=guard_fail_fn)(F())
fxx(x3, x3)
fxx(x4, y4)
self.assertEqual(cc.frame_count, 2)
self.assertIn("""x is y""", failure_reason)
@patch("torch._functorch.config.debug_assert", True)
def test_arg_dupe_via_dynamo_recompiles_many_args_param_non_tensor_arg(self):
class F(torch.nn.Module):
def __init__(self) -> None:
super().__init__()
self.mean = torch.nn.Parameter(torch.randn(3, 3))
def forward(self, a, b, e, f):
a.trunc_()
b.trunc_()
return (a + b + self.mean) * e * f
a = torch.randn(3, 3, requires_grad=True)
b = torch.randn(3, 3, requires_grad=True)
a1, a2 = a.clone(), a.clone()
_, b2 = b.clone(), b.clone()
failure_reason = None
def guard_fail_fn(failure):
nonlocal failure_reason
failure_reason = failure[0]
self.assertTrue(failure_reason is None)
cc = torch._dynamo.testing.CompileCounterWithBackend("aot_eager")
f = torch._dynamo.optimize(cc, guard_fail_fn=guard_fail_fn)(F())
f(a1, a1, 2, 2)
f(a2, b2, 2, 2)
self.assertEqual(cc.frame_count, 2)
self.assertIn(
"""a is b""",
failure_reason,
)
torch._dynamo.reset()
cc = torch._dynamo.testing.CompileCounterWithBackend("aot_eager")
c = torch.randn(3, 3, requires_grad=True)
d = torch.randn(3, 3, requires_grad=True)
c3, c4 = c.clone(), c.clone()
_, d4 = d.clone(), d.clone()
f = torch._dynamo.optimize(cc, guard_fail_fn=guard_fail_fn)(F())
f(c3, c3, 3, 3)
f(c4, d4, 3, 3)
self.assertEqual(cc.frame_count, 2)
self.assertIn("""a is b""", failure_reason)
@patch("torch._functorch.config.debug_assert", True)
def test_arg_dupe_via_dynamo_recompiles_many_with_global(self):
z = None
class F(torch.nn.Module):
def __init__(self) -> None:
super().__init__()
self.mean = torch.nn.Parameter(torch.randn(3, 3))
def forward(self, a, b, e, f):
a.trunc_()
b.trunc_()
return (a + b + z + self.mean) * e * f
a = torch.randn(3, 3, requires_grad=True)
b = torch.randn(3, 3, requires_grad=True)
z = a
a1, a2 = a.clone(), a.clone()
_, b2 = b.clone(), b.clone()
failure_reason = None
def guard_fail_fn(failure):
nonlocal failure_reason
failure_reason = failure[0]
self.assertTrue(failure_reason is None)
cc = torch._dynamo.testing.CompileCounterWithBackend("aot_eager")
f = torch._dynamo.optimize(cc, guard_fail_fn=guard_fail_fn)(F())
f(a1, a1, 2, 2)
f(a2, b2, 2, 2)
self.assertEqual(cc.frame_count, 2)
self.assertIn(
"""a is b""",
failure_reason,
)
@patch("torch._functorch.config.debug_assert", True)
def test_arg_dupe_via_dynamo_recompiles_many_args_param_non_tensor_arg_list(self):
class F(torch.nn.Module):
def __init__(self) -> None:
super().__init__()
self.mean = torch.nn.Parameter(torch.randn(3, 3))
def forward(self, e, f, a, b):
a.trunc_()
b.trunc_()
return (a + b + self.mean) * e[0] * f[0]
a = torch.randn(3, 3, requires_grad=True)
b = torch.randn(3, 3, requires_grad=True)
a1, a2 = a.clone(), a.clone()
_, b2 = b.clone(), b.clone()
failure_reason = None
def guard_fail_fn(failure):
nonlocal failure_reason
failure_reason = failure[0]
self.assertTrue(failure_reason is None)
cc = torch._dynamo.testing.CompileCounterWithBackend("aot_eager")
f = torch._dynamo.optimize(cc, guard_fail_fn=guard_fail_fn)(F())
f([3, 2, 1], [4, 5, 6], a1, a1)
f([3, 2, 1], [4, 5, 6], a2, b2)
self.assertEqual(cc.frame_count, 2)
self.assertIn(
"""a is b""",
failure_reason,
)
torch._dynamo.reset()
cc = torch._dynamo.testing.CompileCounterWithBackend("aot_eager")
c = torch.randn(3, 3, requires_grad=True)
d = torch.randn(3, 3, requires_grad=True)
c3, c4 = c.clone(), c.clone()
_, d4 = d.clone(), d.clone()
f = torch._dynamo.optimize(cc, guard_fail_fn=guard_fail_fn)(F())
f([3, 2, 1], [4, 5, 6], c3, c3)
f([3, 2, 1], [4, 5, 6], c4, d4)
self.assertEqual(cc.frame_count, 2)
@patch("torch._functorch.config.debug_assert", True)
def test_arg_dupe_via_dynamo_recompiles_many_args_param(self):
class F(torch.nn.Module):
def __init__(self) -> None:
super().__init__()
self.mean = torch.nn.Parameter(torch.randn(3, 3))
def forward(self, a, b):
a.trunc_()
b.trunc_()
return a + b + self.mean
a = torch.randn(3, 3, requires_grad=True)
b = torch.randn(3, 3, requires_grad=True)
a1, a2 = a.clone(), a.clone()
_, b2 = b.clone(), b.clone()
failure_reason = None
def guard_fail_fn(failure):
nonlocal failure_reason
failure_reason = failure[0]
self.assertTrue(failure_reason is None)
cc = torch._dynamo.testing.CompileCounterWithBackend("aot_eager")
f = torch._dynamo.optimize(cc, guard_fail_fn=guard_fail_fn)(F())
f(a1, a1)
f(a2, b2)
self.assertEqual(cc.frame_count, 2)
self.assertIn(
"""a is b""",
failure_reason,
)
torch._dynamo.reset()
cc = torch._dynamo.testing.CompileCounterWithBackend("aot_eager")
c = torch.randn(3, 3, requires_grad=True)
d = torch.randn(3, 3, requires_grad=True)
c3, c4 = c.clone(), c.clone()
_, d4 = d.clone(), d.clone()
f = torch._dynamo.optimize(cc, guard_fail_fn=guard_fail_fn)(F())
f(c3, c3)
f(c4, d4)
self.assertEqual(cc.frame_count, 2)
self.assertIn("""a is b""", failure_reason)
@patch("torch._functorch.config.debug_assert", True)
def test_arg_dupe_via_dynamo_recompiles_many_args(self):
class F(torch.nn.Module):
def forward(self, a, b, c, d):
a.trunc_()
b.trunc_()
c.trunc_()
d.trunc_()
return (a + b + c + d,)
a = torch.randn(3, 3, requires_grad=True)
b = torch.randn(3, 3, requires_grad=True)
a1, a2, a3, a4 = a.clone(), a.clone(), a.clone(), a.clone()
_, b2, b3, b4 = b.clone(), b.clone(), b.clone(), b.clone()
failure_reason = None
def guard_fail_fn(failure):
nonlocal failure_reason
failure_reason = failure[0]
self.assertTrue(failure_reason is None)
cc = torch._dynamo.testing.CompileCounterWithBackend("aot_eager")
f = torch._dynamo.optimize(cc, guard_fail_fn=guard_fail_fn)(F())
f(a1, a1, a1, a1)
f(a2, b2, b2, b2)
self.assertEqual(cc.frame_count, 2)
self.assertIn(
"""a is b""",
failure_reason,
)
torch._dynamo.reset()
cc = torch._dynamo.testing.CompileCounterWithBackend("aot_eager")
c = torch.randn(3, 3, requires_grad=True)
d = torch.randn(3, 3, requires_grad=True)
c3, c4 = c.clone(), c.clone()
_, d4 = d.clone(), d.clone()
f = torch._dynamo.optimize(cc, guard_fail_fn=guard_fail_fn)(F())
f(a3, b3, c3, c3)
f(a4, b4, c4, d4)
self.assertEqual(cc.frame_count, 2)
self.assertIn("""c is d""", failure_reason)
def test_alias_inputs(self):
def fn():
a = torch.tensor([1])
a = a[0:1]
b = a.squeeze()
a[0] = 0
if a[0] < 1e5:
pass
a[0] = 2
return b
ref_output = fn()
aot_fn = torch.compile(fn, backend="aot_eager")
actual_output = aot_fn()
self.assertEqual(ref_output, actual_output)
def test_grad_inputs_alias_inputs(self):
class Test(torch.autograd.Function):
@staticmethod
def forward(ctx, x, y):
ctx.save_for_backward(x)
return y
@staticmethod
def backward(ctx, grad):
(x,) = ctx.saved_tensors
return x, grad
def fn(x, y):
return Test.apply(x, y)
x = torch.ones(1, requires_grad=True)
y = torch.ones(1, requires_grad=True)
compiled_fn = torch.compile(fn, backend="aot_eager")
out = compiled_fn(x, y)
out.sum().backward()
def test_joint_custom_pass(self):
is_called = False
def joint_custom_pass(joint_gm: torch.fx.GraphModule, joint_inputs):
nonlocal is_called
is_called = True
self.assertTrue(isinstance(joint_gm, torch.fx.GraphModule))
self.assertTrue(isinstance(joint_inputs, tuple))
# first input is list of primals
self.assertTrue(isinstance(joint_inputs[0], list))
# second input is list of tangents
self.assertTrue(isinstance(joint_inputs[1], list))
return joint_gm
class M(torch.nn.Module):
def forward(self, x):
return x.sin()
x = torch.randn(10, requires_grad=False)
compiled_fn = torch.compile(M(), backend="aot_eager")
with torch._functorch.config.patch("joint_custom_pass", joint_custom_pass):
_ = compiled_fn(x)
# x doesn't require grad, shouldn't trigger joint graph compiler
self.assertFalse(is_called)
y = torch.randn(10, requires_grad=True)
with torch._functorch.config.patch("joint_custom_pass", joint_custom_pass):
out = compiled_fn(y)
# y requires grad, should trigger joint graph compiler
self.assertTrue(is_called)
out.sum().backward()
@expectedFailureDynamic # https://github.com/pytorch/pytorch/issues/103539
@torch._dynamo.config.patch(automatic_dynamic_shapes=False)
@patch("torch._functorch.config.debug_assert", True)
def test_multiple_aot_autograd_calls_dupe_args(self):
# this is just dealing with the fact that
# aot_module_simplified expects submods to always return tuples/lists
class WrapperModule(torch.nn.Module):
def __init__(self, mod):
super().__init__()
self.mod = mod
def forward(self, *args):
out = self.mod(*args)
if isinstance(out, (list, tuple)):
return out
return (out,)
def compile_submod(input_mod, args):
from functorch.compile import nop
from torch._functorch.aot_autograd import aot_module_simplified
class WrapperModule(torch.nn.Module):
def __init__(self) -> None:
super().__init__()
self.original = input_mod
self.submod = aot_module_simplified(input_mod, args, nop)
def forward(self, *args):
return self.submod(*args)
return WrapperModule()
def test_compile(fx_g, example_inps):
split_gm = torch.fx.passes.split_module.split_module(
fx_g, None, lambda node: 1 if "mul" in str(node) else 0
)
submod_1_inps = split_gm.submod_0(*example_inps)
split_gm.submod_0 = compile_submod(
WrapperModule(split_gm.submod_0), example_inps
)
split_gm.submod_1 = compile_submod(
WrapperModule(split_gm.submod_1), submod_1_inps
)
return split_gm
@torch.compile(backend=test_compile)
def f(a):
b, c = torch.ops.custom.maybe_dupe_op(a)
return (b.mul_(c),)
f(torch.ones(4))
f(torch.ones(6))
def test_nn_parameter_construction(self):
# https://github.com/pytorch/pytorch/issues/99569
def fn(x):
y = x.sin()
z = torch.nn.Parameter(torch.ones(1))
return y + z
x = torch.rand((4, 4))
opt_fn = torch.compile(fn, backend="aot_eager")
self.assertTrue(torch._dynamo.testing.same(fn(x), opt_fn(x)))
def test_aot_sequence_nr(self):
class Model(torch.nn.Module):
def __init__(self) -> None:
super().__init__()
self.conv1 = torch.nn.Conv2d(
in_channels=16,
out_channels=16,
kernel_size=(1, 1),
stride=1,
padding="same",
bias=True,
)
self.bn1 = torch.nn.BatchNorm2d(num_features=16)
self.relu1 = torch.nn.ReLU()
self.fc1 = torch.nn.Linear(in_features=1638400, out_features=1)
self.loss_fn = torch.nn.L1Loss()
def forward(self, x, target):
y = x
x = self.conv1(x)
x = self.bn1(x)
x = self.relu1(x)
x = x + y
x = torch.flatten(x)
x = self.fc1(x)
output = self.loss_fn(x, target)
return (output,)
mod = Model()
mod.train()
x = torch.rand(100, 16, 32, 32, requires_grad=True)
target = torch.rand(1)
# Use dynamo export to get the fx graph module
g_mod, _ = torch._dynamo.export(mod, x, target)
def _prepare_model_args():
named_parameters = dict(g_mod.named_parameters(remove_duplicate=False))
named_buffers = dict(g_mod.named_buffers(remove_duplicate=False))
params_and_buffers = {
**dict(named_parameters),
**dict(named_buffers),
}
params_and_buffers_flat, params_spec = pytree.tree_flatten(
params_and_buffers
)
params_len = len(params_and_buffers_flat)
functional_call = create_functional_call(g_mod, params_spec, params_len)
return params_and_buffers_flat, functional_call
full_args, fn_to_trace = _prepare_model_args()
param_and_buf_len = len(full_args)
full_args.extend([x, target])
# aot_export requires a graph mod input of fwd graph
# returns the full fwd/bwd graph in graph mod format
with torch.enable_grad(), fx_traceback.preserve_node_meta():
fx_g, _, _, _ = _aot_export_function(
fn_to_trace,
full_args,
decompositions=None,
num_params_buffers=param_and_buf_len,
no_tangents=True,
)
# Walk all the nodes in fx graph.
# Write the resulting ops to a table
min_seq_nr = -1
seq_table = "SeqNr|OrigAten|SrcFn|FwdSrcFn\n"
for node in fx_g.graph.nodes:
if "call_" in node.op and "getitem" not in str(node.target):
seq_nr = node.meta.get("seq_nr", -1)
if seq_nr < 0:
continue
if min_seq_nr < 0:
min_seq_nr = seq_nr
source_fn_stack = node.meta.get("source_fn_stack", [])
orig_aten = node.meta.get("original_aten", "")
mod_name = ""
if len(source_fn_stack) > 0:
mod_name = source_fn_stack[-1][0]
# Make all seq_nr relative so it starts at 0
seq_nr = seq_nr - min_seq_nr
# For backward nodes, also test that metadata from the corresponding
# forward node is copied over.
fwd_source_fn_stack = node.meta.get("fwd_source_fn_stack", [])
fwd_mod_name = ""
if len(fwd_source_fn_stack):
fwd_mod_name = fwd_source_fn_stack[-1][0]
seq_table = (
seq_table + f"{seq_nr}|{orig_aten}|{mod_name}|{fwd_mod_name}\n"
)
self.maxDiff = None
self.assertExpectedInline(
seq_table,
dedent(
"""\
SeqNr|OrigAten|SrcFn|FwdSrcFn
0|aten.convolution.default|conv2d|
0|aten.add.Tensor|add_|
1|aten._native_batch_norm_legit_functional.default|batch_norm|
2|aten.relu.default|relu|
2|aten.detach.default|relu|
3|aten.add.Tensor|add|
4|aten.view.default|flatten|
5|aten.view.default|linear|
6|aten.t.default|linear|
7|aten.addmm.default|linear|
8|aten.view.default|linear|
9|aten.sub.Tensor|l1_loss|
10|aten.abs.default|l1_loss|
11|aten.mean.default|l1_loss|
11|aten.ones_like.default||l1_loss
11|aten.expand.default||l1_loss
11|aten.div.Scalar||l1_loss
10|aten.sgn.default||l1_loss
10|aten.mul.Tensor||l1_loss
8|aten.view.default||linear
7|aten.t.default||linear
7|aten.mm.default||linear
7|aten.t.default||linear
7|aten.mm.default||linear
7|aten.t.default||linear
7|aten.sum.dim_IntList||linear
7|aten.view.default||linear
6|aten.t.default||linear
5|aten.view.default||linear
4|aten.view.default||flatten
2|aten.detach.default||relu
2|aten.threshold_backward.default||relu
1|aten.native_batch_norm_backward.default||batch_norm
0|aten.convolution_backward.default||conv2d
11|aten.add.Tensor||l1_loss
"""
),
)
def test_split_with_sizes_aot_autograd_cleans_up_traceback_meta(self):
from torch._functorch.aot_autograd import setup_stacktrace_preservation_hooks
def fn(result, split_sizes):
rs = torch.ops.aten.split_with_sizes(result, split_sizes.tolist())
return rs
example_inputs = (
torch.randn(32, requires_grad=True),
torch.tensor((7, 16, 9)),
)
outs = fn(*example_inputs)
setup_stacktrace_preservation_hooks([out.grad_fn for out in outs])
with fx_traceback.preserve_node_meta():
(outs[0].sum() + outs[1].sum() + outs[2].sum()).backward()
self.assertNotIn("grad_fn_seq_nr", fx_traceback.current_meta)
self.assertNotIn("in_grad_fn", fx_traceback.current_meta)
# https://github.com/pytorch/pytorch/issues/110121
def test_aot_export_joint_simple_repro(self):
class Mod(torch.nn.Module):
def __init__(self, *args, **kwargs) -> None:
super().__init__(*args, **kwargs)
self.linear = torch.nn.Linear(5, 7)
def forward(self, x):
return self.linear(x)
def mini_backend(gm, sample_inputs):
from torch._functorch.aot_autograd import aot_export_joint_simple
fake_mode = torch._dynamo.utils.detect_fake_mode(sample_inputs)
with patch.object(fake_mode, "allow_non_fake_inputs", True), fake_mode:
return aot_export_joint_simple(gm, sample_inputs, trace_joint=False)
sample_inputs = [torch.rand((3, 4, 5))]
model = Mod()
m_compiled = torch.compile(model, backend=mini_backend)
out_ref = model(*sample_inputs)
out_test = m_compiled(*sample_inputs)
self.assertEqual(out_ref, out_test)
# set donated_buffer=False due to create_graph=True
@torch._functorch.config.patch("donated_buffer", False)
def test_eager_sequence_nr(self):
class Model(torch.nn.Module):
def __init__(self) -> None:
super().__init__()
self.conv1 = torch.nn.Conv2d(
in_channels=16,
out_channels=16,
kernel_size=(1, 1),
stride=1,
padding="same",
bias=True,
)
self.bn1 = torch.nn.BatchNorm2d(num_features=16)
self.relu1 = torch.nn.ReLU()
self.fc1 = torch.nn.Linear(in_features=1638400, out_features=1)
self.loss_fn = torch.nn.L1Loss()
def forward(self, x, target):
y = x
x = self.conv1(x)
x = self.bn1(x)
x = self.relu1(x)
x = x + y
x = torch.flatten(x)
x = self.fc1(x)
output = self.loss_fn(x, target)
return (output,)
def grad_with_create_graph(mod, x, target):
y = mod(x, target)
# Set create_graph=True to ensure that the sequence_nr
# for backward ops continues to count down.
(gx,) = torch.autograd.grad(
y[0], x, create_graph=True, grad_outputs=grad_output
)
return gx
x = torch.rand(100, 16, 32, 32, requires_grad=True)
target = torch.rand(1)
mod = Model()
args = [mod, x, target]
grad_output = torch.tensor(1.0, requires_grad=True)
compiled_f1 = torch.compile(backend="aot_eager")(grad_with_create_graph)
model_instance = compiled_f1
with profile(
activities=[torch.profiler.ProfilerActivity.CPU],
record_shapes=True,
) as kineto_prof:
model_instance(*args)
bwd_set = set()
prof_str = "SeqNr|Thread|FwdThread|Name\n"
for event in kineto_prof.events():
if event.sequence_nr >= 0:
prof_str = (
prof_str + f"{event.sequence_nr}|{event.thread}"
f"|{event.fwd_thread}|{event.name}|\n"
)
if re.search(r"Backward[01]", event.name):
bwd_set.add(event.sequence_nr)
self.assertTrue(len(bwd_set), 13)
def test_aot_grad_mode_mutation(self):
for compiler in ["aot_eager", "inductor"]:
def f(x):
y = x * x
torch.set_grad_enabled(False)
return y.clone(), y
f_compiled = torch.compile(f, backend=compiler, fullgraph=True)
torch.set_grad_enabled(True)
x = torch.ones(3, requires_grad=True) * 3
y_ref = f(x)
self.assertEqual(torch.is_grad_enabled(), False)
torch.set_grad_enabled(True)
y = f_compiled(x)
self.assertEqual(torch.is_grad_enabled(), False)
torch.set_grad_enabled(True)
self.assertEqual(y_ref, y)
self.assertIsNone(y_ref[0].grad_fn)
self.assertIsNone(y[0].grad_fn)
self.assertIsNotNone(y_ref[1].grad_fn)
self.assertIsNotNone(y[1].grad_fn)
# Check that the grad computed for the inputs, given the input, is the same
# The tangent to `y[0]`, which has grad_required=False, is irrelevant
self.assertEqual(
sum(y_ref[1].grad_fn(torch.tensor([-1.0, 2.0, 0.0]))),
sum(
x
for x in y[1].grad_fn.apply(None, torch.tensor([-1.0, 2.0, 0.0]))
if x is not None
),
)
def test_aot_autograd_raises_invalid_leaf_set(self):
@torch.compile
def f(x):
x.set_(torch.ones(2))
# We still want to make sure that this raises
x = torch.ones(2, requires_grad=True)
with self.assertRaisesRegex(
RuntimeError, "is being used in an in-place operation"
):
f(x)
def test_aot_autograd_expand_mutation_functionalizes(self):
def fn(x):
y = x.expand(3, *x.shape)
y[0, 0].add_(5)
return y
opt_fn = torch.compile(fn, backend="aot_eager")
x = torch.arange(6)
x_opt = x.detach().clone()
self.assertEqual(fn(x), opt_fn(x_opt))
self.assertEqual(x, x_opt)
def test_aot_autograd_expand_mutation_backwards(self):
def fn(x, z):
y = x.expand(3, *x.shape)
y[1, 1].mul_(5)
ret = y * z
return ret
opt_fn = torch.compile(fn, backend="aot_eager")
x = torch.arange(6, dtype=torch.float)
z = x.detach().clone()
x_opt = x.detach().clone()
z_opt = x.detach().clone()
z.requires_grad = True
z_opt.requires_grad = True
res = fn(x, z)
opt_res = opt_fn(x_opt, z_opt)
self.assertEqual(res, opt_res)
res.sum().backward()
opt_res.sum().backward()
self.assertEqual(x, x_opt)
self.assertEqual(z.grad, z_opt.grad)
def test_data_ptr_access_copy(self):
import torch._functorch.config as _config
with _config.patch(fake_tensor_allow_unsafe_data_ptr_access=False):
with FakeTensorMode():
x = torch.randn(3)
y = copy.copy(x)
self.assertEqual(y.shape, x.shape)
def test_data_ptr_access_fails_in_forward(self):
with torch.library._scoped_library("mylib", "FRAGMENT") as lib:
torch.library.define("mylib::foo", "(Tensor x) -> Tensor", lib=lib)
@torch.library.impl("mylib::foo", "CompositeImplicitAutograd", lib=lib)
def _(x):
x.data_ptr()
return x.clone()
x = torch.randn(3)
def data_ptr_graph_input(x):
r0 = torch.ops.mylib.foo(x)
return r0
def data_ptr_graph_intermediate(x):
y = x.clone()
r0 = torch.ops.mylib.foo(y)
return r0
tests = [data_ptr_graph_input, data_ptr_graph_intermediate]
def ctx():
return self.assertRaisesRegex(
RuntimeError, "Cannot access data pointer"
)
for f in tests:
with ctx():
make_fx(f, tracing_mode="fake")(x)
with ctx():
make_fx(f, tracing_mode="symbolic")(x)
with ctx():
torch.compile(f, backend="eager", fullgraph=True)(x)
def test_data_ptr_access_fails_in_backward(self):
with torch.library._scoped_library("mylib", "FRAGMENT") as lib:
torch.library.define("mylib::foo", "(Tensor x) -> Tensor", lib=lib)
backward_called = False
class Foo(torch.autograd.Function):
@staticmethod
def forward(ctx, x):
return x.clone()
@staticmethod
def backward(ctx, grad):
nonlocal backward_called
backward_called = True
grad.data_ptr()
return grad.clone()
@torch.library.impl("mylib::foo", "CompositeImplicitAutograd", lib=lib)
def _(x):
return Foo.apply(x)
def f(x):
return torch.ops.mylib.foo(x)
x = torch.randn(3, requires_grad=True)
with self.assertRaisesRegex(RuntimeError, "Cannot access data pointer"):
torch.compile(f, backend="aot_eager", fullgraph=True)(x)
self.assertTrue(backward_called)
# We don't know how to catch multiple mutations to the same memory location
@unittest.expectedFailure
def test_aot_autograd_expand_mutation_error(self):
def fn(x):
y = x.expand(3, *x.shape)
y[0:3, 0].add_(5)
return y
opt_fn = torch.compile(fn, backend="aot_eager")
x = torch.arange(6)
x_opt = x.detach().clone()
with self.assertRaises(Exception):
fn(x)
with self.assertRaises(Exception):
opt_fn(x_opt)
@torch._functorch.config.patch(donated_buffer=True)
def test_donated_buffer1(self):
logger_name = "torch._functorch._aot_autograd.graph_compile"
@torch.compile()
def relu(x):
return torch.nn.functional.relu(x)
with self.assertLogs(logger_name, level="INFO") as captured:
relu(torch.rand([3, 3], requires_grad=True)).sum().backward()
if is_dynamic_shape_test(self._testMethodName):
# an extra symint exists
expected_msg = "bw_donated_idxs=[1]"
else:
expected_msg = "bw_donated_idxs=[0]"
# le is a donated buffer from relu
FileCheck().check(expected_msg).run("\n".join(captured.output))
@torch._functorch.config.patch("donated_buffer", True)
def test_donated_buffer2(self):
logger_name = "torch._functorch._aot_autograd.graph_compile"
# we will reuse the graph for g across f1 and f2
@torch.compile()
def g(activation, param2):
return torch.matmul(activation, param2)
def f(inp, param1, param2):
activation = inp + param1
return g(activation, param2)
inp = torch.ones(4, 4)
param1 = torch.ones(4, 4, requires_grad=True)
param2 = torch.ones(4, 4, requires_grad=True)
with self.assertLogs(logger_name, level="INFO") as captured:
f(inp, param1, param2).sum().backward()
FileCheck().check("bw_donated_idxs=[]").run("\n".join(captured.output))
@torch._functorch.config.patch("donated_buffer", True)
def test_donated_buffer3(self):
logger_name = "torch._functorch._aot_autograd.graph_compile"
# we will reuse the graph for g across f1 and f2
@torch.compile()
def g(activation, param2):
return torch.matmul(activation, param2)
def f(inp, param1, param2):
# exp saves it output (the activation) for bw
activation = torch.exp(inp + param1)
return g(activation, param2)
inp = torch.ones(4, 4)
param1 = torch.ones(4, 4, requires_grad=True)
param2 = torch.ones(4, 4, requires_grad=True)
with self.assertLogs(logger_name, level="INFO") as captured:
f(inp, param1, param2).sum().backward()
FileCheck().check("bw_donated_idxs=[]").run("\n".join(captured.output))
@torch._functorch.config.patch("donated_buffer", True)
def test_donated_buffer4(self):
logger_name = "torch._functorch._aot_autograd.graph_compile"
class Mod(torch.nn.Module):
def __init__(self) -> None:
super().__init__()
self.param = torch.nn.Parameter(torch.zeros([2, 2]))
def forward(self, x: torch.Tensor) -> torch.Tensor:
return torch.nn.functional.relu(x) + self.param
mod = Mod()
mod = torch.compile(mod)
inp = torch.ones([2, 2], requires_grad=True)
with self.assertLogs(logger_name, level="INFO") as captured:
mod(inp).sum().backward()
# Forward graph:
# %primals_1 : [num_users=1] = placeholder[target=primals_1]
# %primals_2 : [num_users=1] = placeholder[target=primals_2]
# %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%primals_2,), kwargs = {})
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%relu, %primals_1), kwargs = {})
# %le : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu, 0), kwargs = {})
# return [add, le]
#
# `le` is a donated buffer
FileCheck().check("bw_donated_idxs=[0]").run("\n".join(captured.output))
@torch._functorch.config.patch("donated_buffer", True)
def test_donated_buffer5(self):
logger_name = "torch._functorch._aot_autograd.graph_compile"
@torch.compile()
def f(x, z):
y = x.view(2, 3)
z = torch.nn.functional.relu(z)
return torch.mm(y, x) + z
inp = [
torch.rand([3, 2], requires_grad=True),
torch.rand([2, 2], requires_grad=True),
]
with self.assertLogs(logger_name, level="INFO") as captured:
f(*inp).sum().backward()
# Forward graph:
# %primals_1 : [num_users=3] = placeholder[target=primals_1]
# %primals_2 : [num_users=1] = placeholder[target=primals_2]
# %view : [num_users=1] = call_function[target=torch.ops.aten.view.default](args = (%primals_1, [2, 3]), kwargs = {})
# %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%primals_2,), kwargs = {})
# %mm : [num_users=1] = call_function[target=torch.ops.aten.mm.default](args = (%view, %primals_1), kwargs = {})
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mm, %relu), kwargs = {})
# %le : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu, 0), kwargs = {})
# return [add, primals_1, le]
#
# `le` is a donated buffer but primals_1 is not.
FileCheck().check("bw_donated_idxs=[1]").run("\n".join(captured.output))
@torch._functorch.config.patch("donated_buffer", True)
@torch._dynamo.config.patch("graph_break_on_nn_param_ctor", False)
def test_donated_buffer6(self):
if is_dynamic_shape_test(self._testMethodName):
# parameters should not be dynamic shape
# torch._dynamo.exc.Unsupported: Parameter not python_constant:
# SymNodeVariable() is not a constant
return
logger_name = "torch._functorch._aot_autograd.graph_compile"
def fn(x):
p = torch.nn.Parameter(x + 123)
return p, p.sin()
opt = torch.compile(fn, fullgraph=True)
x = torch.randn(16)
with self.assertLogs(logger_name, level="INFO") as captured:
p, r = opt(x)
r.sum().backward()
FileCheck().check("bw_donated_idxs=[]").run("\n".join(captured.output))
@torch._functorch.config.patch("donated_buffer", True)
def test_donated_buffer_with_retain_or_create_graph1(self):
# Gives non-empty bw_donated_idxs
class Mod(torch.nn.Module):
def __init__(self) -> None:
super().__init__()
self.param = torch.nn.Parameter(torch.zeros([3, 3]))
def forward(self, x):
return torch.nn.functional.relu(x) + self.param
inp = torch.randn(3, 3, requires_grad=True)
mod = torch.compile(Mod())
for _ in range(5):
mod(inp).sum().backward()
@torch._functorch.config.patch("donated_buffer", True)
def test_donated_buffer_with_retain_or_create_graph2(self):
# Gives non-empty bw_donated_idxs
class Mod(torch.nn.Module):
def __init__(self) -> None:
super().__init__()
self.param = torch.nn.Parameter(torch.zeros([3, 3]))
def forward(self, x):
return torch.nn.functional.relu(x) + self.param
inp = torch.randn(3, 3, requires_grad=True)
mod = torch.compile(Mod())
out = mod(inp).sum()
for _ in range(5):
out.backward(retain_graph=True)
out.backward()
@torch._functorch.config.patch("donated_buffer", True)
def test_donated_buffer_with_retain_or_create_graph3(self):
# Gives non-empty bw_donated_idxs
class Mod(torch.nn.Module):
def __init__(self) -> None:
super().__init__()
self.param = torch.nn.Parameter(torch.zeros([3, 3]))
def forward(self, x):
return torch.nn.functional.relu(x) + self.param
inp = torch.randn(3, 3, requires_grad=True)
mod = torch.compile(Mod())
mod(inp).sum().backward(create_graph=True)
out = mod(inp).sum()
for _ in range(5):
out.backward(retain_graph=True)
out.backward()
def test_autograd_function_tangent_mutation(self):
class Foo(torch.autograd.Function):
@staticmethod
def forward(ctx, x):
return x.clone(), x.clone()
@staticmethod
def backward(ctx, grad1, grad2):
return grad1.copy_(grad2)
def f(x):
return Foo.apply(x)
x = torch.randn(4, requires_grad=True)
x_ref = x.clone().detach().requires_grad_()
out_ref = f(x_ref)
out = torch.compile(f, backend="aot_eager", fullgraph=True)(x)
self.assertEqual(out_ref, out)
self.assertEqual(x_ref, x)
(out[0] + out[1]).sum().backward()
(out_ref[0] + out_ref[1]).sum().backward()
self.assertEqual(x_ref.grad, x.grad)
@torch._functorch.config.patch("donated_buffer", True)
def test_donated_buffer_with_retain_or_create_graph4(self):
# Gives non-empty bw_donated_idxs
class Mod(torch.nn.Module):
def __init__(self) -> None:
super().__init__()
self.param = torch.nn.Parameter(torch.zeros([3, 3]))
def forward(self, x):
return torch.nn.functional.relu(x) + self.param
inp = torch.randn(3, 3, requires_grad=True)
mod = torch.compile(Mod())
mod(inp).sum().backward()
out = mod(inp).sum()
with self.assertRaisesRegex(
RuntimeError,
r"This backward function was compiled with non-empty donated "
r"buffers which requires create_graph=False and retain_graph=False. "
r"Please keep backward\(create_graph=False, retain_graph=False\) "
r"across all backward\(\) function calls, or set "
r"torch._functorch.config.donated_buffer=False to disable "
r"donated buffer.",
):
out.backward(retain_graph=True)
def _get_guard_failure_on_overlapping_view_inputs(self, f, argsfn1, argsfn2):
# Compile and run f twice, using the arguments generated by argsfn1 and argsfn2.
#
# This function expects that the second argument set will trigger a recompilation,
# which shall be returned in the end.
guard_failure = []
def guard_fail_fn(failure):
nonlocal guard_failure
guard_failure.append(failure[0])
input = torch.ones(20)
opt_input = input.clone().detach()
opt_f = torch._dynamo.optimize(
"aot_eager", dynamic=True, guard_fail_fn=guard_fail_fn
)(f)
out0 = f(*argsfn1(input))
opt_out0 = opt_f(*argsfn1(opt_input))
self.assertEqual(out0, opt_out0)
out1 = f(*argsfn2(input))
opt_out1 = opt_f(*argsfn2(opt_input))
self.assertEqual(out1, opt_out1)
# Check that we only have one instance of guard failure, and that it is due to
# the overlapping state not matching.
self.assertEqual(len(guard_failure), 1)
return guard_failure[0]
def test_inputs_overlapping_with_mutation_recompile(self):
# Check that the overlap guard actually fails when we run the second time with
# args that have no storage overlap.
def f(*args):
for a in args:
a.add_(1)
return args[0]
def overlapping_args(x):
return x[:5], x[7:13], x[9:]
def non_overlapping_args(x):
return x[:5], x[7:13], x[13:15]
guard_failure = self._get_guard_failure_on_overlapping_view_inputs(
f, overlapping_args, non_overlapping_args
)
self.assertExpectedInline(
guard_failure,
"""0/0: check_overlapping(overlapping=[args[1], args[2]], non_overlapping=[args[0]])""",
)
def test_different_inputs_overlapping_set_with_mutation(self):
# Check that the overlap guard actually fails when we run the second time with
# arguments whose overlapping set is a superset of the set of arguments used in
# the first time.
def f(a, b, c, d):
a.mul_(2)
return a + b + c + d
def a_b_overlapping_args(x):
return x[:5], x[4:9], x[10:15], x[15:]
def a_b_c_overlapping_args(x):
return x[:5], x[4:9], x[8:13], x[15:]
guard_failure = self._get_guard_failure_on_overlapping_view_inputs(
f, a_b_overlapping_args, a_b_c_overlapping_args
)
self.assertExpectedInline(
guard_failure,
"""0/0: check_overlapping(overlapping=[a, b], non_overlapping=[c, d])""",
)
def _test_no_storage_overlap_guards(self, f, argsfn):
# Compile f with aot_eager backend, and run it with the argument set returned by
# argsfn function. Meanwhile, keep track of the aotautograd_gurads, so as to make
# sure no StorageOverlap guard was added.
class Compiler:
def __init__(self):
self.counter = CompileCounterWithBackend("aot_eager")
def __call__(self, *args, **kwargs):
# Instead of checking here, we need to check afterwards, since the
# StorageOverlap guard is only added later.
self.guards = TracingContext.get().guards_context.aotautograd_guards
return self.counter(*args, **kwargs)
compiler = Compiler()
input = torch.arange(20)
opt_input = input.clone().detach()
out = f(*argsfn(input))
opt_out = torch.compile(f, backend=compiler, dynamic=True)(*argsfn(opt_input))
self.assertEqual(out, opt_out)
self.assertEqual(compiler.counter.frame_count, 1)
# Check none of the AOTAutograd guards are StorageOverlap guards.
for g in compiler.guards:
self.assertNotIsInstance(g, StorageOverlap)
def test_no_storage_overlap_guards_no_mutation(self):
def f(a, b):
return a + b
def overlapping_args(input):
return input[:10], input[5:15]
self._test_no_storage_overlap_guards(f, overlapping_args)
def test_no_storage_overlap_guards_no_aliasing(self):
def f(a, b):
a.add_(1)
b.add_(1)
return a
def non_overlapping_args(input):
return input[:10], torch.arange(20)[5:15]
self._test_no_storage_overlap_guards(f, non_overlapping_args)
def test_inputs_overlapping_with_mutation_stress(self):
# Stress test for StorageOverlap guard.
#
# Create 100 non-overlapping tensor views, and an extra one that overlaps with
# the first 50 of them. Then, make sure that none of the produced ShapeEnv
# guards came from the overlapping computation.
def f(*args):
for a in args:
a.add_(1)
return args[0]
def overlapping_args(input):
return (
# 100 non-overlapping tensors of size 10.
*input.split(10),
# A tensor that overlaps with half of the tensors above.
input[4:44],
)
class Compiler:
def __init__(self):
self.counter = CompileCounterWithBackend("aot_eager")
def __call__(self, *args, **kwargs):
self.compile_context = CompileContext.get()
return self.counter(*args, **kwargs)
compiler = Compiler()
opt_f = torch.compile(f, backend=compiler, dynamic=True)
input = torch.arange(1_000)
opt_input = input.clone().detach()
out0 = f(*overlapping_args(input))
opt_out0 = opt_f(*overlapping_args(opt_input))
self.assertEqual(out0, opt_out0)
# Check that none of the produced ShapeEnv guards came from compute_overlapping_inputs
# function.
overlapping_computation_fn = "compute_overlapping_inputs"
shape_env_guards = compiler.compile_context.shape_env_guards
for g in shape_env_guards:
self.assertNotIn(overlapping_computation_fn, g)
# Check that we have no more than 500 ShapeEnv guards.
#
# Note: this is an arbitrary number. So, we might have to change it in the future.
# However, at the time this change was introduced, it went down from 15154 to 403.
self.assertLess(len(shape_env_guards), 1000)
# See # https://github.com/pytorch/pytorch/issues/164814
def test_aot_autograd_stride_reconstruction_on_zero_dim_dynamic_shaped_tensor(
self,
) -> None:
def repro(sentinel: torch.Tensor, skip_squeeze: bool = False) -> torch.Tensor:
x = torch.unique(torch.ones(1))
x = torch.reshape(x, [1])
if not skip_squeeze:
x = torch.squeeze(x) # 0-d tensor
return x * sentinel
# Grad required to trigger the issue (need to replay stride)
sentinel = torch.tensor(1.0, requires_grad=True)
eager_sq = repro(sentinel)
comp_aot_sq = torch.compile(repro, backend="aot_eager", fullgraph=True)(
sentinel
)
comp_ind_sq = torch.compile(repro, backend="inductor", fullgraph=True)(sentinel)
self.assertEqual(eager_sq, comp_aot_sq)
self.assertEqual(eager_sq, comp_ind_sq)
self.assertEqual(eager_sq.stride(), comp_ind_sq.stride())
# Now check semantics preserved when skipping squeeze
eager_no_sq = repro(sentinel, skip_squeeze=True)
comp_aot_no_sq = torch.compile(repro, backend="aot_eager", fullgraph=True)(
sentinel, skip_squeeze=True
)
comp_ind_no_sq = torch.compile(repro, backend="inductor", fullgraph=True)(
sentinel, skip_squeeze=True
)
self.assertEqual(eager_no_sq, comp_aot_no_sq)
self.assertEqual(eager_no_sq, comp_ind_no_sq)
self.assertEqual(eager_no_sq.stride(), comp_ind_no_sq.stride())
if __name__ == "__main__":
from torch._dynamo.test_case import run_tests
run_tests()