mirror of
https://github.com/pytorch/pytorch.git
synced 2025-10-20 21:14:14 +08:00
Before returning a comand buffer, as subsequent calle are very likely to allocate their own encoder, which results in the following runtime error ``` tryCoalescingPreviousComputeCommandEncoderWithConfig:nextEncoderClass:]:1090: failed assertion `A command encoder is already encoding to this command buffer' ``` Added regression test to `test_mps_extension` Please note, that `torch::mps::get_command_buffer()` should be called with dispatch_queue held, both before and after this change, but many implementations skip that Fixes https://github.com/pytorch/pytorch/issues/163721 Pull Request resolved: https://github.com/pytorch/pytorch/pull/164093 Approved by: https://github.com/atalman, https://github.com/Skylion007
86 lines
2.9 KiB
Plaintext
86 lines
2.9 KiB
Plaintext
#include <torch/extension.h>
|
|
#include <ATen/native/mps/OperationUtils.h>
|
|
|
|
// this sample custom kernel is taken from:
|
|
// https://developer.apple.com/documentation/metal/performing_calculations_on_a_gpu
|
|
static at::native::mps::MetalShaderLibrary lib(R"MPS_ADD_ARRAYS(
|
|
#include <metal_stdlib>
|
|
using namespace metal;
|
|
kernel void add_arrays(device const float* inA,
|
|
device const float* inB,
|
|
device float* result,
|
|
uint index [[thread_position_in_grid]])
|
|
{
|
|
result[index] = inA[index] + inB[index];
|
|
}
|
|
|
|
kernel void add_one(device float* data,
|
|
uint index [[thread_position_in_grid]]) {
|
|
data[index] += 1.0;
|
|
}
|
|
)MPS_ADD_ARRAYS");
|
|
|
|
at::Tensor get_cpu_add_output(at::Tensor & cpu_input1, at::Tensor & cpu_input2) {
|
|
return cpu_input1 + cpu_input2;
|
|
}
|
|
|
|
at::Tensor get_mps_add_output(at::Tensor & mps_input1, at::Tensor & mps_input2) {
|
|
|
|
// smoke tests
|
|
TORCH_CHECK(mps_input1.is_mps());
|
|
TORCH_CHECK(mps_input2.is_mps());
|
|
TORCH_CHECK(mps_input1.sizes() == mps_input2.sizes());
|
|
|
|
using namespace at::native::mps;
|
|
at::Tensor mps_output = at::empty_like(mps_input1);
|
|
|
|
@autoreleasepool {
|
|
size_t numThreads = mps_output.numel();
|
|
auto kernelPSO = lib.getPipelineStateForFunc("add_arrays");
|
|
MPSStream* mpsStream = getCurrentMPSStream();
|
|
|
|
dispatch_sync(mpsStream->queue(), ^() {
|
|
// Start a compute pass.
|
|
id<MTLComputeCommandEncoder> computeEncoder = mpsStream->commandEncoder();
|
|
TORCH_CHECK(computeEncoder, "Failed to create compute command encoder");
|
|
|
|
// Encode the pipeline state object and its parameters.
|
|
[computeEncoder setComputePipelineState: kernelPSO];
|
|
mtl_setBuffer(computeEncoder, mps_input1, 0);
|
|
mtl_setBuffer(computeEncoder, mps_input2, 1);
|
|
mtl_setBuffer(computeEncoder, mps_output, 2);
|
|
mtl_dispatch1DJob(computeEncoder, kernelPSO, numThreads);
|
|
});
|
|
}
|
|
return mps_output;
|
|
}
|
|
|
|
void mps_add_one_new_encoder(const at::Tensor& input) {
|
|
using namespace at::native::mps;
|
|
TORCH_CHECK(input.is_mps());
|
|
TORCH_CHECK(input.numel() > 0);
|
|
|
|
@autoreleasepool {
|
|
auto kernelPSO = lib.getPipelineStateForFunc("add_one");
|
|
auto serialQueue = torch::mps::get_dispatch_queue();
|
|
|
|
dispatch_sync(serialQueue, ^(){
|
|
auto commandBuffer = torch::mps::get_command_buffer();
|
|
// Start a compute pass.
|
|
auto computeEncoder = [commandBuffer computeCommandEncoder];
|
|
TORCH_CHECK(computeEncoder, "Failed to create compute command encoder");
|
|
[computeEncoder setComputePipelineState: kernelPSO];
|
|
mtl_setArgs(computeEncoder, input);
|
|
mtl_dispatch1DJob(computeEncoder, kernelPSO, input.numel());
|
|
[computeEncoder endEncoding];
|
|
torch::mps::commit();
|
|
});
|
|
}
|
|
}
|
|
|
|
PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) {
|
|
m.def("get_cpu_add_output", &get_cpu_add_output);
|
|
m.def("get_mps_add_output", &get_mps_add_output);
|
|
m.def("mps_add_one_new_context", &mps_add_one_new_encoder);
|
|
}
|