Files
pytorch/test/cpp_api_parity/functional_impl_check.py
2025-06-24 04:53:54 +00:00

316 lines
11 KiB
Python

# The purpose of this test is to check that we have implementation parity between
# a Python `torch.nn.functional` function and its corresponding C++ `torch::nn::functional`
# function. Concretely, this test does the following:
#
# 1. Get a test params dict from common_nn.py, run forward pass on the Python functional
# created using the test params.
#
# 2. Serialize the Python functional's forward input arguments, deserialize them
# in C++ and use them as input for the C++ functional's forward pass.
#
# 3. Run the forward pass on the C++ functional, and serialize the C++ functional's
# forward output.
#
# 4. Compare Python/C++ functional's forward output. If they are the same, then we
# have implementation parity between Python/C++ module.
import os
import pprint
import re
import tempfile
from string import Template
import torch
from cpp_api_parity.sample_functional import SAMPLE_FUNCTIONAL_CPP_SOURCE
from cpp_api_parity.utils import (
add_test,
compile_cpp_code_inline,
compute_arg_dict,
compute_cpp_args_construction_stmts_and_forward_arg_symbols,
compute_temp_file_path,
decorate_test_fn,
generate_error_msg,
is_torch_nn_functional_test,
move_python_tensors_to_device,
serialize_arg_dict_as_script_module,
set_python_tensors_requires_grad,
TORCH_NN_COMMON_TEST_HARNESS,
TorchNNFunctionalTestParams,
try_remove_folder,
)
# Expected substitutions:
#
# ${functional_variant_name} (e.g. `BCELoss_no_reduce`)
# ${cpp_args_construction_stmts}
# ${cpp_function_call}
TORCH_NN_FUNCTIONAL_TEST_FORWARD = Template(
"""
void ${functional_variant_name}_test_forward(
const std::string& arg_dict_file_path,
const std::string& forward_output_file_path) {
pybind11::gil_scoped_release no_gil;
namespace F = torch::nn::functional;
// Declare arguments
auto arg_dict = load_dict_from_file(arg_dict_file_path);
${cpp_args_construction_stmts};
// Some functionals (such as `F::rrelu`) create random tensors in their call path.
// To make sure the random tensors created are the same in Python/C++, we need
// to set the RNG seed manually.
torch::manual_seed(0);
// Run function with arguments
auto cpp_output = ${cpp_function_call};
// Save the output into a file to be compared in Python later
write_ivalue_to_file(torch::IValue(cpp_output), forward_output_file_path);
}
"""
)
def run_forward(unit_test_class, test_params):
device = test_params.device
inputs = set_python_tensors_requires_grad(
move_python_tensors_to_device(
[arg_value for _, arg_value in test_params.arg_dict["input"]], device
)
)
inputs += move_python_tensors_to_device(
[arg_value for _, arg_value in test_params.arg_dict["target"]], device
)
inputs += move_python_tensors_to_device(
[arg_value for _, arg_value in test_params.arg_dict["extra_args"]], device
)
# Some functionals (such as `F.rrelu`) create random tensors in their call path.
# To make sure the random tensors created are the same in Python/C++, we need
# to set the RNG seed manually.
torch.manual_seed(0)
python_output = test_params.test_instance.constructor()(*inputs)
return python_output
def test_forward(unit_test_class, test_params):
functional_variant_name = test_params.functional_variant_name
cpp_tmp_folder = test_params.cpp_tmp_folder
# Remove the temporary folder if it exists already
try_remove_folder(cpp_tmp_folder)
os.mkdir(cpp_tmp_folder)
# Run forward on Python functional
python_output = run_forward(unit_test_class, test_params)
# Save Python arguments to be used from C++ function
arg_dict_file_path = compute_temp_file_path(
cpp_tmp_folder, functional_variant_name, "arg_dict"
)
serialize_arg_dict_as_script_module(test_params.arg_dict).save(arg_dict_file_path)
cpp_test_name = f"{test_params.functional_variant_name}_test_forward"
cpp_test_fn = getattr(
unit_test_class.functional_impl_check_cpp_module, cpp_test_name
)
def run_cpp_test_fn_and_check_output():
forward_output_file_path = compute_temp_file_path(
cpp_tmp_folder, functional_variant_name, "forward_output"
)
cpp_test_fn(arg_dict_file_path, forward_output_file_path)
cpp_output = torch.load(forward_output_file_path)
# Check that forward outputs are equal
unit_test_class.assertEqual(
python_output,
cpp_output,
msg=generate_error_msg("forward output", cpp_output, python_output),
)
run_cpp_test_fn_and_check_output()
# Remove temporary folder that stores C++ outputs
try_remove_folder(cpp_tmp_folder)
def compute_functional_name(test_params_dict):
def camel_case_to_snake_case(camel_case_str):
return re.sub(r"(?<!^)(?=[A-Z])", "_", camel_case_str).lower()
if "cpp_options_args" in test_params_dict:
# Expected format for `cpp_options_args`: `F::FunctionalFuncOptions(...)`
# Example output: `binary_cross_entropy`
return camel_case_to_snake_case(
test_params_dict["cpp_options_args"]
.split("(")[0]
.replace("F::", "")
.replace("FuncOptions", "")
)
elif "cpp_function_call" in test_params_dict:
# Expected format for `cpp_function_call`: `F::functional_name(...)`
# Example output: `binary_cross_entropy`
return test_params_dict["cpp_function_call"].split("(")[0].replace("F::", "")
else:
raise RuntimeError(
"`cpp_options_args` or `cpp_function_call` entry must be present in test params dict:\n"
f"{pprint.pformat(test_params_dict)}"
)
def compute_cpp_function_call(test_params_dict, arg_dict, functional_name):
if "cpp_function_call" in test_params_dict:
return test_params_dict["cpp_function_call"]
elif "cpp_options_args" in test_params_dict:
cpp_forward_args_symbols = [
arg_name
for arg_name, _ in arg_dict["input"]
+ arg_dict["target"]
+ arg_dict["extra_args"]
]
return "F::{}({}, {})".format(
functional_name,
", ".join(cpp_forward_args_symbols),
test_params_dict["cpp_options_args"],
)
else:
raise RuntimeError(
"`cpp_options_args` or `cpp_function_call` entry must be present in test params dict:\n"
f"{pprint.pformat(test_params_dict)}"
)
def process_test_params_for_functional(test_params_dict, device, test_instance_class):
test_instance = test_instance_class(**test_params_dict)
functional_name = compute_functional_name(test_params_dict)
assert test_instance.get_name().startswith("test_")
# Example output: `BCELoss_no_reduce_cuda`
functional_variant_name = test_instance.get_name()[5:] + (
("_" + device) if device != "cpu" else ""
)
arg_dict = compute_arg_dict(test_params_dict, test_instance)
return TorchNNFunctionalTestParams(
functional_name=functional_name,
functional_variant_name=functional_variant_name,
test_instance=test_instance,
cpp_function_call=compute_cpp_function_call(
test_params_dict, arg_dict, functional_name
),
arg_dict=arg_dict,
has_parity=test_params_dict.get("has_parity", True),
device=device,
cpp_tmp_folder=tempfile.mkdtemp(),
)
def write_test_to_test_class(
unit_test_class, test_params_dict, test_instance_class, parity_table, devices
):
assert is_torch_nn_functional_test(test_params_dict)
assert (
"cpp_options_args" in test_params_dict
or "cpp_function_call" in test_params_dict
), (
"To enable C++ API parity test, "
"`cpp_options_args` or `cpp_function_call` entry must be present in test params dict:\n"
f"{pprint.pformat(test_params_dict)}. \n"
"If you are interested in adding the C++ API parity test, please see:\n"
"NOTE [How to check NN module / functional API parity between Python and C++ frontends]. \n"
"If not, please add `test_cpp_api_parity=False` to the test params dict and file an issue about this."
)
assert not (
"cpp_options_args" in test_params_dict
and "cpp_function_call" in test_params_dict
), (
"Only one of `cpp_options_args` and `cpp_function_call` entries "
f"should be present in test params dict:\n{pprint.pformat(test_params_dict)}"
)
functional_name = compute_functional_name(test_params_dict)
assert hasattr(torch.nn.functional, functional_name), (
f"`torch.nn.functional` doesn't have function `{functional_name}`. "
f"(Discovered while processing\n{pprint.pformat(test_params_dict)}.)"
)
functional_full_name = "F::" + functional_name
assert functional_full_name in parity_table["torch::nn::functional"], (
f"Please add `{functional_full_name}` entry to `torch::nn::functional` "
"section of `test/cpp_api_parity/parity-tracker.md`. "
f"(Discovered while processing\n{pprint.pformat(test_params_dict)}.)"
)
for device in devices:
test_params = process_test_params_for_functional(
test_params_dict=test_params_dict,
device=device,
test_instance_class=test_instance_class,
)
try_remove_folder(test_params.cpp_tmp_folder)
unit_test_name = (
f"test_torch_nn_functional_{test_params.functional_variant_name}"
)
unit_test_class.functional_test_params_map[unit_test_name] = test_params
def test_fn(self):
test_forward(
unit_test_class=self,
test_params=unit_test_class.functional_test_params_map[
self._testMethodName
],
)
test_fn = decorate_test_fn(
test_fn=test_fn,
test_cuda=test_params_dict.get("test_cuda", True),
has_impl_parity=parity_table["torch::nn::functional"][functional_full_name][
0
]
and test_params_dict.get("has_parity", True),
device=device,
)
add_test(unit_test_class, unit_test_name, test_fn)
def generate_test_cpp_sources(test_params, template):
(
cpp_args_construction_stmts,
_,
) = compute_cpp_args_construction_stmts_and_forward_arg_symbols(test_params)
test_cpp_sources = template.substitute(
functional_variant_name=test_params.functional_variant_name,
cpp_args_construction_stmts=";\n ".join(cpp_args_construction_stmts),
cpp_function_call=test_params.cpp_function_call,
)
return test_cpp_sources
# Build all C++ tests together, instead of once per test.
def build_cpp_tests(unit_test_class, print_cpp_source=False):
assert len(unit_test_class.functional_test_params_map) > 0
cpp_sources = TORCH_NN_COMMON_TEST_HARNESS + SAMPLE_FUNCTIONAL_CPP_SOURCE
functions = []
for test_params in unit_test_class.functional_test_params_map.values():
cpp_sources += generate_test_cpp_sources(
test_params=test_params, template=TORCH_NN_FUNCTIONAL_TEST_FORWARD
)
functions.append(f"{test_params.functional_variant_name}_test_forward")
if print_cpp_source:
print(cpp_sources)
cpp_module = compile_cpp_code_inline(
name="functional_impl_check", cpp_sources=cpp_sources, functions=functions
)
unit_test_class.functional_impl_check_cpp_module = cpp_module