mirror of
https://github.com/pytorch/pytorch.git
synced 2025-10-22 22:25:10 +08:00
This PR enables Wno-unused-private-field,Wunused-lambda-capture and some CUDA warnings were fixed. Pull Request resolved: https://github.com/pytorch/pytorch/pull/110856 Approved by: https://github.com/albanD, https://github.com/malfet
180 lines
5.4 KiB
C++
180 lines
5.4 KiB
C++
#include <gtest/gtest.h>
|
|
|
|
#include <c10/core/ScalarType.h>
|
|
#include <c10/util/Exception.h>
|
|
#include <torch/csrc/lazy/core/config.h>
|
|
#include <torch/csrc/lazy/core/debug_util.h>
|
|
#include <torch/csrc/lazy/core/dynamic_ir.h>
|
|
#include <torch/csrc/lazy/core/ir.h>
|
|
#include <torch/csrc/lazy/core/ir_builder.h>
|
|
#include <torch/csrc/lazy/core/ir_metadata.h>
|
|
#include <torch/csrc/lazy/generated/LazyIr.h>
|
|
#include <torch/csrc/lazy/ts_backend/dynamic_ir.h>
|
|
#include <torch/csrc/lazy/ts_backend/ts_node.h>
|
|
#include <memory>
|
|
|
|
namespace torch {
|
|
namespace lazy {
|
|
|
|
class TestLeafNode : public Node {
|
|
public:
|
|
static OpKind ClassOpKind() {
|
|
return OpKind();
|
|
}
|
|
|
|
explicit TestLeafNode(size_t param)
|
|
: Node(ClassOpKind(), /* num_outputs */ 1), hash_(Hash(param)) {}
|
|
~TestLeafNode() override = default;
|
|
|
|
const std::vector<Output>& operands() const override {
|
|
TORCH_INTERNAL_ASSERT(false, "Can't access operands of leaf node");
|
|
}
|
|
|
|
const Output& operand(size_t i) const override {
|
|
TORCH_INTERNAL_ASSERT(false, "Can't access operand[i] of leaf node");
|
|
}
|
|
|
|
hash_t hash() const override {
|
|
return hash_;
|
|
}
|
|
hash_t shapeHash() const override {
|
|
return hash_;
|
|
}
|
|
|
|
private:
|
|
hash_t hash_;
|
|
};
|
|
|
|
TEST(IrTest, BasicTest) {
|
|
NodePtr node1 = MakeNode<TestLeafNode>(1);
|
|
NodePtr node2 = MakeNode<TestLeafNode>(2);
|
|
EXPECT_NE(node1->hash(), node2->hash());
|
|
|
|
EXPECT_EQ(node1->num_outputs(), 1);
|
|
|
|
const TestLeafNode* leafptr = NodeCast<TestLeafNode>(node1.get());
|
|
EXPECT_TRUE(leafptr != nullptr);
|
|
}
|
|
|
|
TEST(IrTest, MetaDataTest) {
|
|
bool restore_FLAGS_torch_lazy_ir_debug = FLAGS_torch_lazy_ir_debug;
|
|
FLAGS_torch_lazy_ir_debug = false;
|
|
NodePtr node = MakeNode<TestLeafNode>(1);
|
|
auto metaWithoutDebug = node->metadata();
|
|
EXPECT_EQ(metaWithoutDebug.scope.size(), 0);
|
|
EXPECT_EQ(metaWithoutDebug.frame_info.size(), 0);
|
|
|
|
FLAGS_torch_lazy_ir_debug = true;
|
|
node = MakeNode<TestLeafNode>(1);
|
|
auto metaWithEmptyDebug = node->metadata();
|
|
EXPECT_EQ(metaWithEmptyDebug.scope.size(), 0);
|
|
EXPECT_EQ(metaWithEmptyDebug.frame_info.size(), 1);
|
|
|
|
{
|
|
ScopePusher scope("TestScope");
|
|
node = MakeNode<TestLeafNode>(1);
|
|
auto metaWithScope = node->metadata();
|
|
EXPECT_EQ(metaWithScope.scope, "TestScope.1");
|
|
EXPECT_EQ(metaWithScope.frame_info.size(), 1);
|
|
}
|
|
|
|
SourceLocation dummySourceLocation;
|
|
dummySourceLocation.file = "file";
|
|
dummySourceLocation.function = "function";
|
|
dummySourceLocation.line = 10;
|
|
GetPythonFramesFunction() = [&]() -> std::vector<SourceLocation> {
|
|
return {dummySourceLocation};
|
|
};
|
|
node = MakeNode<TestLeafNode>(1);
|
|
auto metaWithSourceLoc = node->metadata();
|
|
EXPECT_EQ(metaWithSourceLoc.scope.size(), 0);
|
|
EXPECT_EQ(metaWithSourceLoc.frame_info.size(), 1);
|
|
EXPECT_EQ(metaWithSourceLoc.frame_info[0].file, "file");
|
|
EXPECT_EQ(metaWithSourceLoc.frame_info[0].function, "function");
|
|
EXPECT_EQ(metaWithSourceLoc.frame_info[0].line, 10);
|
|
FLAGS_torch_lazy_ir_debug = restore_FLAGS_torch_lazy_ir_debug;
|
|
}
|
|
|
|
TEST(IrTest, TsNodeTest) {
|
|
NodePtr node1 = MakeNode<TsNode>(
|
|
OpKind(at::aten::view),
|
|
Shape(),
|
|
/*num_outputs*/ 1,
|
|
/*hash_seed*/ kHashSeed);
|
|
NodePtr node2 = MakeNode<TsNode>(
|
|
OpKind(at::aten::view),
|
|
Shape(),
|
|
/*num_outputs*/ 1,
|
|
/*hash_seed*/ kHashSeed);
|
|
EXPECT_EQ(node1->hash(), node2->hash());
|
|
|
|
EXPECT_EQ(node1->num_outputs(), 1);
|
|
|
|
const TsNode* leafptr = dynamic_cast<const TsNode*>(node1.get());
|
|
EXPECT_TRUE(leafptr != nullptr);
|
|
}
|
|
|
|
TEST(IrTest, DimensionNodeTest) {
|
|
const size_t DIM0 = 5;
|
|
const size_t DIM1 = 8;
|
|
NodePtr node1 = MakeNode<TsNode>(
|
|
OpKind(at::aten::view),
|
|
Shape(c10::kFloat, {DIM0, DIM1}),
|
|
/*num_outputs*/ 1,
|
|
/*hash_seed*/ kHashSeed);
|
|
|
|
auto size0 =
|
|
std::dynamic_pointer_cast<SizeNode>(MakeNode<SizeNode>(Value{node1}, 0));
|
|
auto size1 =
|
|
std::dynamic_pointer_cast<SizeNode>(MakeNode<SizeNode>(Value{node1}, 1));
|
|
|
|
ASSERT_EQ(DIM0, size0->getStaticValue());
|
|
ASSERT_EQ(DIM1, size1->getStaticValue());
|
|
|
|
NodePtr size0_np = size0;
|
|
auto size0_dn = std::dynamic_pointer_cast<DimensionNode>(size0_np);
|
|
ASSERT_EQ(DIM0, size0_dn->getStaticValue());
|
|
|
|
auto add_dim = std::dynamic_pointer_cast<SizeAdd>(
|
|
MakeNode<SizeAdd>(Value{size0}, Value{size1}));
|
|
ASSERT_EQ(DIM0 + DIM1, add_dim->getStaticValue());
|
|
|
|
auto mul_dim = std::dynamic_pointer_cast<SizeMul>(
|
|
MakeNode<SizeMul>(Value{size0}, Value{size1}));
|
|
ASSERT_EQ(DIM0 * DIM1, mul_dim->getStaticValue());
|
|
}
|
|
|
|
TEST(IrTest, DimensionIsDynamicTest) {
|
|
const size_t DIM0 = 5;
|
|
const size_t DIM1 = 8;
|
|
const auto shape = Shape(c10::kFloat, {DIM0, DIM1});
|
|
NodePtr node1 = MakeNode<TsNode>(
|
|
OpKind(at::aten::view),
|
|
shape.with_symbolic_dims(std::vector<bool>{true, false}),
|
|
/*num_outputs*/ 1,
|
|
/*hash_seed*/ kHashSeed);
|
|
|
|
auto size0 =
|
|
std::dynamic_pointer_cast<SizeNode>(MakeNode<SizeNode>(Value{node1}, 0));
|
|
auto size1 =
|
|
std::dynamic_pointer_cast<SizeNode>(MakeNode<SizeNode>(Value{node1}, 1));
|
|
|
|
ASSERT_EQ(true, size0->isSymbolic());
|
|
ASSERT_EQ(false, size1->isSymbolic());
|
|
|
|
auto add_dim = std::dynamic_pointer_cast<SizeAdd>(
|
|
MakeNode<SizeAdd>(Value{size0}, Value{size1}));
|
|
ASSERT_EQ(true, add_dim->isSymbolic());
|
|
|
|
add_dim = std::dynamic_pointer_cast<SizeAdd>(
|
|
MakeNode<SizeAdd>(Value{size1}, Value{size1}));
|
|
ASSERT_EQ(false, add_dim->isSymbolic());
|
|
|
|
auto mul_dim = std::dynamic_pointer_cast<SizeMul>(
|
|
MakeNode<SizeMul>(Value{size0}, Value{size0}));
|
|
ASSERT_EQ(true, mul_dim->isSymbolic());
|
|
}
|
|
|
|
} // namespace lazy
|
|
} // namespace torch
|