mirror of
https://github.com/pytorch/pytorch.git
synced 2025-10-20 12:54:11 +08:00
Summary: As GoogleTest `TEST` macro is non-compliant with it as well as `DEFINE_DISPATCH` All changes but the ones to `.clang-tidy` are generated using following script: ``` for i in `find . -type f -iname "*.c*" -or -iname "*.h"|xargs grep cppcoreguidelines-avoid-non-const-global-variables|cut -f1 -d:|sort|uniq`; do sed -i "/\/\/ NOLINTNEXTLINE(cppcoreguidelines-avoid-non-const-global-variables)/d" $i; done ``` Pull Request resolved: https://github.com/pytorch/pytorch/pull/62008 Reviewed By: driazati, r-barnes Differential Revision: D29838584 Pulled By: malfet fbshipit-source-id: 1b2f8602c945bd4ce50a9bfdd204755556e31d13
115 lines
3.1 KiB
C++
115 lines
3.1 KiB
C++
#include <gtest/gtest.h>
|
|
|
|
#include <torch/csrc/jit/ir/ir.h>
|
|
#include <torch/csrc/jit/ir/irparser.h>
|
|
#include <torch/csrc/jit/passes/constant_pooling.h>
|
|
#include <torch/csrc/jit/passes/constant_propagation.h>
|
|
#include <torch/csrc/jit/testing/file_check.h>
|
|
|
|
#include <sstream>
|
|
#include <string>
|
|
|
|
namespace torch {
|
|
namespace jit {
|
|
|
|
TEST(ConstantPoolingTest, Int) {
|
|
auto graph = std::make_shared<Graph>();
|
|
parseIR(
|
|
R"IR(
|
|
graph():
|
|
%8 : int = prim::Constant[value=1]()
|
|
%10 : int = prim::Constant[value=1]()
|
|
return (%8, %10)
|
|
)IR",
|
|
&*graph);
|
|
ConstantPooling(graph);
|
|
testing::FileCheck()
|
|
.check_count("prim::Constant", 1, /*exactly*/ true)
|
|
->run(*graph);
|
|
}
|
|
|
|
TEST(ConstantPoolingTest, PoolingAcrossBlocks) {
|
|
auto graph = std::make_shared<Graph>();
|
|
parseIR(
|
|
R"IR(
|
|
graph(%cond : Tensor):
|
|
%a : str = prim::Constant[value="bcd"]()
|
|
%3 : bool = aten::Bool(%cond)
|
|
%b : str = prim::If(%3)
|
|
block0():
|
|
%b.1 : str = prim::Constant[value="abc"]()
|
|
-> (%b.1)
|
|
block1():
|
|
%b.2 : str = prim::Constant[value="abc"]()
|
|
-> (%b.2)
|
|
%7 : (str, str) = prim::TupleConstruct(%a, %b)
|
|
return (%7)
|
|
)IR",
|
|
&*graph);
|
|
ConstantPooling(graph);
|
|
testing::FileCheck()
|
|
.check_count("prim::Constant[value=\"abc\"]", 1, /*exactly*/ true)
|
|
->check_count("prim::Constant[value=\"bcd\"]", 1, /*exactly*/ true)
|
|
->run(*graph);
|
|
}
|
|
|
|
TEST(ConstantPoolingTest, PoolingDifferentDevices) {
|
|
auto graph = std::make_shared<Graph>();
|
|
parseIR(
|
|
R"IR(
|
|
graph():
|
|
%2 : int = prim::Constant[value=2]()
|
|
%1 : int = prim::Constant[value=1]()
|
|
%5 : int? = prim::Constant()
|
|
%7 : Device? = prim::Constant()
|
|
%15: bool = prim::Constant[value=0]()
|
|
%10 : int = prim::Constant[value=6]()
|
|
%3 : int[] = prim::ListConstruct(%1, %2)
|
|
%x : Tensor = aten::tensor(%3, %5, %7, %15)
|
|
%y : Tensor = aten::tensor(%3, %10, %7, %15)
|
|
%9 : int[] = prim::ListConstruct(%1, %2)
|
|
%z : Tensor = aten::tensor(%9, %10, %7, %15)
|
|
prim::Print(%x, %y, %z)
|
|
return (%1)
|
|
)IR",
|
|
&*graph);
|
|
// three tensors created - two different devices among the three
|
|
// don't have good support for parsing tensor constants
|
|
ConstantPropagation(graph);
|
|
ConstantPooling(graph);
|
|
testing::FileCheck()
|
|
.check_count(
|
|
"Float(2, strides=[1], requires_grad=0, device=cpu) = prim::Constant",
|
|
1,
|
|
/*exactly*/ true)
|
|
->check_count(
|
|
"Long(2, strides=[1], requires_grad=0, device=cpu) = prim::Constant",
|
|
1,
|
|
/*exactly*/ true)
|
|
->run(*graph);
|
|
}
|
|
|
|
TEST(ConstantPoolingTest, DictConstantPooling) {
|
|
auto graph = std::make_shared<Graph>();
|
|
parseIR(
|
|
R"IR(
|
|
graph():
|
|
%0 : int = prim::Constant[value=1]() # test/elias.py:6:9
|
|
%1 : int = prim::Constant[value=2]() # test/elias.py:6:12
|
|
%a.1 : Dict(int, int) = prim::DictConstruct(%0, %1)
|
|
%b.1 : Dict(int, int) = prim::DictConstruct(%1, %1)
|
|
return (%a.1, %b.1)
|
|
)IR",
|
|
&*graph);
|
|
ConstantPropagation(graph);
|
|
ConstantPooling(graph);
|
|
testing::FileCheck()
|
|
.check_count(
|
|
"Dict(int, int) = prim::Constant",
|
|
2,
|
|
/*exactly*/ true)
|
|
->run(*graph);
|
|
}
|
|
} // namespace jit
|
|
} // namespace torch
|