mirror of
https://github.com/pytorch/pytorch.git
synced 2025-10-20 21:14:14 +08:00
I am trying to give some test files better owner labels than `module: unknown`. I am not sure them, but they seem pretty reasonable Pull Request resolved: https://github.com/pytorch/pytorch/pull/163203 Approved by: https://github.com/jcaip
331 lines
12 KiB
Python
331 lines
12 KiB
Python
# Owner(s): ["module: sparse"]
|
|
|
|
import copy
|
|
import io
|
|
import logging
|
|
from itertools import product
|
|
|
|
import numpy as np
|
|
|
|
import torch
|
|
import torch.ao.quantization as tq
|
|
from torch import nn
|
|
from torch.ao.pruning.sparsifier.utils import fqn_to_module
|
|
from torch.testing._internal.common_quantized import (
|
|
override_cpu_allocator_for_qnnpack,
|
|
override_qengines,
|
|
qengine_is_fbgemm,
|
|
qengine_is_onednn,
|
|
qengine_is_qnnpack,
|
|
qengine_is_x86,
|
|
)
|
|
from torch.testing._internal.common_utils import (
|
|
raise_on_run_directly,
|
|
skipIfTorchDynamo,
|
|
TestCase,
|
|
)
|
|
|
|
|
|
# TODO: Once more test files are created, move the contents to a ao folder.
|
|
|
|
logger = logging.getLogger(__name__)
|
|
|
|
|
|
class TestQuantizedSparseKernels(TestCase):
|
|
@skipIfTorchDynamo("TorchDynamo fails here for unknown reasons")
|
|
@override_qengines
|
|
def test_sparse_qlinear(self):
|
|
batch_size = 12
|
|
input_channels = 16
|
|
output_channels = 4
|
|
decimal_val = 4
|
|
row_block_size = 1
|
|
col_block_size = 4
|
|
|
|
# X86 implementation of sparse ops in qnnpack only support
|
|
# block pattern 1x4.
|
|
# arm kernels have support for both 1x4 and 8x1.
|
|
# This distinction is only because x86 implementations exist
|
|
# only to enable testing of integration path.
|
|
# We do plan to add 8x1 as well so that testing does not have to
|
|
# special case like this. At the moment it is deprioritized due
|
|
# to other higher priority works.
|
|
if qengine_is_qnnpack() and not (row_block_size == 1 and col_block_size == 4):
|
|
return
|
|
# ONEDNN and X86 do not support this yet
|
|
if qengine_is_onednn() or qengine_is_x86():
|
|
return
|
|
|
|
dense_prepack = torch.ops.quantized.linear_prepack
|
|
dense_qlinear = torch.ops.quantized.linear
|
|
dense_qlinear_dynamic = torch.ops.quantized.linear_dynamic
|
|
|
|
sparse_prepack = torch.ops.sparse.qlinear_prepack
|
|
sparse_qlinear = torch.ops.sparse.qlinear
|
|
sparse_qlinear_dynamic = torch.ops.sparse.qlinear_dynamic
|
|
|
|
X_scale = 0.2
|
|
X_zp = 2
|
|
X_fp32 = torch.randn(batch_size, input_channels, dtype=torch.float32)
|
|
float_bias = torch.randn(output_channels, dtype=torch.float32)
|
|
|
|
W_scales = torch.rand(output_channels, dtype=torch.float32)
|
|
W_zps = torch.zeros(output_channels, dtype=torch.int32)
|
|
W_fp32 = torch.randn(output_channels, input_channels, dtype=torch.float32)
|
|
|
|
with override_cpu_allocator_for_qnnpack(qengine_is_qnnpack()):
|
|
X_q = torch.quantize_per_tensor(
|
|
X_fp32, scale=X_scale, zero_point=X_zp, dtype=torch.quint8
|
|
)
|
|
|
|
for use_channelwise, dynamic_mode in product([True, False], [True, False]):
|
|
if qengine_is_fbgemm() and dynamic_mode:
|
|
logger.info("dynamic sparse qlinear is only available in qnnpack")
|
|
continue
|
|
if qengine_is_qnnpack() and not dynamic_mode:
|
|
logger.info("static sparse qlinear is only available in fbgemm")
|
|
continue
|
|
if use_channelwise:
|
|
W_q = torch.quantize_per_channel(
|
|
W_fp32,
|
|
scales=W_scales,
|
|
zero_points=W_zps,
|
|
axis=0,
|
|
dtype=torch.qint8,
|
|
)
|
|
else:
|
|
W_q = torch.quantize_per_tensor(
|
|
W_fp32,
|
|
scale=W_scales[0],
|
|
zero_point=W_zps[0],
|
|
dtype=torch.qint8,
|
|
)
|
|
|
|
Y_scale = 1.1234
|
|
Y_zp = 5
|
|
W_prepack_dense = dense_prepack(W_q, float_bias)
|
|
W_prepack_sparse = sparse_prepack(
|
|
W_q, float_bias, row_block_size, col_block_size
|
|
)
|
|
|
|
if dynamic_mode:
|
|
Y = sparse_qlinear_dynamic(X_fp32, W_prepack_sparse)
|
|
Y_ref = dense_qlinear_dynamic(X_fp32, W_prepack_dense)
|
|
|
|
np.testing.assert_array_almost_equal(
|
|
Y_ref.numpy(), Y.numpy(), decimal=decimal_val
|
|
)
|
|
else:
|
|
Y_q = sparse_qlinear(X_q, W_prepack_sparse, Y_scale, Y_zp)
|
|
Y_q_ref = dense_qlinear(X_q, W_prepack_dense, Y_scale, Y_zp)
|
|
|
|
np.testing.assert_array_almost_equal(
|
|
Y_q_ref.int_repr().numpy(),
|
|
Y_q.int_repr().numpy(),
|
|
decimal=decimal_val,
|
|
)
|
|
|
|
|
|
def _sparse_layer_test_helper(
|
|
model_class,
|
|
sparse_mapping,
|
|
ref_mapping,
|
|
qconfig_dict,
|
|
fqn_to_check,
|
|
test_class,
|
|
test_scripting,
|
|
):
|
|
# SET UP TEST PARAMETERS, INPUTS AND WEIGHTS
|
|
# ------------------------------------------
|
|
batch_size = 12
|
|
input_channels = 4
|
|
output_channels = 7
|
|
model = model_class(input_channels, output_channels)
|
|
|
|
# For sparse kernels both the activation and weight ZP = 0
|
|
X_scale = 0.2
|
|
X_zp = 2
|
|
W_scale = 1e-2
|
|
W_zp = 0
|
|
|
|
X_fp32 = torch.randn(batch_size, input_channels, dtype=torch.float32)
|
|
|
|
# generate a weight which we'll insert into the model
|
|
W_fp32 = torch.randn(output_channels, input_channels, dtype=torch.float32)
|
|
mask = torch.randint(0, 2, W_fp32.shape)
|
|
W_fp32 *= mask
|
|
with override_cpu_allocator_for_qnnpack(qengine_is_qnnpack()):
|
|
X_q = torch.quantize_per_tensor(
|
|
X_fp32, scale=X_scale, zero_point=X_zp, dtype=torch.quint8
|
|
)
|
|
X_fp32 = X_q.dequantize()
|
|
|
|
W_q = torch.quantize_per_tensor(W_fp32, W_scale, W_zp, torch.qint8)
|
|
|
|
# PREPARE MODELS FOR QUANTIZATION
|
|
# -------------------------------
|
|
model.linear.weight = nn.Parameter(W_q.dequantize())
|
|
model.eval()
|
|
|
|
# Add `sparse_params` to the model. The test for correct
|
|
# sparse_param addition is in the sparsifier tests
|
|
model.linear.sparse_params = {"sparse_block_shape": (1, 4)}
|
|
|
|
# generate model versions
|
|
qmodel = copy.deepcopy(model)
|
|
sqmodel = copy.deepcopy(model)
|
|
|
|
# generate model versions and apply qconfigs
|
|
tq.propagate_qconfig_(qmodel, qconfig_dict)
|
|
tq.propagate_qconfig_(sqmodel, qconfig_dict)
|
|
|
|
tq.prepare(qmodel, inplace=True)
|
|
tq.prepare(sqmodel, inplace=True)
|
|
|
|
# calibrate
|
|
with torch.no_grad():
|
|
qmodel(X_fp32)
|
|
sqmodel(X_fp32)
|
|
|
|
# ACTUAL TESTING BEGINS HERE
|
|
# --------------------------
|
|
|
|
# Make sure the quantization parameters are computed the same way
|
|
qparams = qmodel.linear.qconfig.weight().calculate_qparams()
|
|
sqparams = sqmodel.linear.qconfig.weight().calculate_qparams()
|
|
test_class.assertEqual(qparams, sqparams)
|
|
|
|
sqmodule_to_check = fqn_to_module(sqmodel, fqn_to_check)
|
|
sqmodule_start_class = sqmodule_to_check.__class__
|
|
sqmodule_expected_converted_class = sparse_mapping[sqmodule_start_class]
|
|
|
|
qmodule_to_check = fqn_to_module(qmodel, fqn_to_check)
|
|
qmodule_start_class = qmodule_to_check.__class__
|
|
qmodule_expected_converted_class = ref_mapping[qmodule_start_class]
|
|
|
|
# need to determine whether dynamic quantization is being performed since
|
|
# input dtype will be different at the end
|
|
is_dynamic = isinstance(
|
|
qmodule_to_check.activation_post_process, tq.PlaceholderObserver
|
|
)
|
|
|
|
tq.convert(sqmodel, inplace=True, mapping=sparse_mapping)
|
|
tq.convert(qmodel, inplace=True, mapping=ref_mapping)
|
|
|
|
# this code is a duplicate of above since the references do not
|
|
# update to the post-convert modules
|
|
sqmodule_to_check = fqn_to_module(sqmodel, fqn_to_check)
|
|
qmodule_to_check = fqn_to_module(qmodel, fqn_to_check)
|
|
|
|
# check that the modules were converted as expected
|
|
assert isinstance(sqmodule_to_check, sqmodule_expected_converted_class), (
|
|
"Convert failed"
|
|
)
|
|
assert isinstance(qmodule_to_check, qmodule_expected_converted_class), (
|
|
"Mapping failed"
|
|
)
|
|
|
|
row_block_size, col_block_size = sqmodel.linear._packed_params._weight_bias()[
|
|
2:
|
|
]
|
|
assert row_block_size == 1 and col_block_size == 4
|
|
|
|
# only run during serialization/deserialization tests
|
|
# makes sure script/save/load doesn't malform the sqmodel
|
|
if test_scripting:
|
|
scripted_sqmodel = torch.jit.script(sqmodel)
|
|
scripted_sqmodel.eval()
|
|
buffer = io.BytesIO()
|
|
torch.jit.save(scripted_sqmodel, buffer)
|
|
buffer.seek(0)
|
|
sqmodel = torch.jit.load(buffer)
|
|
|
|
# use correct input dtype
|
|
if is_dynamic:
|
|
Y_ref = qmodel(X_fp32)
|
|
Y_hat = sqmodel(X_fp32)
|
|
test_class.assertEqual(Y_ref, Y_hat)
|
|
else:
|
|
Y_ref = qmodel(X_q)
|
|
Y_hat = sqmodel(X_q)
|
|
test_class.assertEqual(Y_ref.dequantize(), Y_hat.dequantize())
|
|
|
|
|
|
class SparseQuantizedModel(nn.Module):
|
|
def __init__(self, in_channels, out_channels):
|
|
super().__init__()
|
|
self.linear = nn.Linear(in_channels, out_channels)
|
|
|
|
def forward(self, x):
|
|
return self.linear(x)
|
|
|
|
|
|
class TestQuantizedSparseLayers(TestCase):
|
|
@override_qengines
|
|
def test_sparse_qlinear(self):
|
|
# Note: At the moment, for sparse kernels
|
|
# fbgemm supports only static quantized sparse linear
|
|
# qnnpack supports only dynamically quantized sparse linear
|
|
# Hence we have two different tests.
|
|
# fbgemm tests static flow, qnnpack tests dynamic.
|
|
# Should be unified later on and tests should be fixed
|
|
# appropriately.
|
|
model_class = SparseQuantizedModel
|
|
fqn_to_check = "linear"
|
|
if qengine_is_fbgemm():
|
|
sparse_mapping = tq.get_default_static_sparse_quant_module_mappings()
|
|
ref_mapping = tq.get_default_static_quant_module_mappings()
|
|
qconfig_dict = {nn.Linear: tq.get_default_qconfig("fbgemm")}
|
|
elif qengine_is_qnnpack():
|
|
sparse_mapping = tq.get_default_dynamic_sparse_quant_module_mappings()
|
|
ref_mapping = tq.get_default_dynamic_quant_module_mappings()
|
|
qconfig_dict = {nn.Linear: tq.qconfig.default_dynamic_qconfig}
|
|
else:
|
|
return
|
|
|
|
_sparse_layer_test_helper(
|
|
model_class=model_class,
|
|
sparse_mapping=sparse_mapping,
|
|
ref_mapping=ref_mapping,
|
|
qconfig_dict=qconfig_dict,
|
|
fqn_to_check=fqn_to_check,
|
|
test_class=self,
|
|
test_scripting=False,
|
|
)
|
|
|
|
@override_qengines
|
|
def test_sparse_qlinear_serdes(self):
|
|
# Note: At the moment, for sparse kernels
|
|
# fbgemm supports only static quantized sparse linear
|
|
# qnnpack supports only dynamically quantized sparse linear
|
|
# Hence we have two different tests.
|
|
# fbgemm tests static flow, qnnpack tests dynamic.
|
|
# Should be unified later on and tests should be fixed
|
|
# appropriately.
|
|
model_class = SparseQuantizedModel
|
|
fqn_to_check = "linear"
|
|
if qengine_is_fbgemm():
|
|
sparse_mapping = tq.get_default_static_sparse_quant_module_mappings()
|
|
ref_mapping = tq.get_default_static_quant_module_mappings()
|
|
qconfig_dict = {nn.Linear: tq.get_default_qconfig("fbgemm")}
|
|
elif qengine_is_qnnpack():
|
|
sparse_mapping = tq.get_default_dynamic_sparse_quant_module_mappings()
|
|
ref_mapping = tq.get_default_dynamic_quant_module_mappings()
|
|
qconfig_dict = {nn.Linear: tq.qconfig.default_dynamic_qconfig}
|
|
else:
|
|
return
|
|
|
|
_sparse_layer_test_helper(
|
|
model_class=model_class,
|
|
sparse_mapping=sparse_mapping,
|
|
ref_mapping=ref_mapping,
|
|
qconfig_dict=qconfig_dict,
|
|
fqn_to_check=fqn_to_check,
|
|
test_class=self,
|
|
test_scripting=True,
|
|
)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
raise_on_run_directly("test/test_ao_sparsity.py")
|