mirror of
https://github.com/pytorch/pytorch.git
synced 2025-10-20 21:14:14 +08:00
The dtype documentation has not been updated in awhile, let's do a revamp. 1. combine the duplicated docs for dtypes from `tensors.rst` and `tensor_attributes.rst` to live in `tensor_attributes.rst`, and link to that page from `tensors.rst` 2. split the dtype table into floating point and integer dtypes 3. add the definition of shell dtype 4. add the float8 and MX dtypes as shell dtypes to the dtype table 5. remove legacy quantized dtypes from the table 6. add the definition of various dtype suffixes ("fn", etc) Pull Request resolved: https://github.com/pytorch/pytorch/pull/156087 Approved by: https://github.com/albanD
707 lines
16 KiB
ReStructuredText
707 lines
16 KiB
ReStructuredText
.. currentmodule:: torch
|
|
|
|
.. _tensor-doc:
|
|
|
|
torch.Tensor
|
|
===================================
|
|
|
|
A :class:`torch.Tensor` is a multi-dimensional matrix containing elements of
|
|
a single data type. Please see :ref:`dtype-doc` for more details about dtype support.
|
|
|
|
Initializing and basic operations
|
|
---------------------------------
|
|
|
|
A tensor can be constructed from a Python :class:`list` or sequence using the
|
|
:func:`torch.tensor` constructor:
|
|
|
|
::
|
|
|
|
>>> torch.tensor([[1., -1.], [1., -1.]])
|
|
tensor([[ 1.0000, -1.0000],
|
|
[ 1.0000, -1.0000]])
|
|
>>> torch.tensor(np.array([[1, 2, 3], [4, 5, 6]]))
|
|
tensor([[ 1, 2, 3],
|
|
[ 4, 5, 6]])
|
|
|
|
.. warning::
|
|
|
|
:func:`torch.tensor` always copies :attr:`data`. If you have a Tensor
|
|
:attr:`data` and just want to change its ``requires_grad`` flag, use
|
|
:meth:`~torch.Tensor.requires_grad_` or
|
|
:meth:`~torch.Tensor.detach` to avoid a copy.
|
|
If you have a numpy array and want to avoid a copy, use
|
|
:func:`torch.as_tensor`.
|
|
|
|
A tensor of specific data type can be constructed by passing a
|
|
:class:`torch.dtype` and/or a :class:`torch.device` to a
|
|
constructor or tensor creation op:
|
|
|
|
::
|
|
|
|
>>> torch.zeros([2, 4], dtype=torch.int32)
|
|
tensor([[ 0, 0, 0, 0],
|
|
[ 0, 0, 0, 0]], dtype=torch.int32)
|
|
>>> cuda0 = torch.device('cuda:0')
|
|
>>> torch.ones([2, 4], dtype=torch.float64, device=cuda0)
|
|
tensor([[ 1.0000, 1.0000, 1.0000, 1.0000],
|
|
[ 1.0000, 1.0000, 1.0000, 1.0000]], dtype=torch.float64, device='cuda:0')
|
|
|
|
For more information about building Tensors, see :ref:`tensor-creation-ops`
|
|
|
|
|
|
The contents of a tensor can be accessed and modified using Python's indexing
|
|
and slicing notation:
|
|
|
|
::
|
|
|
|
>>> x = torch.tensor([[1, 2, 3], [4, 5, 6]])
|
|
>>> print(x[1][2])
|
|
tensor(6)
|
|
>>> x[0][1] = 8
|
|
>>> print(x)
|
|
tensor([[ 1, 8, 3],
|
|
[ 4, 5, 6]])
|
|
|
|
Use :meth:`torch.Tensor.item` to get a Python number from a tensor containing a
|
|
single value:
|
|
|
|
::
|
|
|
|
>>> x = torch.tensor([[1]])
|
|
>>> x
|
|
tensor([[ 1]])
|
|
>>> x.item()
|
|
1
|
|
>>> x = torch.tensor(2.5)
|
|
>>> x
|
|
tensor(2.5000)
|
|
>>> x.item()
|
|
2.5
|
|
|
|
For more information about indexing, see :ref:`indexing-slicing-joining`
|
|
|
|
A tensor can be created with :attr:`requires_grad=True` so that
|
|
:mod:`torch.autograd` records operations on them for automatic differentiation.
|
|
|
|
::
|
|
|
|
>>> x = torch.tensor([[1., -1.], [1., 1.]], requires_grad=True)
|
|
>>> out = x.pow(2).sum()
|
|
>>> out.backward()
|
|
>>> x.grad
|
|
tensor([[ 2.0000, -2.0000],
|
|
[ 2.0000, 2.0000]])
|
|
|
|
Each tensor has an associated :class:`torch.Storage`, which holds its data.
|
|
The tensor class also provides multi-dimensional, `strided <https://en.wikipedia.org/wiki/Stride_of_an_array>`_
|
|
view of a storage and defines numeric operations on it.
|
|
|
|
.. note::
|
|
For more information on tensor views, see :ref:`tensor-view-doc`.
|
|
|
|
.. note::
|
|
For more information on the :class:`torch.dtype`, :class:`torch.device`, and
|
|
:class:`torch.layout` attributes of a :class:`torch.Tensor`, see
|
|
:ref:`tensor-attributes-doc`.
|
|
|
|
.. note::
|
|
Methods which mutate a tensor are marked with an underscore suffix.
|
|
For example, :func:`torch.FloatTensor.abs_` computes the absolute value
|
|
in-place and returns the modified tensor, while :func:`torch.FloatTensor.abs`
|
|
computes the result in a new tensor.
|
|
|
|
.. note::
|
|
To change an existing tensor's :class:`torch.device` and/or :class:`torch.dtype`, consider using
|
|
:meth:`~torch.Tensor.to` method on the tensor.
|
|
|
|
.. warning::
|
|
Current implementation of :class:`torch.Tensor` introduces memory overhead,
|
|
thus it might lead to unexpectedly high memory usage in the applications with many tiny tensors.
|
|
If this is your case, consider using one large structure.
|
|
|
|
|
|
Tensor class reference
|
|
----------------------
|
|
|
|
.. class:: Tensor()
|
|
|
|
There are a few main ways to create a tensor, depending on your use case.
|
|
|
|
- To create a tensor with pre-existing data, use :func:`torch.tensor`.
|
|
- To create a tensor with specific size, use ``torch.*`` tensor creation
|
|
ops (see :ref:`tensor-creation-ops`).
|
|
- To create a tensor with the same size (and similar types) as another tensor,
|
|
use ``torch.*_like`` tensor creation ops
|
|
(see :ref:`tensor-creation-ops`).
|
|
- To create a tensor with similar type but different size as another tensor,
|
|
use ``tensor.new_*`` creation ops.
|
|
- There is a legacy constructor ``torch.Tensor`` whose use is discouraged.
|
|
Use :func:`torch.tensor` instead.
|
|
|
|
.. method:: Tensor.__init__(self, data)
|
|
|
|
This constructor is deprecated, we recommend using :func:`torch.tensor` instead.
|
|
What this constructor does depends on the type of ``data``.
|
|
|
|
* If ``data`` is a Tensor, returns an alias to the original Tensor. Unlike
|
|
:func:`torch.tensor`, this tracks autograd and will propagate gradients to
|
|
the original Tensor. ``device`` kwarg is not supported for this ``data`` type.
|
|
|
|
* If ``data`` is a sequence or nested sequence, create a tensor of the default
|
|
dtype (typically ``torch.float32``) whose data is the values in the
|
|
sequences, performing coercions if necessary. Notably, this differs from
|
|
:func:`torch.tensor` in that this constructor will always construct a float
|
|
tensor, even if the inputs are all integers.
|
|
|
|
* If ``data`` is a :class:`torch.Size`, returns an empty tensor of that size.
|
|
|
|
This constructor does not support explicitly specifying ``dtype`` or ``device`` of
|
|
the returned tensor. We recommend using :func:`torch.tensor` which provides this
|
|
functionality.
|
|
|
|
Args:
|
|
data (array_like): The tensor to construct from.
|
|
|
|
Keyword args:
|
|
device (:class:`torch.device`, optional): the desired device of returned tensor.
|
|
Default: if None, same :class:`torch.device` as this tensor.
|
|
|
|
|
|
.. autoattribute:: Tensor.T
|
|
.. autoattribute:: Tensor.H
|
|
.. autoattribute:: Tensor.mT
|
|
.. autoattribute:: Tensor.mH
|
|
|
|
.. autosummary::
|
|
:toctree: generated
|
|
:nosignatures:
|
|
|
|
Tensor.new_tensor
|
|
Tensor.new_full
|
|
Tensor.new_empty
|
|
Tensor.new_ones
|
|
Tensor.new_zeros
|
|
|
|
Tensor.is_cuda
|
|
Tensor.is_quantized
|
|
Tensor.is_meta
|
|
Tensor.device
|
|
Tensor.grad
|
|
Tensor.ndim
|
|
Tensor.real
|
|
Tensor.imag
|
|
Tensor.nbytes
|
|
Tensor.itemsize
|
|
|
|
Tensor.abs
|
|
Tensor.abs_
|
|
Tensor.absolute
|
|
Tensor.absolute_
|
|
Tensor.acos
|
|
Tensor.acos_
|
|
Tensor.arccos
|
|
Tensor.arccos_
|
|
Tensor.add
|
|
Tensor.add_
|
|
Tensor.addbmm
|
|
Tensor.addbmm_
|
|
Tensor.addcdiv
|
|
Tensor.addcdiv_
|
|
Tensor.addcmul
|
|
Tensor.addcmul_
|
|
Tensor.addmm
|
|
Tensor.addmm_
|
|
Tensor.sspaddmm
|
|
Tensor.addmv
|
|
Tensor.addmv_
|
|
Tensor.addr
|
|
Tensor.addr_
|
|
Tensor.adjoint
|
|
Tensor.allclose
|
|
Tensor.amax
|
|
Tensor.amin
|
|
Tensor.aminmax
|
|
Tensor.angle
|
|
Tensor.apply_
|
|
Tensor.argmax
|
|
Tensor.argmin
|
|
Tensor.argsort
|
|
Tensor.argwhere
|
|
Tensor.asin
|
|
Tensor.asin_
|
|
Tensor.arcsin
|
|
Tensor.arcsin_
|
|
Tensor.as_strided
|
|
Tensor.atan
|
|
Tensor.atan_
|
|
Tensor.arctan
|
|
Tensor.arctan_
|
|
Tensor.atan2
|
|
Tensor.atan2_
|
|
Tensor.arctan2
|
|
Tensor.arctan2_
|
|
Tensor.all
|
|
Tensor.any
|
|
Tensor.backward
|
|
Tensor.baddbmm
|
|
Tensor.baddbmm_
|
|
Tensor.bernoulli
|
|
Tensor.bernoulli_
|
|
Tensor.bfloat16
|
|
Tensor.bincount
|
|
Tensor.bitwise_not
|
|
Tensor.bitwise_not_
|
|
Tensor.bitwise_and
|
|
Tensor.bitwise_and_
|
|
Tensor.bitwise_or
|
|
Tensor.bitwise_or_
|
|
Tensor.bitwise_xor
|
|
Tensor.bitwise_xor_
|
|
Tensor.bitwise_left_shift
|
|
Tensor.bitwise_left_shift_
|
|
Tensor.bitwise_right_shift
|
|
Tensor.bitwise_right_shift_
|
|
Tensor.bmm
|
|
Tensor.bool
|
|
Tensor.byte
|
|
Tensor.broadcast_to
|
|
Tensor.cauchy_
|
|
Tensor.ceil
|
|
Tensor.ceil_
|
|
Tensor.char
|
|
Tensor.cholesky
|
|
Tensor.cholesky_inverse
|
|
Tensor.cholesky_solve
|
|
Tensor.chunk
|
|
Tensor.clamp
|
|
Tensor.clamp_
|
|
Tensor.clip
|
|
Tensor.clip_
|
|
Tensor.clone
|
|
Tensor.contiguous
|
|
Tensor.copy_
|
|
Tensor.conj
|
|
Tensor.conj_physical
|
|
Tensor.conj_physical_
|
|
Tensor.resolve_conj
|
|
Tensor.resolve_neg
|
|
Tensor.copysign
|
|
Tensor.copysign_
|
|
Tensor.cos
|
|
Tensor.cos_
|
|
Tensor.cosh
|
|
Tensor.cosh_
|
|
Tensor.corrcoef
|
|
Tensor.count_nonzero
|
|
Tensor.cov
|
|
Tensor.acosh
|
|
Tensor.acosh_
|
|
Tensor.arccosh
|
|
Tensor.arccosh_
|
|
Tensor.cpu
|
|
Tensor.cross
|
|
Tensor.cuda
|
|
Tensor.logcumsumexp
|
|
Tensor.cummax
|
|
Tensor.cummin
|
|
Tensor.cumprod
|
|
Tensor.cumprod_
|
|
Tensor.cumsum
|
|
Tensor.cumsum_
|
|
Tensor.chalf
|
|
Tensor.cfloat
|
|
Tensor.cdouble
|
|
Tensor.data_ptr
|
|
Tensor.deg2rad
|
|
Tensor.dequantize
|
|
Tensor.det
|
|
Tensor.dense_dim
|
|
Tensor.detach
|
|
Tensor.detach_
|
|
Tensor.diag
|
|
Tensor.diag_embed
|
|
Tensor.diagflat
|
|
Tensor.diagonal
|
|
Tensor.diagonal_scatter
|
|
Tensor.fill_diagonal_
|
|
Tensor.fmax
|
|
Tensor.fmin
|
|
Tensor.diff
|
|
Tensor.digamma
|
|
Tensor.digamma_
|
|
Tensor.dim
|
|
Tensor.dim_order
|
|
Tensor.dist
|
|
Tensor.div
|
|
Tensor.div_
|
|
Tensor.divide
|
|
Tensor.divide_
|
|
Tensor.dot
|
|
Tensor.double
|
|
Tensor.dsplit
|
|
Tensor.element_size
|
|
Tensor.eq
|
|
Tensor.eq_
|
|
Tensor.equal
|
|
Tensor.erf
|
|
Tensor.erf_
|
|
Tensor.erfc
|
|
Tensor.erfc_
|
|
Tensor.erfinv
|
|
Tensor.erfinv_
|
|
Tensor.exp
|
|
Tensor.exp_
|
|
Tensor.expm1
|
|
Tensor.expm1_
|
|
Tensor.expand
|
|
Tensor.expand_as
|
|
Tensor.exponential_
|
|
Tensor.fix
|
|
Tensor.fix_
|
|
Tensor.fill_
|
|
Tensor.flatten
|
|
Tensor.flip
|
|
Tensor.fliplr
|
|
Tensor.flipud
|
|
Tensor.float
|
|
Tensor.float_power
|
|
Tensor.float_power_
|
|
Tensor.floor
|
|
Tensor.floor_
|
|
Tensor.floor_divide
|
|
Tensor.floor_divide_
|
|
Tensor.fmod
|
|
Tensor.fmod_
|
|
Tensor.frac
|
|
Tensor.frac_
|
|
Tensor.frexp
|
|
Tensor.gather
|
|
Tensor.gcd
|
|
Tensor.gcd_
|
|
Tensor.ge
|
|
Tensor.ge_
|
|
Tensor.greater_equal
|
|
Tensor.greater_equal_
|
|
Tensor.geometric_
|
|
Tensor.geqrf
|
|
Tensor.ger
|
|
Tensor.get_device
|
|
Tensor.gt
|
|
Tensor.gt_
|
|
Tensor.greater
|
|
Tensor.greater_
|
|
Tensor.half
|
|
Tensor.hardshrink
|
|
Tensor.heaviside
|
|
Tensor.histc
|
|
Tensor.histogram
|
|
Tensor.hsplit
|
|
Tensor.hypot
|
|
Tensor.hypot_
|
|
Tensor.i0
|
|
Tensor.i0_
|
|
Tensor.igamma
|
|
Tensor.igamma_
|
|
Tensor.igammac
|
|
Tensor.igammac_
|
|
Tensor.index_add_
|
|
Tensor.index_add
|
|
Tensor.index_copy_
|
|
Tensor.index_copy
|
|
Tensor.index_fill_
|
|
Tensor.index_fill
|
|
Tensor.index_put_
|
|
Tensor.index_put
|
|
Tensor.index_reduce_
|
|
Tensor.index_reduce
|
|
Tensor.index_select
|
|
Tensor.indices
|
|
Tensor.inner
|
|
Tensor.int
|
|
Tensor.int_repr
|
|
Tensor.inverse
|
|
Tensor.isclose
|
|
Tensor.isfinite
|
|
Tensor.isinf
|
|
Tensor.isposinf
|
|
Tensor.isneginf
|
|
Tensor.isnan
|
|
Tensor.is_contiguous
|
|
Tensor.is_complex
|
|
Tensor.is_conj
|
|
Tensor.is_floating_point
|
|
Tensor.is_inference
|
|
Tensor.is_leaf
|
|
Tensor.is_pinned
|
|
Tensor.is_set_to
|
|
Tensor.is_shared
|
|
Tensor.is_signed
|
|
Tensor.is_sparse
|
|
Tensor.istft
|
|
Tensor.isreal
|
|
Tensor.item
|
|
Tensor.kthvalue
|
|
Tensor.lcm
|
|
Tensor.lcm_
|
|
Tensor.ldexp
|
|
Tensor.ldexp_
|
|
Tensor.le
|
|
Tensor.le_
|
|
Tensor.less_equal
|
|
Tensor.less_equal_
|
|
Tensor.lerp
|
|
Tensor.lerp_
|
|
Tensor.lgamma
|
|
Tensor.lgamma_
|
|
Tensor.log
|
|
Tensor.log_
|
|
Tensor.logdet
|
|
Tensor.log10
|
|
Tensor.log10_
|
|
Tensor.log1p
|
|
Tensor.log1p_
|
|
Tensor.log2
|
|
Tensor.log2_
|
|
Tensor.log_normal_
|
|
Tensor.logaddexp
|
|
Tensor.logaddexp2
|
|
Tensor.logsumexp
|
|
Tensor.logical_and
|
|
Tensor.logical_and_
|
|
Tensor.logical_not
|
|
Tensor.logical_not_
|
|
Tensor.logical_or
|
|
Tensor.logical_or_
|
|
Tensor.logical_xor
|
|
Tensor.logical_xor_
|
|
Tensor.logit
|
|
Tensor.logit_
|
|
Tensor.long
|
|
Tensor.lt
|
|
Tensor.lt_
|
|
Tensor.less
|
|
Tensor.less_
|
|
Tensor.lu
|
|
Tensor.lu_solve
|
|
Tensor.as_subclass
|
|
Tensor.map_
|
|
Tensor.masked_scatter_
|
|
Tensor.masked_scatter
|
|
Tensor.masked_fill_
|
|
Tensor.masked_fill
|
|
Tensor.masked_select
|
|
Tensor.matmul
|
|
Tensor.matrix_power
|
|
Tensor.matrix_exp
|
|
Tensor.max
|
|
Tensor.maximum
|
|
Tensor.mean
|
|
Tensor.module_load
|
|
Tensor.nanmean
|
|
Tensor.median
|
|
Tensor.nanmedian
|
|
Tensor.min
|
|
Tensor.minimum
|
|
Tensor.mm
|
|
Tensor.smm
|
|
Tensor.mode
|
|
Tensor.movedim
|
|
Tensor.moveaxis
|
|
Tensor.msort
|
|
Tensor.mul
|
|
Tensor.mul_
|
|
Tensor.multiply
|
|
Tensor.multiply_
|
|
Tensor.multinomial
|
|
Tensor.mv
|
|
Tensor.mvlgamma
|
|
Tensor.mvlgamma_
|
|
Tensor.nansum
|
|
Tensor.narrow
|
|
Tensor.narrow_copy
|
|
Tensor.ndimension
|
|
Tensor.nan_to_num
|
|
Tensor.nan_to_num_
|
|
Tensor.ne
|
|
Tensor.ne_
|
|
Tensor.not_equal
|
|
Tensor.not_equal_
|
|
Tensor.neg
|
|
Tensor.neg_
|
|
Tensor.negative
|
|
Tensor.negative_
|
|
Tensor.nelement
|
|
Tensor.nextafter
|
|
Tensor.nextafter_
|
|
Tensor.nonzero
|
|
Tensor.norm
|
|
Tensor.normal_
|
|
Tensor.numel
|
|
Tensor.numpy
|
|
Tensor.orgqr
|
|
Tensor.ormqr
|
|
Tensor.outer
|
|
Tensor.permute
|
|
Tensor.pin_memory
|
|
Tensor.pinverse
|
|
Tensor.polygamma
|
|
Tensor.polygamma_
|
|
Tensor.positive
|
|
Tensor.pow
|
|
Tensor.pow_
|
|
Tensor.prod
|
|
Tensor.put_
|
|
Tensor.qr
|
|
Tensor.qscheme
|
|
Tensor.quantile
|
|
Tensor.nanquantile
|
|
Tensor.q_scale
|
|
Tensor.q_zero_point
|
|
Tensor.q_per_channel_scales
|
|
Tensor.q_per_channel_zero_points
|
|
Tensor.q_per_channel_axis
|
|
Tensor.rad2deg
|
|
Tensor.random_
|
|
Tensor.ravel
|
|
Tensor.reciprocal
|
|
Tensor.reciprocal_
|
|
Tensor.record_stream
|
|
Tensor.register_hook
|
|
Tensor.register_post_accumulate_grad_hook
|
|
Tensor.remainder
|
|
Tensor.remainder_
|
|
Tensor.renorm
|
|
Tensor.renorm_
|
|
Tensor.repeat
|
|
Tensor.repeat_interleave
|
|
Tensor.requires_grad
|
|
Tensor.requires_grad_
|
|
Tensor.reshape
|
|
Tensor.reshape_as
|
|
Tensor.resize_
|
|
Tensor.resize_as_
|
|
Tensor.retain_grad
|
|
Tensor.retains_grad
|
|
Tensor.roll
|
|
Tensor.rot90
|
|
Tensor.round
|
|
Tensor.round_
|
|
Tensor.rsqrt
|
|
Tensor.rsqrt_
|
|
Tensor.scatter
|
|
Tensor.scatter_
|
|
Tensor.scatter_add_
|
|
Tensor.scatter_add
|
|
Tensor.scatter_reduce_
|
|
Tensor.scatter_reduce
|
|
Tensor.select
|
|
Tensor.select_scatter
|
|
Tensor.set_
|
|
Tensor.share_memory_
|
|
Tensor.short
|
|
Tensor.sigmoid
|
|
Tensor.sigmoid_
|
|
Tensor.sign
|
|
Tensor.sign_
|
|
Tensor.signbit
|
|
Tensor.sgn
|
|
Tensor.sgn_
|
|
Tensor.sin
|
|
Tensor.sin_
|
|
Tensor.sinc
|
|
Tensor.sinc_
|
|
Tensor.sinh
|
|
Tensor.sinh_
|
|
Tensor.asinh
|
|
Tensor.asinh_
|
|
Tensor.arcsinh
|
|
Tensor.arcsinh_
|
|
Tensor.shape
|
|
Tensor.size
|
|
Tensor.slogdet
|
|
Tensor.slice_scatter
|
|
Tensor.softmax
|
|
Tensor.sort
|
|
Tensor.split
|
|
Tensor.sparse_mask
|
|
Tensor.sparse_dim
|
|
Tensor.sqrt
|
|
Tensor.sqrt_
|
|
Tensor.square
|
|
Tensor.square_
|
|
Tensor.squeeze
|
|
Tensor.squeeze_
|
|
Tensor.std
|
|
Tensor.stft
|
|
Tensor.storage
|
|
Tensor.untyped_storage
|
|
Tensor.storage_offset
|
|
Tensor.storage_type
|
|
Tensor.stride
|
|
Tensor.sub
|
|
Tensor.sub_
|
|
Tensor.subtract
|
|
Tensor.subtract_
|
|
Tensor.sum
|
|
Tensor.sum_to_size
|
|
Tensor.svd
|
|
Tensor.swapaxes
|
|
Tensor.swapdims
|
|
Tensor.t
|
|
Tensor.t_
|
|
Tensor.tensor_split
|
|
Tensor.tile
|
|
Tensor.to
|
|
Tensor.to_mkldnn
|
|
Tensor.take
|
|
Tensor.take_along_dim
|
|
Tensor.tan
|
|
Tensor.tan_
|
|
Tensor.tanh
|
|
Tensor.tanh_
|
|
Tensor.atanh
|
|
Tensor.atanh_
|
|
Tensor.arctanh
|
|
Tensor.arctanh_
|
|
Tensor.tolist
|
|
Tensor.topk
|
|
Tensor.to_dense
|
|
Tensor.to_sparse
|
|
Tensor.to_sparse_csr
|
|
Tensor.to_sparse_csc
|
|
Tensor.to_sparse_bsr
|
|
Tensor.to_sparse_bsc
|
|
Tensor.trace
|
|
Tensor.transpose
|
|
Tensor.transpose_
|
|
Tensor.triangular_solve
|
|
Tensor.tril
|
|
Tensor.tril_
|
|
Tensor.triu
|
|
Tensor.triu_
|
|
Tensor.true_divide
|
|
Tensor.true_divide_
|
|
Tensor.trunc
|
|
Tensor.trunc_
|
|
Tensor.type
|
|
Tensor.type_as
|
|
Tensor.unbind
|
|
Tensor.unflatten
|
|
Tensor.unfold
|
|
Tensor.uniform_
|
|
Tensor.unique
|
|
Tensor.unique_consecutive
|
|
Tensor.unsqueeze
|
|
Tensor.unsqueeze_
|
|
Tensor.values
|
|
Tensor.var
|
|
Tensor.vdot
|
|
Tensor.view
|
|
Tensor.view_as
|
|
Tensor.vsplit
|
|
Tensor.where
|
|
Tensor.xlogy
|
|
Tensor.xlogy_
|
|
Tensor.xpu
|
|
Tensor.zero_
|