Files
pytorch/docs/source/tensorboard.rst
Alban Desmaison 734281c3d6 Cleanup all module references in doc (#73983)
Summary:
Working towards https://docs.google.com/document/d/10yx2-4gs0gTMOimVS403MnoAWkqitS8TUHX73PN8EjE/edit?pli=1#

This PR:
- Ensure that all the submodules are listed in a rst file (that ensure they are considered by the coverage tool)
- Remove some long deprecated code that just error out on import
- Remove the allow list altogether to ensure nothing gets added back there

Pull Request resolved: https://github.com/pytorch/pytorch/pull/73983

Reviewed By: anjali411

Differential Revision: D34787908

Pulled By: albanD

fbshipit-source-id: 163ce61e133b12b2f2e1cbe374f979e3d6858db7
(cherry picked from commit c9edfead7a01dc45bfc24eaf7220d2a84ab1f62e)
2022-03-10 22:26:29 +00:00

98 lines
3.1 KiB
ReStructuredText

torch.utils.tensorboard
===================================
.. automodule:: torch.utils.tensorboard
Before going further, more details on TensorBoard can be found at
https://www.tensorflow.org/tensorboard/
Once you've installed TensorBoard, these utilities let you log PyTorch models
and metrics into a directory for visualization within the TensorBoard UI.
Scalars, images, histograms, graphs, and embedding visualizations are all
supported for PyTorch models and tensors as well as Caffe2 nets and blobs.
The SummaryWriter class is your main entry to log data for consumption
and visualization by TensorBoard. For example:
.. code:: python
import torch
import torchvision
from torch.utils.tensorboard import SummaryWriter
from torchvision import datasets, transforms
# Writer will output to ./runs/ directory by default
writer = SummaryWriter()
transform = transforms.Compose([transforms.ToTensor(), transforms.Normalize((0.5,), (0.5,))])
trainset = datasets.MNIST('mnist_train', train=True, download=True, transform=transform)
trainloader = torch.utils.data.DataLoader(trainset, batch_size=64, shuffle=True)
model = torchvision.models.resnet50(False)
# Have ResNet model take in grayscale rather than RGB
model.conv1 = torch.nn.Conv2d(1, 64, kernel_size=7, stride=2, padding=3, bias=False)
images, labels = next(iter(trainloader))
grid = torchvision.utils.make_grid(images)
writer.add_image('images', grid, 0)
writer.add_graph(model, images)
writer.close()
This can then be visualized with TensorBoard, which should be installable
and runnable with::
pip install tensorboard
tensorboard --logdir=runs
Lots of information can be logged for one experiment. To avoid cluttering
the UI and have better result clustering, we can group plots by naming them
hierarchically. For example, "Loss/train" and "Loss/test" will be grouped
together, while "Accuracy/train" and "Accuracy/test" will be grouped separately
in the TensorBoard interface.
.. code:: python
from torch.utils.tensorboard import SummaryWriter
import numpy as np
writer = SummaryWriter()
for n_iter in range(100):
writer.add_scalar('Loss/train', np.random.random(), n_iter)
writer.add_scalar('Loss/test', np.random.random(), n_iter)
writer.add_scalar('Accuracy/train', np.random.random(), n_iter)
writer.add_scalar('Accuracy/test', np.random.random(), n_iter)
Expected result:
.. image:: _static/img/tensorboard/hier_tags.png
:scale: 75 %
|
|
.. currentmodule:: torch.utils.tensorboard.writer
.. autoclass:: SummaryWriter
.. automethod:: __init__
.. automethod:: add_scalar
.. automethod:: add_scalars
.. automethod:: add_histogram
.. automethod:: add_image
.. automethod:: add_images
.. automethod:: add_figure
.. automethod:: add_video
.. automethod:: add_audio
.. automethod:: add_text
.. automethod:: add_graph
.. automethod:: add_embedding
.. automethod:: add_pr_curve
.. automethod:: add_custom_scalars
.. automethod:: add_mesh
.. automethod:: add_hparams
.. automethod:: flush
.. automethod:: close