mirror of
https://github.com/pytorch/pytorch.git
synced 2025-10-21 05:34:18 +08:00
* Created a new module `torch/onnx/testing.py` that exposes the `assert_onnx_program` function for testing exported ONNX models. * Updated the ONNX documentation (`docs/source/onnx.md`) to include `onnx_testing` in the list of relevant modules. Pull Request resolved: https://github.com/pytorch/pytorch/pull/162495 Approved by: https://github.com/titaiwangms, https://github.com/xadupre
139 lines
4.1 KiB
Markdown
139 lines
4.1 KiB
Markdown
# torch.onnx
|
|
|
|
|
|
## Overview
|
|
|
|
[Open Neural Network eXchange (ONNX)](https://onnx.ai/) is an open standard
|
|
format for representing machine learning models. The `torch.onnx` module captures the computation graph from a
|
|
native PyTorch {class}`torch.nn.Module` model and converts it into an
|
|
[ONNX graph](https://github.com/onnx/onnx/blob/main/docs/IR.md).
|
|
|
|
The exported model can be consumed by any of the many
|
|
[runtimes that support ONNX](https://onnx.ai/supported-tools.html#deployModel), including
|
|
Microsoft's [ONNX Runtime](https://www.onnxruntime.ai).
|
|
|
|
Next example shows how to export a simple model.
|
|
|
|
```python
|
|
import torch
|
|
|
|
class MyModel(torch.nn.Module):
|
|
def __init__(self):
|
|
super(MyModel, self).__init__()
|
|
self.conv1 = torch.nn.Conv2d(1, 128, 5)
|
|
|
|
def forward(self, x):
|
|
return torch.relu(self.conv1(x))
|
|
|
|
input_tensor = torch.rand((1, 1, 128, 128), dtype=torch.float32)
|
|
|
|
model = MyModel()
|
|
|
|
torch.onnx.export(
|
|
model, # model to export
|
|
(input_tensor,), # inputs of the model,
|
|
"my_model.onnx", # filename of the ONNX model
|
|
input_names=["input"], # Rename inputs for the ONNX model
|
|
dynamo=True # True or False to select the exporter to use
|
|
)
|
|
```
|
|
|
|
|
|
## torch.export-based ONNX Exporter
|
|
|
|
*The torch.export-based ONNX exporter is the newest exporter for PyTorch 2.6 and newer*
|
|
|
|
{ref}`torch.export <torch.export>` engine is leveraged to produce a traced graph representing only the Tensor computation of the function in an
|
|
Ahead-of-Time (AOT) fashion. The resulting traced graph (1) produces normalized operators in the functional
|
|
ATen operator set (as well as any user-specified custom operators), (2) has eliminated all Python control
|
|
flow and data structures (with certain exceptions), and (3) records the set of shape constraints needed to
|
|
show that this normalization and control-flow elimination is sound for future inputs, before it is finally
|
|
translated into an ONNX graph.
|
|
|
|
{doc}`Learn more about the torch.export-based ONNX Exporter <onnx_export>`
|
|
|
|
## Frequently Asked Questions
|
|
|
|
Q: I have exported my LLM model, but its input size seems to be fixed?
|
|
|
|
The tracer records the shapes of the example inputs. If the model should accept
|
|
inputs of dynamic shapes, set ``dynamic_shapes`` when calling {func}`torch.onnx.export`.
|
|
|
|
Q: How to export models containing loops?
|
|
|
|
See {ref}`torch.cond <cond>`.
|
|
|
|
|
|
## Contributing / Developing
|
|
|
|
The ONNX exporter is a community project and we welcome contributions. We follow the
|
|
[PyTorch guidelines for contributions](https://github.com/pytorch/pytorch/blob/main/CONTRIBUTING.md), but you might
|
|
also be interested in reading our [development wiki](https://github.com/pytorch/pytorch/wiki/PyTorch-ONNX-exporter).
|
|
|
|
|
|
## torch.onnx APIs
|
|
|
|
```{eval-rst}
|
|
.. automodule:: torch.onnx
|
|
```
|
|
|
|
### Functions
|
|
|
|
```{eval-rst}
|
|
.. autofunction:: export
|
|
:noindex:
|
|
.. autofunction:: is_in_onnx_export
|
|
:noindex:
|
|
```
|
|
|
|
### Classes
|
|
|
|
```{eval-rst}
|
|
.. autoclass:: ONNXProgram
|
|
:noindex:
|
|
.. autoclass:: OnnxExporterError
|
|
:noindex:
|
|
```
|
|
|
|
```{eval-rst}
|
|
.. toctree::
|
|
:hidden:
|
|
|
|
onnx_export
|
|
onnx_ops
|
|
onnx_verification
|
|
onnx_testing
|
|
```
|
|
|
|
### Deprecated APIs
|
|
|
|
```{eval-rst}
|
|
.. deprecated:: 2.6
|
|
These functions are deprecated and will be removed in a future version.
|
|
|
|
.. autofunction:: register_custom_op_symbolic
|
|
.. autofunction:: unregister_custom_op_symbolic
|
|
.. autofunction:: select_model_mode_for_export
|
|
```
|
|
|
|
```{eval-rst}
|
|
.. py:module:: torch.onnx.errors
|
|
.. py:module:: torch.onnx.operators
|
|
.. py:module:: torch.onnx.symbolic_helper
|
|
.. py:module:: torch.onnx.symbolic_opset10
|
|
.. py:module:: torch.onnx.symbolic_opset11
|
|
.. py:module:: torch.onnx.symbolic_opset12
|
|
.. py:module:: torch.onnx.symbolic_opset13
|
|
.. py:module:: torch.onnx.symbolic_opset14
|
|
.. py:module:: torch.onnx.symbolic_opset15
|
|
.. py:module:: torch.onnx.symbolic_opset16
|
|
.. py:module:: torch.onnx.symbolic_opset17
|
|
.. py:module:: torch.onnx.symbolic_opset18
|
|
.. py:module:: torch.onnx.symbolic_opset19
|
|
.. py:module:: torch.onnx.symbolic_opset20
|
|
.. py:module:: torch.onnx.symbolic_opset7
|
|
.. py:module:: torch.onnx.symbolic_opset8
|
|
.. py:module:: torch.onnx.symbolic_opset9
|
|
.. py:module:: torch.onnx.utils
|
|
```
|