mirror of
https://github.com/pytorch/pytorch.git
synced 2025-10-21 05:34:18 +08:00
Fixes #155027 Converted RST files to Markdown Pull Request resolved: https://github.com/pytorch/pytorch/pull/155252 Approved by: https://github.com/svekars Co-authored-by: Svetlana Karslioglu <svekars@meta.com>
484 lines
20 KiB
Markdown
484 lines
20 KiB
Markdown
```{eval-rst}
|
|
.. currentmodule:: torch
|
|
```
|
|
|
|
(name_inference_reference-doc)=
|
|
|
|
# Named Tensors operator coverage
|
|
|
|
Please read {ref}`named_tensors-doc` first for an introduction to named tensors.
|
|
|
|
This document is a reference for *name inference*, a process that defines how
|
|
named tensors:
|
|
|
|
1. use names to provide additional automatic runtime correctness checks
|
|
2. propagate names from input tensors to output tensors
|
|
|
|
Below is a list of all operations that are supported with named tensors
|
|
and their associated name inference rules.
|
|
|
|
If you don't see an operation listed here, but it would help your use case, please
|
|
[search if an issue has already been filed](https://github.com/pytorch/pytorch/issues?q=is%3Aopen+is%3Aissue+label%3A%22module%3A+named+tensor%22) and if not, [file one](https://github.com/pytorch/pytorch/issues/new/choose).
|
|
|
|
:::{warning}
|
|
The named tensor API is experimental and subject to change.
|
|
:::
|
|
|
|
```{eval-rst}
|
|
.. csv-table:: Supported Operations
|
|
:header: API, Name inference rule
|
|
:widths: 20, 20
|
|
|
|
":meth:`Tensor.abs`, :func:`torch.abs`",:ref:`keeps_input_names-doc`
|
|
:meth:`Tensor.abs_`,:ref:`keeps_input_names-doc`
|
|
":meth:`Tensor.acos`, :func:`torch.acos`",:ref:`keeps_input_names-doc`
|
|
:meth:`Tensor.acos_`,:ref:`keeps_input_names-doc`
|
|
":meth:`Tensor.add`, :func:`torch.add`",:ref:`unifies_names_from_inputs-doc`
|
|
:meth:`Tensor.add_`,:ref:`unifies_names_from_inputs-doc`
|
|
":meth:`Tensor.addmm`, :func:`torch.addmm`",:ref:`contracts_away_dims-doc`
|
|
:meth:`Tensor.addmm_`,:ref:`contracts_away_dims-doc`
|
|
":meth:`Tensor.addmv`, :func:`torch.addmv`",:ref:`contracts_away_dims-doc`
|
|
:meth:`Tensor.addmv_`,:ref:`contracts_away_dims-doc`
|
|
:meth:`Tensor.align_as`,See documentation
|
|
:meth:`Tensor.align_to`,See documentation
|
|
":meth:`Tensor.all`, :func:`torch.all`",None
|
|
":meth:`Tensor.any`, :func:`torch.any`",None
|
|
":meth:`Tensor.asin`, :func:`torch.asin`",:ref:`keeps_input_names-doc`
|
|
:meth:`Tensor.asin_`,:ref:`keeps_input_names-doc`
|
|
":meth:`Tensor.atan`, :func:`torch.atan`",:ref:`keeps_input_names-doc`
|
|
":meth:`Tensor.atan2`, :func:`torch.atan2`",:ref:`unifies_names_from_inputs-doc`
|
|
:meth:`Tensor.atan2_`,:ref:`unifies_names_from_inputs-doc`
|
|
:meth:`Tensor.atan_`,:ref:`keeps_input_names-doc`
|
|
":meth:`Tensor.bernoulli`, :func:`torch.bernoulli`",:ref:`keeps_input_names-doc`
|
|
:meth:`Tensor.bernoulli_`,None
|
|
:meth:`Tensor.bfloat16`,:ref:`keeps_input_names-doc`
|
|
":meth:`Tensor.bitwise_not`, :func:`torch.bitwise_not`",:ref:`keeps_input_names-doc`
|
|
:meth:`Tensor.bitwise_not_`,None
|
|
":meth:`Tensor.bmm`, :func:`torch.bmm`",:ref:`contracts_away_dims-doc`
|
|
:meth:`Tensor.bool`,:ref:`keeps_input_names-doc`
|
|
:meth:`Tensor.byte`,:ref:`keeps_input_names-doc`
|
|
:func:`torch.cat`,:ref:`unifies_names_from_inputs-doc`
|
|
:meth:`Tensor.cauchy_`,None
|
|
":meth:`Tensor.ceil`, :func:`torch.ceil`",:ref:`keeps_input_names-doc`
|
|
:meth:`Tensor.ceil_`,None
|
|
:meth:`Tensor.char`,:ref:`keeps_input_names-doc`
|
|
":meth:`Tensor.chunk`, :func:`torch.chunk`",:ref:`keeps_input_names-doc`
|
|
":meth:`Tensor.clamp`, :func:`torch.clamp`",:ref:`keeps_input_names-doc`
|
|
:meth:`Tensor.clamp_`,None
|
|
:meth:`Tensor.copy_`,:ref:`out_function_semantics-doc`
|
|
":meth:`Tensor.cos`, :func:`torch.cos`",:ref:`keeps_input_names-doc`
|
|
:meth:`Tensor.cos_`,None
|
|
":meth:`Tensor.cosh`, :func:`torch.cosh`",:ref:`keeps_input_names-doc`
|
|
:meth:`Tensor.cosh_`,None
|
|
":meth:`Tensor.acosh`, :func:`torch.acosh`",:ref:`keeps_input_names-doc`
|
|
:meth:`Tensor.acosh_`,None
|
|
:meth:`Tensor.cpu`,:ref:`keeps_input_names-doc`
|
|
:meth:`Tensor.cuda`,:ref:`keeps_input_names-doc`
|
|
":meth:`Tensor.cumprod`, :func:`torch.cumprod`",:ref:`keeps_input_names-doc`
|
|
":meth:`Tensor.cumsum`, :func:`torch.cumsum`",:ref:`keeps_input_names-doc`
|
|
:meth:`Tensor.data_ptr`,None
|
|
":meth:`Tensor.deg2rad`, :func:`torch.deg2rad`",:ref:`keeps_input_names-doc`
|
|
:meth:`Tensor.deg2rad_`,None
|
|
":meth:`Tensor.detach`, :func:`torch.detach`",:ref:`keeps_input_names-doc`
|
|
:meth:`Tensor.detach_`,None
|
|
":attr:`Tensor.device`, :func:`torch.device`",None
|
|
":meth:`Tensor.digamma`, :func:`torch.digamma`",:ref:`keeps_input_names-doc`
|
|
:meth:`Tensor.digamma_`,None
|
|
:meth:`Tensor.dim`,None
|
|
":meth:`Tensor.div`, :func:`torch.div`",:ref:`unifies_names_from_inputs-doc`
|
|
:meth:`Tensor.div_`,:ref:`unifies_names_from_inputs-doc`
|
|
":meth:`Tensor.dot`, :func:`torch.dot`",None
|
|
:meth:`Tensor.double`,:ref:`keeps_input_names-doc`
|
|
:meth:`Tensor.element_size`,None
|
|
:func:`torch.empty`,:ref:`factory-doc`
|
|
:func:`torch.empty_like`,:ref:`factory-doc`
|
|
":meth:`Tensor.eq`, :func:`torch.eq`",:ref:`unifies_names_from_inputs-doc`
|
|
":meth:`Tensor.erf`, :func:`torch.erf`",:ref:`keeps_input_names-doc`
|
|
:meth:`Tensor.erf_`,None
|
|
":meth:`Tensor.erfc`, :func:`torch.erfc`",:ref:`keeps_input_names-doc`
|
|
:meth:`Tensor.erfc_`,None
|
|
":meth:`Tensor.erfinv`, :func:`torch.erfinv`",:ref:`keeps_input_names-doc`
|
|
:meth:`Tensor.erfinv_`,None
|
|
":meth:`Tensor.exp`, :func:`torch.exp`",:ref:`keeps_input_names-doc`
|
|
:meth:`Tensor.exp_`,None
|
|
:meth:`Tensor.expand`,:ref:`keeps_input_names-doc`
|
|
":meth:`Tensor.expm1`, :func:`torch.expm1`",:ref:`keeps_input_names-doc`
|
|
:meth:`Tensor.expm1_`,None
|
|
:meth:`Tensor.exponential_`,None
|
|
:meth:`Tensor.fill_`,None
|
|
":meth:`Tensor.flatten`, :func:`torch.flatten`",See documentation
|
|
:meth:`Tensor.float`,:ref:`keeps_input_names-doc`
|
|
":meth:`Tensor.floor`, :func:`torch.floor`",:ref:`keeps_input_names-doc`
|
|
:meth:`Tensor.floor_`,None
|
|
":meth:`Tensor.frac`, :func:`torch.frac`",:ref:`keeps_input_names-doc`
|
|
:meth:`Tensor.frac_`,None
|
|
":meth:`Tensor.ge`, :func:`torch.ge`",:ref:`unifies_names_from_inputs-doc`
|
|
":meth:`Tensor.get_device`, :func:`torch.get_device`",None
|
|
:attr:`Tensor.grad`,None
|
|
":meth:`Tensor.gt`, :func:`torch.gt`",:ref:`unifies_names_from_inputs-doc`
|
|
:meth:`Tensor.half`,:ref:`keeps_input_names-doc`
|
|
:meth:`Tensor.has_names`,See documentation
|
|
":meth:`Tensor.index_fill`, :func:`torch.index_fill`",:ref:`keeps_input_names-doc`
|
|
:meth:`Tensor.index_fill_`,None
|
|
:meth:`Tensor.int`,:ref:`keeps_input_names-doc`
|
|
:meth:`Tensor.is_contiguous`,None
|
|
:attr:`Tensor.is_cuda`,None
|
|
":meth:`Tensor.is_floating_point`, :func:`torch.is_floating_point`",None
|
|
:attr:`Tensor.is_leaf`,None
|
|
:meth:`Tensor.is_pinned`,None
|
|
:meth:`Tensor.is_shared`,None
|
|
":meth:`Tensor.is_signed`, :func:`torch.is_signed`",None
|
|
:attr:`Tensor.is_sparse`,None
|
|
:attr:`Tensor.is_sparse_csr`,None
|
|
:func:`torch.is_tensor`,None
|
|
:meth:`Tensor.item`,None
|
|
:attr:`Tensor.itemsize`,None
|
|
":meth:`Tensor.kthvalue`, :func:`torch.kthvalue`",:ref:`removes_dimensions-doc`
|
|
":meth:`Tensor.le`, :func:`torch.le`",:ref:`unifies_names_from_inputs-doc`
|
|
":meth:`Tensor.log`, :func:`torch.log`",:ref:`keeps_input_names-doc`
|
|
":meth:`Tensor.log10`, :func:`torch.log10`",:ref:`keeps_input_names-doc`
|
|
:meth:`Tensor.log10_`,None
|
|
":meth:`Tensor.log1p`, :func:`torch.log1p`",:ref:`keeps_input_names-doc`
|
|
:meth:`Tensor.log1p_`,None
|
|
":meth:`Tensor.log2`, :func:`torch.log2`",:ref:`keeps_input_names-doc`
|
|
:meth:`Tensor.log2_`,None
|
|
:meth:`Tensor.log_`,None
|
|
:meth:`Tensor.log_normal_`,None
|
|
":meth:`Tensor.logical_not`, :func:`torch.logical_not`",:ref:`keeps_input_names-doc`
|
|
:meth:`Tensor.logical_not_`,None
|
|
":meth:`Tensor.logsumexp`, :func:`torch.logsumexp`",:ref:`removes_dimensions-doc`
|
|
:meth:`Tensor.long`,:ref:`keeps_input_names-doc`
|
|
":meth:`Tensor.lt`, :func:`torch.lt`",:ref:`unifies_names_from_inputs-doc`
|
|
:func:`torch.manual_seed`,None
|
|
":meth:`Tensor.masked_fill`, :func:`torch.masked_fill`",:ref:`keeps_input_names-doc`
|
|
:meth:`Tensor.masked_fill_`,None
|
|
":meth:`Tensor.masked_select`, :func:`torch.masked_select`",Aligns mask up to input and then unifies_names_from_input_tensors
|
|
":meth:`Tensor.matmul`, :func:`torch.matmul`",:ref:`contracts_away_dims-doc`
|
|
":meth:`Tensor.mean`, :func:`torch.mean`",:ref:`removes_dimensions-doc`
|
|
":meth:`Tensor.median`, :func:`torch.median`",:ref:`removes_dimensions-doc`
|
|
":meth:`Tensor.nanmedian`, :func:`torch.nanmedian`",:ref:`removes_dimensions-doc`
|
|
":meth:`Tensor.mm`, :func:`torch.mm`",:ref:`contracts_away_dims-doc`
|
|
":meth:`Tensor.mode`, :func:`torch.mode`",:ref:`removes_dimensions-doc`
|
|
":meth:`Tensor.mul`, :func:`torch.mul`",:ref:`unifies_names_from_inputs-doc`
|
|
:meth:`Tensor.mul_`,:ref:`unifies_names_from_inputs-doc`
|
|
":meth:`Tensor.mv`, :func:`torch.mv`",:ref:`contracts_away_dims-doc`
|
|
:attr:`Tensor.names`,See documentation
|
|
":meth:`Tensor.narrow`, :func:`torch.narrow`",:ref:`keeps_input_names-doc`
|
|
:attr:`Tensor.nbytes`,None
|
|
:attr:`Tensor.ndim`,None
|
|
:meth:`Tensor.ndimension`,None
|
|
":meth:`Tensor.ne`, :func:`torch.ne`",:ref:`unifies_names_from_inputs-doc`
|
|
":meth:`Tensor.neg`, :func:`torch.neg`",:ref:`keeps_input_names-doc`
|
|
:meth:`Tensor.neg_`,None
|
|
:func:`torch.normal`,:ref:`keeps_input_names-doc`
|
|
:meth:`Tensor.normal_`,None
|
|
":meth:`Tensor.numel`, :func:`torch.numel`",None
|
|
:func:`torch.ones`,:ref:`factory-doc`
|
|
":meth:`Tensor.pow`, :func:`torch.pow`",:ref:`unifies_names_from_inputs-doc`
|
|
:meth:`Tensor.pow_`,None
|
|
":meth:`Tensor.prod`, :func:`torch.prod`",:ref:`removes_dimensions-doc`
|
|
":meth:`Tensor.rad2deg`, :func:`torch.rad2deg`",:ref:`keeps_input_names-doc`
|
|
:meth:`Tensor.rad2deg_`,None
|
|
:func:`torch.rand`,:ref:`factory-doc`
|
|
:func:`torch.rand`,:ref:`factory-doc`
|
|
:func:`torch.randn`,:ref:`factory-doc`
|
|
:func:`torch.randn`,:ref:`factory-doc`
|
|
:meth:`Tensor.random_`,None
|
|
":meth:`Tensor.reciprocal`, :func:`torch.reciprocal`",:ref:`keeps_input_names-doc`
|
|
:meth:`Tensor.reciprocal_`,None
|
|
:meth:`Tensor.refine_names`,See documentation
|
|
:meth:`Tensor.register_hook`,None
|
|
:meth:`Tensor.register_post_accumulate_grad_hook`,None
|
|
:meth:`Tensor.rename`,See documentation
|
|
:meth:`Tensor.rename_`,See documentation
|
|
:attr:`Tensor.requires_grad`,None
|
|
:meth:`Tensor.requires_grad_`,None
|
|
:meth:`Tensor.resize_`,Only allow resizes that do not change shape
|
|
:meth:`Tensor.resize_as_`,Only allow resizes that do not change shape
|
|
":meth:`Tensor.round`, :func:`torch.round`",:ref:`keeps_input_names-doc`
|
|
:meth:`Tensor.round_`,None
|
|
":meth:`Tensor.rsqrt`, :func:`torch.rsqrt`",:ref:`keeps_input_names-doc`
|
|
:meth:`Tensor.rsqrt_`,None
|
|
":meth:`Tensor.select`, :func:`torch.select`",:ref:`removes_dimensions-doc`
|
|
:meth:`Tensor.short`,:ref:`keeps_input_names-doc`
|
|
":meth:`Tensor.sigmoid`, :func:`torch.sigmoid`",:ref:`keeps_input_names-doc`
|
|
:meth:`Tensor.sigmoid_`,None
|
|
":meth:`Tensor.sign`, :func:`torch.sign`",:ref:`keeps_input_names-doc`
|
|
:meth:`Tensor.sign_`,None
|
|
":meth:`Tensor.sgn`, :func:`torch.sgn`",:ref:`keeps_input_names-doc`
|
|
:meth:`Tensor.sgn_`,None
|
|
":meth:`Tensor.sin`, :func:`torch.sin`",:ref:`keeps_input_names-doc`
|
|
:meth:`Tensor.sin_`,None
|
|
":meth:`Tensor.sinh`, :func:`torch.sinh`",:ref:`keeps_input_names-doc`
|
|
:meth:`Tensor.sinh_`,None
|
|
":meth:`Tensor.asinh`, :func:`torch.asinh`",:ref:`keeps_input_names-doc`
|
|
:meth:`Tensor.asinh_`,None
|
|
:meth:`Tensor.size`,None
|
|
":meth:`Tensor.softmax`, :func:`torch.softmax`",:ref:`keeps_input_names-doc`
|
|
":meth:`Tensor.split`, :func:`torch.split`",:ref:`keeps_input_names-doc`
|
|
":meth:`Tensor.sqrt`, :func:`torch.sqrt`",:ref:`keeps_input_names-doc`
|
|
:meth:`Tensor.sqrt_`,None
|
|
":meth:`Tensor.squeeze`, :func:`torch.squeeze`",:ref:`removes_dimensions-doc`
|
|
":meth:`Tensor.std`, :func:`torch.std`",:ref:`removes_dimensions-doc`
|
|
:func:`torch.std_mean`,:ref:`removes_dimensions-doc`
|
|
:meth:`Tensor.stride`,None
|
|
":meth:`Tensor.sub`, :func:`torch.sub`",:ref:`unifies_names_from_inputs-doc`
|
|
:meth:`Tensor.sub_`,:ref:`unifies_names_from_inputs-doc`
|
|
":meth:`Tensor.sum`, :func:`torch.sum`",:ref:`removes_dimensions-doc`
|
|
":meth:`Tensor.tan`, :func:`torch.tan`",:ref:`keeps_input_names-doc`
|
|
:meth:`Tensor.tan_`,None
|
|
":meth:`Tensor.tanh`, :func:`torch.tanh`",:ref:`keeps_input_names-doc`
|
|
:meth:`Tensor.tanh_`,None
|
|
":meth:`Tensor.atanh`, :func:`torch.atanh`",:ref:`keeps_input_names-doc`
|
|
:meth:`Tensor.atanh_`,None
|
|
:func:`torch.tensor`,:ref:`factory-doc`
|
|
:meth:`Tensor.to`,:ref:`keeps_input_names-doc`
|
|
":meth:`Tensor.topk`, :func:`torch.topk`",:ref:`removes_dimensions-doc`
|
|
":meth:`Tensor.transpose`, :func:`torch.transpose`",:ref:`permutes_dimensions-doc`
|
|
":meth:`Tensor.trunc`, :func:`torch.trunc`",:ref:`keeps_input_names-doc`
|
|
:meth:`Tensor.trunc_`,None
|
|
:meth:`Tensor.type`,None
|
|
:meth:`Tensor.type_as`,:ref:`keeps_input_names-doc`
|
|
":meth:`Tensor.unbind`, :func:`torch.unbind`",:ref:`removes_dimensions-doc`
|
|
:meth:`Tensor.unflatten`,See documentation
|
|
:meth:`Tensor.uniform_`,None
|
|
":meth:`Tensor.var`, :func:`torch.var`",:ref:`removes_dimensions-doc`
|
|
:func:`torch.var_mean`,:ref:`removes_dimensions-doc`
|
|
:meth:`Tensor.zero_`,None
|
|
:func:`torch.zeros`,:ref:`factory-doc`
|
|
|
|
```
|
|
|
|
(keeps_input_names-doc)=
|
|
|
|
## Keeps input names
|
|
|
|
All pointwise unary functions follow this rule as well as some other unary functions.
|
|
|
|
- Check names: None
|
|
- Propagate names: input tensor's names are propagated to the output.
|
|
|
|
```
|
|
>>> x = torch.randn(3, 3, names=('N', 'C'))
|
|
>>> x.abs().names
|
|
('N', 'C')
|
|
```
|
|
|
|
(removes_dimensions-doc)=
|
|
|
|
## Removes dimensions
|
|
|
|
All reduction ops like {meth}`~Tensor.sum` remove dimensions by reducing
|
|
over the desired dimensions. Other operations like {meth}`~Tensor.select` and
|
|
{meth}`~Tensor.squeeze` remove dimensions.
|
|
|
|
Wherever one can pass an integer dimension index to an operator, one can also pass
|
|
a dimension name. Functions that take lists of dimension indices can also take in a
|
|
list of dimension names.
|
|
|
|
- Check names: If {attr}`dim` or {attr}`dims` is passed in as a list of names,
|
|
check that those names exist in {attr}`self`.
|
|
- Propagate names: If the dimensions of the input tensor specified by {attr}`dim`
|
|
or {attr}`dims` are not present in the output tensor, then the corresponding names
|
|
of those dimensions do not appear in `output.names`.
|
|
|
|
```
|
|
>>> x = torch.randn(1, 3, 3, 3, names=('N', 'C', 'H', 'W'))
|
|
>>> x.squeeze('N').names
|
|
('C', 'H', 'W')
|
|
|
|
>>> x = torch.randn(3, 3, 3, 3, names=('N', 'C', 'H', 'W'))
|
|
>>> x.sum(['N', 'C']).names
|
|
('H', 'W')
|
|
|
|
# Reduction ops with keepdim=True don't actually remove dimensions.
|
|
>>> x = torch.randn(3, 3, 3, 3, names=('N', 'C', 'H', 'W'))
|
|
>>> x.sum(['N', 'C'], keepdim=True).names
|
|
('N', 'C', 'H', 'W')
|
|
```
|
|
|
|
(unifies_names_from_inputs-doc)=
|
|
|
|
## Unifies names from inputs
|
|
|
|
All binary arithmetic ops follow this rule. Operations that broadcast still
|
|
broadcast positionally from the right to preserve compatibility with unnamed
|
|
tensors. To perform explicit broadcasting by names, use {meth}`Tensor.align_as`.
|
|
|
|
- Check names: All names must match positionally from the right. i.e., in
|
|
`tensor + other`, `match(tensor.names[i], other.names[i])` must be true for all
|
|
`i` in `(-min(tensor.dim(), other.dim()) + 1, -1]`.
|
|
- Check names: Furthermore, all named dimensions must be aligned from the right.
|
|
During matching, if we match a named dimension `A` with an unnamed dimension
|
|
`None`, then `A` must not appear in the tensor with the unnamed dimension.
|
|
- Propagate names: unify pairs of names from the right from both tensors to
|
|
produce output names.
|
|
|
|
For example,
|
|
|
|
```
|
|
# tensor: Tensor[ N, None]
|
|
# other: Tensor[None, C]
|
|
>>> tensor = torch.randn(3, 3, names=('N', None))
|
|
>>> other = torch.randn(3, 3, names=(None, 'C'))
|
|
>>> (tensor + other).names
|
|
('N', 'C')
|
|
```
|
|
|
|
Check names:
|
|
|
|
- `match(tensor.names[-1], other.names[-1])` is `True`
|
|
- `match(tensor.names[-2], tensor.names[-2])` is `True`
|
|
- Because we matched `None` in {attr}`tensor` with `'C'`,
|
|
check to make sure `'C'` doesn't exist in {attr}`tensor` (it does not).
|
|
- Check to make sure `'N'` doesn't exists in {attr}`other` (it does not).
|
|
|
|
Finally, the output names are computed with
|
|
`[unify('N', None), unify(None, 'C')] = ['N', 'C']`
|
|
|
|
More examples:
|
|
|
|
```
|
|
# Dimensions don't match from the right:
|
|
# tensor: Tensor[N, C]
|
|
# other: Tensor[ N]
|
|
>>> tensor = torch.randn(3, 3, names=('N', 'C'))
|
|
>>> other = torch.randn(3, names=('N',))
|
|
>>> (tensor + other).names
|
|
RuntimeError: Error when attempting to broadcast dims ['N', 'C'] and dims
|
|
['N']: dim 'C' and dim 'N' are at the same position from the right but do
|
|
not match.
|
|
|
|
# Dimensions aren't aligned when matching tensor.names[-1] and other.names[-1]:
|
|
# tensor: Tensor[N, None]
|
|
# other: Tensor[ N]
|
|
>>> tensor = torch.randn(3, 3, names=('N', None))
|
|
>>> other = torch.randn(3, names=('N',))
|
|
>>> (tensor + other).names
|
|
RuntimeError: Misaligned dims when attempting to broadcast dims ['N'] and
|
|
dims ['N', None]: dim 'N' appears in a different position from the right
|
|
across both lists.
|
|
```
|
|
|
|
:::{note}
|
|
In both of the last examples, it is possible to align the tensors by names
|
|
and then perform the addition. Use {meth}`Tensor.align_as` to align
|
|
tensors by name or {meth}`Tensor.align_to` to align tensors to a custom
|
|
dimension ordering.
|
|
:::
|
|
|
|
(permutes_dimensions-doc)=
|
|
|
|
## Permutes dimensions
|
|
|
|
Some operations, like {meth}`Tensor.t()`, permute the order of dimensions. Dimension names
|
|
are attached to individual dimensions so they get permuted as well.
|
|
|
|
If the operator takes in positional index {attr}`dim`, it is also able to take a dimension
|
|
name as {attr}`dim`.
|
|
|
|
- Check names: If {attr}`dim` is passed as a name, check that it exists in the tensor.
|
|
- Propagate names: Permute dimension names in the same way as the dimensions that are
|
|
being permuted.
|
|
|
|
```
|
|
>>> x = torch.randn(3, 3, names=('N', 'C'))
|
|
>>> x.transpose('N', 'C').names
|
|
('C', 'N')
|
|
```
|
|
|
|
(contracts_away_dims-doc)=
|
|
|
|
## Contracts away dims
|
|
|
|
Matrix multiply functions follow some variant of this. Let's go through
|
|
{func}`torch.mm` first and then generalize the rule for batch matrix multiplication.
|
|
|
|
For `torch.mm(tensor, other)`:
|
|
|
|
- Check names: None
|
|
- Propagate names: result names are `(tensor.names[-2], other.names[-1])`.
|
|
|
|
```
|
|
>>> x = torch.randn(3, 3, names=('N', 'D'))
|
|
>>> y = torch.randn(3, 3, names=('in', 'out'))
|
|
>>> x.mm(y).names
|
|
('N', 'out')
|
|
```
|
|
|
|
Inherently, a matrix multiplication performs a dot product over two dimensions,
|
|
collapsing them. When two tensors are matrix-multiplied, the contracted dimensions
|
|
disappear and do not show up in the output tensor.
|
|
|
|
{func}`torch.mv`, {func}`torch.dot` work in a similar way: name inference does not
|
|
check input names and removes the dimensions that are involved in the dot product:
|
|
|
|
```
|
|
>>> x = torch.randn(3, 3, names=('N', 'D'))
|
|
>>> y = torch.randn(3, names=('something',))
|
|
>>> x.mv(y).names
|
|
('N',)
|
|
```
|
|
|
|
Now, let's take a look at `torch.matmul(tensor, other)`. Assume that `tensor.dim() >= 2`
|
|
and `other.dim() >= 2`.
|
|
|
|
- Check names: Check that the batch dimensions of the inputs are aligned and broadcastable.
|
|
See {ref}`unifies_names_from_inputs-doc` for what it means for the inputs to be aligned.
|
|
- Propagate names: result names are obtained by unifying the batch dimensions and removing
|
|
the contracted dimensions:
|
|
`unify(tensor.names[:-2], other.names[:-2]) + (tensor.names[-2], other.names[-1])`.
|
|
|
|
Examples:
|
|
|
|
```
|
|
# Batch matrix multiply of matrices Tensor['C', 'D'] and Tensor['E', 'F'].
|
|
# 'A', 'B' are batch dimensions.
|
|
>>> x = torch.randn(3, 3, 3, 3, names=('A', 'B', 'C', 'D'))
|
|
>>> y = torch.randn(3, 3, 3, names=('B', 'E', 'F'))
|
|
>>> torch.matmul(x, y).names
|
|
('A', 'B', 'C', 'F')
|
|
```
|
|
|
|
Finally, there are fused `add` versions of many matmul functions. i.e., {func}`addmm`
|
|
and {func}`addmv`. These are treated as composing name inference for i.e. {func}`mm` and
|
|
name inference for {func}`add`.
|
|
|
|
(factory-doc)=
|
|
|
|
## Factory functions
|
|
|
|
Factory functions now take a new {attr}`names` argument that associates a name
|
|
with each dimension.
|
|
|
|
```
|
|
>>> torch.zeros(2, 3, names=('N', 'C'))
|
|
tensor([[0., 0., 0.],
|
|
[0., 0., 0.]], names=('N', 'C'))
|
|
```
|
|
|
|
(out_function_semantics-doc)=
|
|
|
|
## out function and in-place variants
|
|
|
|
A tensor specified as an `out=` tensor has the following behavior:
|
|
|
|
- If it has no named dimensions, then the names computed from the operation
|
|
get propagated to it.
|
|
- If it has any named dimensions, then the names computed from the operation
|
|
must be exactly equal to the existing names. Otherwise, the operation errors.
|
|
|
|
All in-place methods modify inputs to have names equal to the computed names
|
|
from name inference. For example:
|
|
|
|
```
|
|
>>> x = torch.randn(3, 3)
|
|
>>> y = torch.randn(3, 3, names=('N', 'C'))
|
|
>>> x.names
|
|
(None, None)
|
|
|
|
>>> x += y
|
|
>>> x.names
|
|
('N', 'C')
|
|
```
|