Adds `OperatorEntry::getComputedKernelForDispatchKey` which returns the KernelFunction corresponding to `OperatorEntry.dispatchTable_[dispatch_ix]` for a given dispatch key - Specifically it returns a `SafeKernelFunction` that holds a `KernelToken`. This `KernelToken` is registered to the `KernelFunction` in `OperatorEntry.kernels_` and will be invalidated when the `KernelFunction` is destructed (i.e. when the `AnnotatedKernel` that holds this `KernelFunction` is removed from `kernels_`, which happens when the corresponding impl is deregistered). - `SafeKernelFunction` can be called via `callBoxed`, the validity of the token will be checked before this happens - `SafeKernelFunction` is pybinded and `getComputedKernelForDispatchKey` is exposed to the frontend ia `torch.library.get_kernel` Related to https://github.com/pytorch/pytorch/issues/155330 Pull Request resolved: https://github.com/pytorch/pytorch/pull/158393 Approved by: https://github.com/albanD
2.7 KiB
(torch-library-docs)=
torch.library
.. py:module:: torch.library
.. currentmodule:: torch.library
torch.library is a collection of APIs for extending PyTorch's core library of operators. It contains utilities for testing custom operators, creating new custom operators, and extending operators defined with PyTorch's C++ operator registration APIs (e.g. aten operators).
For a detailed guide on effectively using these APIs, please see PyTorch Custom Operators Landing Page for more details on how to effectively use these APIs.
Testing custom ops
Use {func}torch.library.opcheck
to test custom ops for incorrect usage of the
Python torch.library and/or C++ TORCH_LIBRARY APIs. Also, if your operator supports
training, use {func}torch.autograd.gradcheck
to test that the gradients are
mathematically correct.
.. autofunction:: opcheck
Creating new custom ops in Python
Use {func}torch.library.custom_op
to create new custom ops.
.. autofunction:: custom_op
.. autofunction:: triton_op
.. autofunction:: wrap_triton
Extending custom ops (created from Python or C++)
Use the register.*
methods, such as {func}torch.library.register_kernel
and
{func}torch.library.register_fake
, to add implementations
for any operators (they may have been created using {func}torch.library.custom_op
or
via PyTorch's C++ operator registration APIs).
.. autofunction:: register_kernel
.. autofunction:: register_autocast
.. autofunction:: register_autograd
.. autofunction:: register_fake
.. autofunction:: register_vmap
.. autofunction:: impl_abstract
.. autofunction:: get_ctx
.. autofunction:: register_torch_dispatch
.. autofunction:: infer_schema
.. autoclass:: torch._library.custom_ops.CustomOpDef
:members: set_kernel_enabled
.. autofunction:: get_kernel
Low-level APIs
The following APIs are direct bindings to PyTorch's C++ low-level operator registration APIs.
.. warning:: The low-level operator registration APIs and the PyTorch Dispatcher are a complicated PyTorch concept. We recommend you use the higher level APIs above (that do not require a torch.library.Library object) when possible. `This blog post <http://blog.ezyang.com/2020/09/lets-talk-about-the-pytorch-dispatcher/>`_ is a good starting point to learn about the PyTorch Dispatcher.
A tutorial that walks you through some examples on how to use this API is available on Google Colab.
.. autoclass:: torch.library.Library
:members:
.. autofunction:: fallthrough_kernel
.. autofunction:: define
.. autofunction:: impl