mirror of
https://github.com/pytorch/pytorch.git
synced 2025-10-21 05:34:18 +08:00
See https://github.com/pytorch/pytorch/pull/129751#issue-2380881501. Most changes are auto-generated by linter. You can review these PRs via: ```bash git diff --ignore-all-space --ignore-blank-lines HEAD~1 ``` Pull Request resolved: https://github.com/pytorch/pytorch/pull/129754 Approved by: https://github.com/ezyang
109 lines
2.3 KiB
Python
109 lines
2.3 KiB
Python
import operator_benchmark as op_bench
|
|
|
|
import torch
|
|
import torch.nn as nn
|
|
|
|
|
|
"""
|
|
Microbenchmarks for the softmax operators.
|
|
"""
|
|
|
|
|
|
# Configs for softmax ops
|
|
softmax_configs_short = op_bench.config_list(
|
|
attr_names=["N", "C", "H", "W"],
|
|
attrs=[
|
|
[1, 3, 256, 256],
|
|
[4, 3, 256, 256],
|
|
],
|
|
cross_product_configs={
|
|
"device": ["cpu", "cuda"],
|
|
},
|
|
tags=["short"],
|
|
)
|
|
|
|
|
|
softmax_configs_long = op_bench.cross_product_configs(
|
|
N=[8, 16],
|
|
C=[3],
|
|
H=[256, 512],
|
|
W=[256, 512],
|
|
device=["cpu", "cuda"],
|
|
tags=["long"],
|
|
)
|
|
|
|
|
|
softmax_ops_list = op_bench.op_list(
|
|
attr_names=["op_name", "op_func"],
|
|
attrs=[
|
|
["Softmax", nn.Softmax],
|
|
["Softmax2d", nn.Softmax2d],
|
|
["LogSoftmax", nn.LogSoftmax],
|
|
],
|
|
)
|
|
|
|
softmax_two_dims_ops_list = op_bench.op_list(
|
|
attr_names=["op_name", "op_func"],
|
|
attrs=[
|
|
["Softmax", nn.Softmax],
|
|
["LogSoftmax", nn.LogSoftmax],
|
|
],
|
|
)
|
|
|
|
|
|
softmax_two_dims_configs = op_bench.config_list(
|
|
attr_names=["M", "N", "dim"],
|
|
attrs=[
|
|
[700, 23258, 0],
|
|
[700, 23258, 1],
|
|
[1024, 23258, 1],
|
|
[128, 128, 1],
|
|
[48, 128, 1],
|
|
[16, 1024, 1],
|
|
[32, 1024, 1],
|
|
[48, 1024, 1],
|
|
[16, 512, 1],
|
|
[32, 512, 1],
|
|
[48, 512, 1],
|
|
[16, 256, 1],
|
|
[32, 256, 1],
|
|
[48, 256, 1],
|
|
],
|
|
cross_product_configs={
|
|
"device": ["cpu", "cuda"],
|
|
},
|
|
tags=["long"],
|
|
)
|
|
|
|
|
|
class SoftmaxBenchmark(op_bench.TorchBenchmarkBase):
|
|
def init(self, N, C, H, W, device, op_func):
|
|
self.inputs = {"input": torch.rand(N, C, H, W, device=device)}
|
|
self.op_func = op_func()
|
|
|
|
def forward(self, input):
|
|
return self.op_func(input)
|
|
|
|
|
|
class Softmax2DimsBenchmark(op_bench.TorchBenchmarkBase):
|
|
def init(self, M, N, dim, device, op_func):
|
|
self.inputs = {"input": torch.rand(M, N, device=device)}
|
|
self.op_func = op_func(dim=dim)
|
|
|
|
def forward(self, input):
|
|
return self.op_func(input)
|
|
|
|
|
|
op_bench.generate_pt_tests_from_op_list(
|
|
softmax_ops_list, softmax_configs_short + softmax_configs_long, SoftmaxBenchmark
|
|
)
|
|
|
|
|
|
op_bench.generate_pt_tests_from_op_list(
|
|
softmax_two_dims_ops_list, softmax_two_dims_configs, Softmax2DimsBenchmark
|
|
)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
op_bench.benchmark_runner.main()
|