Files
Aaron Orenstein 07669ed960 PEP585 update - benchmarks tools torchgen (#145101)
This is one of a series of PRs to update us to PEP585 (changing Dict -> dict, List -> list, etc).  Most of the PRs were completely automated with RUFF as follows:

Since RUFF UP006 is considered an "unsafe" fix first we need to enable unsafe fixes:

```
--- a/tools/linter/adapters/ruff_linter.py
+++ b/tools/linter/adapters/ruff_linter.py
@@ -313,6 +313,7 @@
                     "ruff",
                     "check",
                     "--fix-only",
+                    "--unsafe-fixes",
                     "--exit-zero",
                     *([f"--config={config}"] if config else []),
                     "--stdin-filename",
```

Then we need to tell RUFF to allow UP006 (as a final PR once all of these have landed this will be made permanent):

```
--- a/pyproject.toml
+++ b/pyproject.toml
@@ -40,7 +40,7 @@

 [tool.ruff]
-target-version = "py38"
+target-version = "py39"
 line-length = 88
 src = ["caffe2", "torch", "torchgen", "functorch", "test"]

@@ -87,7 +87,6 @@
     "SIM116", # Disable Use a dictionary instead of consecutive `if` statements
     "SIM117",
     "SIM118",
-    "UP006", # keep-runtime-typing
     "UP007", # keep-runtime-typing
 ]
 select = [
```

Finally running `lintrunner -a --take RUFF` will fix up the deprecated uses.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/145101
Approved by: https://github.com/bobrenjc93
2025-01-18 05:05:07 +00:00

68 lines
1.9 KiB
Python

import operator_benchmark as op_bench
import torch
import torch.ao.nn.quantized as nnq
"""Microbenchmarks for quantized Cat operator"""
# Configs for PT Cat operator
qcat_configs_short = op_bench.config_list(
attr_names=["M", "N", "K", "L", "dim"],
attrs=[
[256, 512, 1, 2, 0],
[512, 512, 2, 1, 1],
],
cross_product_configs={
"contig": ("all", "one", "none"),
"dtype": (torch.quint8, torch.qint8, torch.qint32),
},
tags=["short"],
)
qcat_configs_long = op_bench.cross_product_configs(
M=[128, 1024],
N=[128, 1024],
K=[1, 2],
L=[5, 7],
dim=[0, 1, 2],
contig=["all", "one", "none"],
dtype=[torch.quint8],
tags=["long"],
)
class QCatBenchmark(op_bench.TorchBenchmarkBase):
def init(self, M, N, K, L, dim, contig, dtype):
f_input = (torch.rand(M, N, K) - 0.5) * 256
self.qf = nnq.QFunctional()
scale = 1.0
zero_point = 0
self.qf.scale = scale
self.qf.zero_point = zero_point
assert contig in ("none", "one", "all")
q_input = torch.quantize_per_tensor(f_input, scale, zero_point, dtype)
permute_dims = tuple(range(q_input.ndim - 1, -1, -1))
q_input_non_contig = q_input.permute(permute_dims).contiguous()
q_input_non_contig = q_input_non_contig.permute(permute_dims)
if contig == "all":
self.input = (q_input, q_input)
elif contig == "one":
self.input = (q_input, q_input_non_contig)
elif contig == "none":
self.input = (q_input_non_contig, q_input_non_contig)
self.inputs = {"input": self.input, "dim": dim}
self.set_module_name("qcat")
def forward(self, input: list[torch.Tensor], dim: int):
return self.qf.cat(input, dim=dim)
op_bench.generate_pt_test(qcat_configs_short + qcat_configs_long, QCatBenchmark)
if __name__ == "__main__":
op_bench.benchmark_runner.main()