mirror of
https://github.com/pytorch/pytorch.git
synced 2025-10-21 13:44:15 +08:00
See https://github.com/pytorch/pytorch/pull/129751#issue-2380881501. Most changes are auto-generated by linter. You can review these PRs via: ```bash git diff --ignore-all-space --ignore-blank-lines HEAD~1 ``` Pull Request resolved: https://github.com/pytorch/pytorch/pull/129754 Approved by: https://github.com/ezyang
42 lines
997 B
Python
42 lines
997 B
Python
import operator_benchmark as op_bench
|
|
|
|
import torch
|
|
|
|
|
|
"""Microbenchmarks for Chunk operator"""
|
|
|
|
|
|
# Configs for PT Chunk operator
|
|
chunk_short_configs = op_bench.config_list(
|
|
attr_names=["M", "N", "chunks"],
|
|
attrs=[
|
|
[8, 8, 2],
|
|
[256, 512, 2],
|
|
[512, 512, 2],
|
|
],
|
|
cross_product_configs={
|
|
"device": ["cpu", "cuda"],
|
|
},
|
|
tags=["short"],
|
|
)
|
|
|
|
chunks_long_configs = op_bench.cross_product_configs(
|
|
M=[128, 1024], N=[128, 1024], chunks=[2, 4], device=["cpu", "cuda"], tags=["long"]
|
|
)
|
|
|
|
|
|
class ChunkBenchmark(op_bench.TorchBenchmarkBase):
|
|
def init(self, M, N, chunks, device):
|
|
self.inputs = {"input_one": torch.rand(M, N, device=device), "chunks": chunks}
|
|
self.set_module_name("chunk")
|
|
|
|
def forward(self, input_one, chunks: int):
|
|
return torch.chunk(input_one, chunks)
|
|
|
|
|
|
op_bench.generate_pt_test(chunk_short_configs + chunks_long_configs, ChunkBenchmark)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
op_bench.benchmark_runner.main()
|