Files
pytorch/benchmarks/operator_benchmark/pt/as_strided_test.py
Aaron Orenstein 07669ed960 PEP585 update - benchmarks tools torchgen (#145101)
This is one of a series of PRs to update us to PEP585 (changing Dict -> dict, List -> list, etc).  Most of the PRs were completely automated with RUFF as follows:

Since RUFF UP006 is considered an "unsafe" fix first we need to enable unsafe fixes:

```
--- a/tools/linter/adapters/ruff_linter.py
+++ b/tools/linter/adapters/ruff_linter.py
@@ -313,6 +313,7 @@
                     "ruff",
                     "check",
                     "--fix-only",
+                    "--unsafe-fixes",
                     "--exit-zero",
                     *([f"--config={config}"] if config else []),
                     "--stdin-filename",
```

Then we need to tell RUFF to allow UP006 (as a final PR once all of these have landed this will be made permanent):

```
--- a/pyproject.toml
+++ b/pyproject.toml
@@ -40,7 +40,7 @@

 [tool.ruff]
-target-version = "py38"
+target-version = "py39"
 line-length = 88
 src = ["caffe2", "torch", "torchgen", "functorch", "test"]

@@ -87,7 +87,6 @@
     "SIM116", # Disable Use a dictionary instead of consecutive `if` statements
     "SIM117",
     "SIM118",
-    "UP006", # keep-runtime-typing
     "UP007", # keep-runtime-typing
 ]
 select = [
```

Finally running `lintrunner -a --take RUFF` will fix up the deprecated uses.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/145101
Approved by: https://github.com/bobrenjc93
2025-01-18 05:05:07 +00:00

57 lines
1.4 KiB
Python

import operator_benchmark as op_bench
import torch
"""Microbenchmarks for as_strided operator"""
# Configs for PT as_strided operator
as_strided_configs_short = op_bench.config_list(
attr_names=["M", "N", "size", "stride", "storage_offset"],
attrs=[
[8, 8, (2, 2), (1, 1), 0],
[256, 256, (32, 32), (1, 1), 0],
[512, 512, (64, 64), (2, 2), 1],
],
cross_product_configs={
"device": ["cpu", "cuda"],
},
tags=["short"],
)
as_strided_configs_long = op_bench.cross_product_configs(
M=[512],
N=[1024],
size=[(16, 16), (128, 128)],
stride=[(1, 1)],
storage_offset=[0, 1],
device=["cpu", "cuda"],
tags=["long"],
)
class As_stridedBenchmark(op_bench.TorchBenchmarkBase):
def init(self, M, N, size, stride, storage_offset, device):
self.inputs = {
"input_one": torch.rand(M, N, device=device),
"size": size,
"stride": stride,
"storage_offset": storage_offset,
}
self.set_module_name("as_strided")
def forward(
self, input_one, size: list[int], stride: list[int], storage_offset: int
):
return torch.as_strided(input_one, size, stride, storage_offset)
op_bench.generate_pt_test(
as_strided_configs_short + as_strided_configs_long, As_stridedBenchmark
)
if __name__ == "__main__":
op_bench.benchmark_runner.main()