Files
Yuanyuan Chen 8de85896e0 Enable ruff rule E721 (#165162)
`E721` checks for object type comparisons using == and other comparison operators. This is useful because it is recommended to use `is` for type comparisons.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/165162
Approved by: https://github.com/Skylion007
2025-10-13 01:48:55 +00:00

699 lines
26 KiB
Python

# Taken from https://github.com/pytorch/audio/blob/master/torchaudio/models/wav2letter.py
# So that we don't need torchaudio to be installed
import math
from collections import OrderedDict
from typing import Optional
import torch
import torch.nn.functional as F
from torch import nn, Tensor
__all__ = ["Wav2Letter"]
class Wav2Letter(nn.Module):
r"""Wav2Letter model architecture from the `"Wav2Letter: an End-to-End ConvNet-based Speech Recognition System"
<https://arxiv.org/abs/1609.03193>`_ paper.
:math:`\text{padding} = \frac{\text{ceil}(\text{kernel} - \text{stride})}{2}`
Args:
num_classes (int, optional): Number of classes to be classified. (Default: ``40``)
input_type (str, optional): Wav2Letter can use as input: ``waveform``, ``power_spectrum``
or ``mfcc`` (Default: ``waveform``).
num_features (int, optional): Number of input features that the network will receive (Default: ``1``).
"""
def __init__(
self, num_classes: int = 40, input_type: str = "waveform", num_features: int = 1
) -> None:
super().__init__()
acoustic_num_features = 250 if input_type == "waveform" else num_features
acoustic_model = nn.Sequential(
nn.Conv1d(
in_channels=acoustic_num_features,
out_channels=250,
kernel_size=48,
stride=2,
padding=23,
),
nn.ReLU(inplace=True),
nn.Conv1d(
in_channels=250, out_channels=250, kernel_size=7, stride=1, padding=3
),
nn.ReLU(inplace=True),
nn.Conv1d(
in_channels=250, out_channels=250, kernel_size=7, stride=1, padding=3
),
nn.ReLU(inplace=True),
nn.Conv1d(
in_channels=250, out_channels=250, kernel_size=7, stride=1, padding=3
),
nn.ReLU(inplace=True),
nn.Conv1d(
in_channels=250, out_channels=250, kernel_size=7, stride=1, padding=3
),
nn.ReLU(inplace=True),
nn.Conv1d(
in_channels=250, out_channels=250, kernel_size=7, stride=1, padding=3
),
nn.ReLU(inplace=True),
nn.Conv1d(
in_channels=250, out_channels=250, kernel_size=7, stride=1, padding=3
),
nn.ReLU(inplace=True),
nn.Conv1d(
in_channels=250, out_channels=250, kernel_size=7, stride=1, padding=3
),
nn.ReLU(inplace=True),
nn.Conv1d(
in_channels=250, out_channels=2000, kernel_size=32, stride=1, padding=16
),
nn.ReLU(inplace=True),
nn.Conv1d(
in_channels=2000, out_channels=2000, kernel_size=1, stride=1, padding=0
),
nn.ReLU(inplace=True),
nn.Conv1d(
in_channels=2000,
out_channels=num_classes,
kernel_size=1,
stride=1,
padding=0,
),
nn.ReLU(inplace=True),
)
if input_type == "waveform":
waveform_model = nn.Sequential(
nn.Conv1d(
in_channels=num_features,
out_channels=250,
kernel_size=250,
stride=160,
padding=45,
),
nn.ReLU(inplace=True),
)
self.acoustic_model = nn.Sequential(waveform_model, acoustic_model)
if input_type in ["power_spectrum", "mfcc"]:
self.acoustic_model = acoustic_model
def forward(self, x: Tensor) -> Tensor:
r"""
Args:
x (Tensor): Tensor of dimension (batch_size, num_features, input_length).
Returns:
Tensor: Predictor tensor of dimension (batch_size, number_of_classes, input_length).
"""
x = self.acoustic_model(x)
x = nn.functional.log_softmax(x, dim=1)
return x
# Taken from https://github.com/SeanNaren/deepspeech.pytorch with modifications
class SequenceWise(nn.Module):
def __init__(self, module):
"""
Collapses input of dim T*N*H to (T*N)*H, and applies to a module.
Allows handling of variable sequence lengths and minibatch sizes.
:param module: Module to apply input to.
"""
super().__init__()
self.module = module
def forward(self, x):
t, n = x.size(0), x.size(1)
x = x.view(t * n, -1)
x = self.module(x)
x = x.view(t, n, -1)
return x
def __repr__(self):
tmpstr = self.__class__.__name__ + " (\n"
tmpstr += self.module.__repr__()
tmpstr += ")"
return tmpstr
class MaskConv(nn.Module):
def __init__(self, seq_module):
"""
Adds padding to the output of the module based on the given lengths. This is to ensure that the
results of the model do not change when batch sizes change during inference.
Input needs to be in the shape of (BxCxDxT)
:param seq_module: The sequential module containing the conv stack.
"""
super().__init__()
self.seq_module = seq_module
def forward(self, x, lengths):
"""
:param x: The input of size BxCxDxT
:param lengths: The actual length of each sequence in the batch
:return: Masked output from the module
"""
for module in self.seq_module:
x = module(x)
mask = torch.BoolTensor(x.size()).fill_(0)
if x.is_cuda:
mask = mask.cuda()
for i, length in enumerate(lengths):
length = length.item()
if (mask[i].size(2) - length) > 0:
mask[i].narrow(2, length, mask[i].size(2) - length).fill_(1)
x = x.masked_fill(mask, 0)
return x, lengths
class InferenceBatchSoftmax(nn.Module):
def forward(self, input_):
if not self.training:
return F.softmax(input_, dim=-1)
else:
return input_
class BatchRNN(nn.Module):
def __init__(
self,
input_size,
hidden_size,
rnn_type=nn.LSTM,
bidirectional=False,
batch_norm=True,
):
super().__init__()
self.input_size = input_size
self.hidden_size = hidden_size
self.bidirectional = bidirectional
self.batch_norm = (
SequenceWise(nn.BatchNorm1d(input_size)) if batch_norm else None
)
self.rnn = rnn_type(
input_size=input_size,
hidden_size=hidden_size,
bidirectional=bidirectional,
bias=True,
)
self.num_directions = 2 if bidirectional else 1
def flatten_parameters(self):
self.rnn.flatten_parameters()
def forward(self, x, output_lengths):
if self.batch_norm is not None:
x = self.batch_norm(x)
x = nn.utils.rnn.pack_padded_sequence(x, output_lengths, enforce_sorted=False)
x, h = self.rnn(x)
x, _ = nn.utils.rnn.pad_packed_sequence(x)
if self.bidirectional:
x = (
x.view(x.size(0), x.size(1), 2, -1)
.sum(2)
.view(x.size(0), x.size(1), -1)
) # (TxNxH*2) -> (TxNxH) by sum
return x
class Lookahead(nn.Module):
# Wang et al., 2016 - Lookahead Convolution Layer for Unidirectional Recurrent Neural Networks
# input shape - sequence, batch, feature - TxNxH
# output shape - same as input
def __init__(self, n_features, context):
super().__init__()
assert context > 0
self.context = context
self.n_features = n_features
self.pad = (0, self.context - 1)
self.conv = nn.Conv1d(
self.n_features,
self.n_features,
kernel_size=self.context,
stride=1,
groups=self.n_features,
padding=0,
bias=None,
)
def forward(self, x):
x = x.transpose(0, 1).transpose(1, 2)
x = F.pad(x, pad=self.pad, value=0)
x = self.conv(x)
x = x.transpose(1, 2).transpose(0, 1).contiguous()
return x
def __repr__(self):
return (
self.__class__.__name__
+ "("
+ "n_features="
+ str(self.n_features)
+ ", context="
+ str(self.context)
+ ")"
)
class DeepSpeech(nn.Module):
def __init__(
self,
rnn_type,
labels,
rnn_hidden_size,
nb_layers,
audio_conf,
bidirectional,
context=20,
):
super().__init__()
self.hidden_size = rnn_hidden_size
self.hidden_layers = nb_layers
self.rnn_type = rnn_type
self.audio_conf = audio_conf
self.labels = labels
self.bidirectional = bidirectional
sample_rate = self.audio_conf["sample_rate"]
window_size = self.audio_conf["window_size"]
num_classes = len(self.labels)
self.conv = MaskConv(
nn.Sequential(
nn.Conv2d(1, 32, kernel_size=(41, 11), stride=(2, 2), padding=(20, 5)),
nn.BatchNorm2d(32),
nn.Hardtanh(0, 20, inplace=True),
nn.Conv2d(32, 32, kernel_size=(21, 11), stride=(2, 1), padding=(10, 5)),
nn.BatchNorm2d(32),
nn.Hardtanh(0, 20, inplace=True),
)
)
# Based on above convolutions and spectrogram size using conv formula (W - F + 2P)/ S+1
rnn_input_size = int(math.floor((sample_rate * window_size) / 2) + 1)
rnn_input_size = int(math.floor(rnn_input_size + 2 * 20 - 41) / 2 + 1)
rnn_input_size = int(math.floor(rnn_input_size + 2 * 10 - 21) / 2 + 1)
rnn_input_size *= 32
rnns = []
rnn = BatchRNN(
input_size=rnn_input_size,
hidden_size=rnn_hidden_size,
rnn_type=rnn_type,
bidirectional=bidirectional,
batch_norm=False,
)
rnns.append(("0", rnn))
for x in range(nb_layers - 1):
rnn = BatchRNN(
input_size=rnn_hidden_size,
hidden_size=rnn_hidden_size,
rnn_type=rnn_type,
bidirectional=bidirectional,
)
rnns.append((f"{x + 1:d}", rnn))
self.rnns = nn.Sequential(OrderedDict(rnns))
self.lookahead = (
nn.Sequential(
# consider adding batch norm?
Lookahead(rnn_hidden_size, context=context),
nn.Hardtanh(0, 20, inplace=True),
)
if not bidirectional
else None
)
fully_connected = nn.Sequential(
nn.BatchNorm1d(rnn_hidden_size),
nn.Linear(rnn_hidden_size, num_classes, bias=False),
)
self.fc = nn.Sequential(
SequenceWise(fully_connected),
)
self.inference_softmax = InferenceBatchSoftmax()
def forward(self, x, lengths):
lengths = lengths.cpu().int()
output_lengths = self.get_seq_lens(lengths)
x, _ = self.conv(x, output_lengths)
sizes = x.size()
x = x.view(
sizes[0], sizes[1] * sizes[2], sizes[3]
) # Collapse feature dimension
x = x.transpose(1, 2).transpose(0, 1).contiguous() # TxNxH
for rnn in self.rnns:
x = rnn(x, output_lengths)
if not self.bidirectional: # no need for lookahead layer in bidirectional
x = self.lookahead(x)
x = self.fc(x)
x = x.transpose(0, 1)
# identity in training mode, softmax in eval mode
x = self.inference_softmax(x)
return x, output_lengths
def get_seq_lens(self, input_length):
"""
Given a 1D Tensor or Variable containing integer sequence lengths, return a 1D tensor or variable
containing the size sequences that will be output by the network.
:param input_length: 1D Tensor
:return: 1D Tensor scaled by model
"""
seq_len = input_length
for m in self.conv.modules():
if type(m) is nn.modules.conv.Conv2d:
seq_len = (
seq_len
+ 2 * m.padding[1]
- m.dilation[1] * (m.kernel_size[1] - 1)
- 1
)
seq_len = seq_len.true_divide(m.stride[1]) + 1
return seq_len.int()
# Taken from https://github.com/pytorch/examples/blob/master/word_language_model/model.py#L108-L152
class PositionalEncoding(nn.Module):
r"""Inject some information about the relative or absolute position of the tokens
in the sequence. The positional encodings have the same dimension as
the embeddings, so that the two can be summed. Here, we use sine and cosine
functions of different frequencies.
.. math::
\text{PosEncoder}(pos, 2i) = sin(pos/10000^(2i/d_model))
\text{PosEncoder}(pos, 2i+1) = cos(pos/10000^(2i/d_model))
\text{where pos is the word position and i is the embed idx)
Args:
d_model: the embed dim (required).
dropout: the dropout value (default=0.1).
max_len: the max. length of the incoming sequence (default=5000).
Examples:
>>> pos_encoder = PositionalEncoding(d_model)
"""
def __init__(self, d_model, dropout=0.1, max_len=5000):
super().__init__()
self.dropout = nn.Dropout(p=dropout)
pe = torch.zeros(max_len, d_model)
position = torch.arange(0, max_len, dtype=torch.float).unsqueeze(1)
div_term = torch.exp(
torch.arange(0, d_model, 2).float() * (-math.log(10000.0) / d_model)
)
pe[:, 0::2] = torch.sin(position * div_term)
pe[:, 1::2] = torch.cos(position * div_term)
pe = pe.unsqueeze(0).transpose(0, 1)
self.register_buffer("pe", pe)
def forward(self, x):
r"""Inputs of forward function
Args:
x: the sequence fed to the positional encoder model (required).
Shape:
x: [sequence length, batch size, embed dim]
output: [sequence length, batch size, embed dim]
Examples:
>>> output = pos_encoder(x)
"""
x = x + self.pe[: x.size(0), :]
return self.dropout(x)
class TransformerModel(nn.Module):
"""Container module with an encoder, a recurrent or transformer module, and a decoder."""
def __init__(self, ntoken, ninp, nhead, nhid, nlayers, dropout=0.5):
super().__init__()
try:
from torch.nn import TransformerEncoder, TransformerEncoderLayer
except Exception as e:
raise ImportError(
"TransformerEncoder module does not exist in PyTorch 1.1 or lower."
) from e
self.model_type = "Transformer"
self.src_mask = None
self.pos_encoder = PositionalEncoding(ninp, dropout)
encoder_layers = TransformerEncoderLayer(ninp, nhead, nhid, dropout)
self.transformer_encoder = TransformerEncoder(encoder_layers, nlayers)
self.encoder = nn.Embedding(ntoken, ninp)
self.ninp = ninp
self.decoder = nn.Linear(ninp, ntoken)
self.init_weights()
def init_weights(self):
initrange = 0.1
nn.init.uniform_(self.encoder.weight, -initrange, initrange)
# Not sure how this works in the original code
# nn.init.zeros_(self.decoder)
nn.init.uniform_(self.decoder.weight, -initrange, initrange)
def forward(self, src, has_mask=True):
if has_mask:
device = src.device
# This will be created once during warmup
if self.src_mask is None or self.src_mask.size(0) != len(src):
mask = nn.Transformer.generate_square_subsequent_mask(len(src)).to(
device
)
self.src_mask = mask
else:
self.src_mask = None
src = self.encoder(src) * math.sqrt(self.ninp)
src = self.pos_encoder(src)
output = self.transformer_encoder(src, self.src_mask)
output = self.decoder(output)
return F.log_softmax(output, dim=-1)
# From https://github.com/pytorch/text/tree/master/torchtext/nn/modules
class MultiheadAttentionContainer(torch.nn.Module):
def __init__(self, nhead, in_proj_container, attention_layer, out_proj):
r"""A multi-head attention container
Args:
nhead: the number of heads in the multiheadattention model
in_proj_container: A container of multi-head in-projection linear layers (a.k.a nn.Linear).
attention_layer: The attention layer.
out_proj: The multi-head out-projection layer (a.k.a nn.Linear).
Examples::
>>> import torch
>>> embed_dim, num_heads, bsz = 10, 5, 64
>>> in_proj_container = InProjContainer(torch.nn.Linear(embed_dim, embed_dim),
torch.nn.Linear(embed_dim, embed_dim),
torch.nn.Linear(embed_dim, embed_dim))
>>> MHA = MultiheadAttentionContainer(num_heads,
in_proj_container,
ScaledDotProduct(),
torch.nn.Linear(embed_dim, embed_dim))
>>> query = torch.rand((21, bsz, embed_dim))
>>> key = value = torch.rand((16, bsz, embed_dim))
>>> attn_output, attn_weights = MHA(query, key, value)
>>> print(attn_output.shape)
>>> torch.Size([21, 64, 10])
"""
super().__init__()
self.nhead = nhead
self.in_proj_container = in_proj_container
self.attention_layer = attention_layer
self.out_proj = out_proj
def forward(
self,
query: torch.Tensor,
key: torch.Tensor,
value: torch.Tensor,
attn_mask: Optional[torch.Tensor] = None,
bias_k: Optional[torch.Tensor] = None,
bias_v: Optional[torch.Tensor] = None,
) -> tuple[torch.Tensor, torch.Tensor]:
r"""
Args:
query, key, value (Tensor): map a query and a set of key-value pairs to an output.
See "Attention Is All You Need" for more details.
attn_mask, bias_k and bias_v (Tensor, optional): keyword arguments passed to the attention layer.
See the definitions in the attention.
Shape:
- Inputs:
- query: :math:`(L, N, E)`
- key: :math:`(S, N, E)`
- value: :math:`(S, N, E)`
- attn_mask, bias_k and bias_v: same with the shape of the corresponding args in attention layer.
- Outputs:
- attn_output: :math:`(L, N, E)`
- attn_output_weights: :math:`(N * H, L, S)`
where where L is the target length, S is the sequence length, H is the number of attention heads,
N is the batch size, and E is the embedding dimension.
"""
tgt_len, src_len, bsz, embed_dim = (
query.size(-3),
key.size(-3),
query.size(-2),
query.size(-1),
)
q, k, v = self.in_proj_container(query, key, value)
assert q.size(-1) % self.nhead == 0, (
"query's embed_dim must be divisible by the number of heads"
)
head_dim = q.size(-1) // self.nhead
q = q.reshape(tgt_len, bsz * self.nhead, head_dim)
assert k.size(-1) % self.nhead == 0, (
"key's embed_dim must be divisible by the number of heads"
)
head_dim = k.size(-1) // self.nhead
k = k.reshape(src_len, bsz * self.nhead, head_dim)
assert v.size(-1) % self.nhead == 0, (
"value's embed_dim must be divisible by the number of heads"
)
head_dim = v.size(-1) // self.nhead
v = v.reshape(src_len, bsz * self.nhead, head_dim)
attn_output, attn_output_weights = self.attention_layer(
q, k, v, attn_mask=attn_mask, bias_k=bias_k, bias_v=bias_v
)
attn_output = attn_output.reshape(tgt_len, bsz, embed_dim)
attn_output = self.out_proj(attn_output)
return attn_output, attn_output_weights
class ScaledDotProduct(torch.nn.Module):
def __init__(self, dropout=0.0):
r"""Processes a projected query and key-value pair to apply
scaled dot product attention.
Args:
dropout (float): probability of dropping an attention weight.
Examples::
>>> SDP = torchtext.models.ScaledDotProduct(0.1)
>>> q = torch.randn(256, 21, 3)
>>> k = v = torch.randn(256, 21, 3)
>>> attn_output, attn_weights = SDP(q, k, v)
>>> print(attn_output.shape, attn_weights.shape)
torch.Size([256, 21, 3]) torch.Size([256, 21, 21])
"""
super().__init__()
self.dropout = dropout
def forward(
self,
query: torch.Tensor,
key: torch.Tensor,
value: torch.Tensor,
attn_mask: Optional[torch.Tensor] = None,
bias_k: Optional[torch.Tensor] = None,
bias_v: Optional[torch.Tensor] = None,
) -> tuple[torch.Tensor, torch.Tensor]:
r"""Uses a scaled dot product with the projected key-value pair to update
the projected query.
Args:
query (Tensor): Projected query
key (Tensor): Projected key
value (Tensor): Projected value
attn_mask (BoolTensor, optional): 3D mask that prevents attention to certain positions.
bias_k and bias_v: (Tensor, optional): one more key and value sequence to be added at
sequence dim (dim=-3). Those are used for incremental decoding. Users should provide
non-None to both arguments in order to activate them.
Shape:
- query: :math:`(L, N * H, E / H)`
- key: :math:`(S, N * H, E / H)`
- value: :math:`(S, N * H, E / H)`
- attn_mask: :math:`(N * H, L, S)`, positions with ``True`` are not allowed to attend
while ``False`` values will be unchanged.
- bias_k and bias_v:bias: :math:`(1, N * H, E / H)`
- Output: :math:`(L, N * H, E / H)`, :math:`(N * H, L, S)`
where L is the target length, S is the source length, H is the number
of attention heads, N is the batch size, and E is the embedding dimension.
"""
if bias_k is not None and bias_v is not None:
assert (
key.size(-1) == bias_k.size(-1)
and key.size(-2) == bias_k.size(-2)
and bias_k.size(-3) == 1
), "Shape of bias_k is not supported"
assert (
value.size(-1) == bias_v.size(-1)
and value.size(-2) == bias_v.size(-2)
and bias_v.size(-3) == 1
), "Shape of bias_v is not supported"
key = torch.cat([key, bias_k])
value = torch.cat([value, bias_v])
if attn_mask is not None:
_attn_mask = attn_mask
attn_mask = torch.nn.functional.pad(_attn_mask, [0, 1])
tgt_len, head_dim = query.size(-3), query.size(-1)
assert query.size(-1) == key.size(-1) == value.size(-1), (
"The feature dim of query, key, value must be equal."
)
assert key.size() == value.size(), "Shape of key, value must match"
src_len = key.size(-3)
batch_heads = max(query.size(-2), key.size(-2))
# Scale query
query, key, value = (
query.transpose(-2, -3),
key.transpose(-2, -3),
value.transpose(-2, -3),
)
query = query * (float(head_dim) ** -0.5)
if attn_mask is not None:
if attn_mask.dim() != 3:
raise RuntimeError("attn_mask must be a 3D tensor.")
if (
(attn_mask.size(-1) != src_len)
or (attn_mask.size(-2) != tgt_len)
or (attn_mask.size(-3) != 1 and attn_mask.size(-3) != batch_heads)
):
raise RuntimeError("The size of the attn_mask is not correct.")
if attn_mask.dtype != torch.bool:
raise RuntimeError("Only bool tensor is supported for attn_mask")
# Dot product of q, k
attn_output_weights = torch.matmul(query, key.mT)
if attn_mask is not None:
attn_output_weights.masked_fill_(
attn_mask,
-1e8,
)
attn_output_weights = torch.nn.functional.softmax(attn_output_weights, dim=-1)
attn_output_weights = torch.nn.functional.dropout(
attn_output_weights, p=self.dropout, training=self.training
)
attn_output = torch.matmul(attn_output_weights, value)
return attn_output.transpose(-2, -3), attn_output_weights
class InProjContainer(torch.nn.Module):
def __init__(self, query_proj, key_proj, value_proj):
r"""A in-proj container to process inputs.
Args:
query_proj: a proj layer for query.
key_proj: a proj layer for key.
value_proj: a proj layer for value.
"""
super().__init__()
self.query_proj = query_proj
self.key_proj = key_proj
self.value_proj = value_proj
def forward(
self, query: torch.Tensor, key: torch.Tensor, value: torch.Tensor
) -> tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
r"""Projects the input sequences using in-proj layers.
Args:
query, key, value (Tensors): sequence to be projected
Shape:
- query, key, value: :math:`(S, N, E)`
- Output: :math:`(S, N, E)`
where S is the sequence length, N is the batch size, and E is the embedding dimension.
"""
return self.query_proj(query), self.key_proj(key), self.value_proj(value)