Files
pytorch/benchmarks/functional_autograd_benchmark/functional_autograd_benchmark.py
Yuanyuan Chen b2953f5643 [9/N] Apply ruff UP035 rule (#165515)
This is follow-up of #165214 to continue applying ruff UP035 rule to the code base.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/165515
Approved by: https://github.com/Lucaskabela
2025-10-17 00:09:51 +00:00

344 lines
10 KiB
Python

import time
from argparse import ArgumentParser
from collections import defaultdict
from collections.abc import Callable
from typing import Any, NamedTuple
import torch
from torch.autograd import functional
try:
import functorch as ft
has_functorch = True
print(f"Found functorch: {ft.__version__}")
except ImportError:
has_functorch = False
import audio_text_models
import ppl_models
import vision_models
from utils import GetterType, InputsType, TimingResultType, to_markdown_table, VType
def get_task_func(task: str) -> Callable:
def hessian_fwdrev(model, inp, strict=None):
return functional.hessian(
model,
inp,
strict=False,
vectorize=True,
outer_jacobian_strategy="forward-mode",
)
def hessian_revrev(model, inp, strict=None):
return functional.hessian(model, inp, strict=False, vectorize=True)
def jacfwd(model, inp, strict=None):
return functional.jacobian(
model, inp, strict=False, vectorize=True, strategy="forward-mode"
)
def jacrev(model, inp, strict=None):
return functional.jacobian(model, inp, strict=False, vectorize=True)
if task == "hessian_fwdrev":
return hessian_fwdrev
elif task == "hessian_revrev":
return hessian_revrev
elif task == "jacfwd":
return jacfwd
elif task == "jacrev":
return jacrev
else:
return getattr(functional, task)
def get_task_functorch(task: str) -> Callable:
@torch.no_grad()
def vjp(model, inp, v=None, strict=None):
assert v is not None
out, vjpfunc = ft.vjp(model, *inp)
return out, vjpfunc(v)
@torch.no_grad()
def jvp(model, inp, v=None, strict=None):
assert v is not None
return ft.jvp(model, inp, v)
@torch.no_grad()
def vhp(model, inp, v=None, strict=None):
assert v is not None
argnums = tuple(range(len(inp)))
_, vjpfunc, aux = ft.vjp(ft.grad_and_value(model, argnums), *inp, has_aux=True)
return aux, vjpfunc(v)
@torch.no_grad()
def hvp(model, inp, v=None, strict=None):
assert v is not None
argnums = tuple(range(len(inp)))
_, hvp_out, aux = ft.jvp(
ft.grad_and_value(model, argnums), inp, v, has_aux=True
)
return aux, hvp_out
@torch.no_grad()
def jacfwd(model, inp, v=None, strict=None):
argnums = tuple(range(len(inp)))
return ft.jacfwd(model, argnums)(*inp)
@torch.no_grad()
def jacrev(model, inp, v=None, strict=None):
argnums = tuple(range(len(inp)))
return ft.jacrev(model, argnums)(*inp)
@torch.no_grad()
def hessian(model, inp, v=None, strict=None):
argnums = tuple(range(len(inp)))
return ft.hessian(model, argnums=argnums)(*inp)
@torch.no_grad()
def hessian_fwdrev(model, inp, v=None, strict=None):
argnums = tuple(range(len(inp)))
return ft.jacfwd(ft.jacrev(model, argnums=argnums), argnums=argnums)(*inp)
@torch.no_grad()
def hessian_revrev(model, inp, v=None, strict=None):
argnums = tuple(range(len(inp)))
return ft.jacrev(ft.jacrev(model, argnums=argnums), argnums=argnums)(*inp)
if task in locals():
return locals()[task]
elif task == "jacobian":
raise RuntimeError(
"functorch has no equivalent of autograd.functional.jacobian with vectorize=False yet"
)
else:
raise RuntimeError(f"Unsupported task: {task}")
# Listing of the different tasks
FAST_TASKS_NO_DOUBLE_BACK = [
"vjp",
]
FAST_TASKS = FAST_TASKS_NO_DOUBLE_BACK + [
"vhp",
"jvp",
]
ALL_TASKS_NON_VECTORIZED = FAST_TASKS + ["hvp", "jacobian", "hessian"]
DOUBLE_BACKWARD_TASKS = ["jvp", "hvp", "vhp", "hessian"]
VECTORIZED_TASKS = ["hessian_fwdrev", "hessian_revrev", "jacfwd", "jacrev"]
ALL_TASKS = ALL_TASKS_NON_VECTORIZED + VECTORIZED_TASKS
# Model definition which contains:
# - name: a string with the model name.
# - getter: a function to get the model. It takes as input the device on which the model
# will run. It should return the forward function and the parameters (Tensors) used as
# input for the forward function. Note that the forward must *not* have any side effect.
# - tasks: the list of recommended tasks that can run in a reasonable amount of time with this model.
# - unsupported: the list of tasks that this model cannot run.
class ModelDef(NamedTuple):
name: str
getter: GetterType
tasks: list[str]
unsupported: list[str]
MODELS = [
ModelDef("resnet18", vision_models.get_resnet18, FAST_TASKS, []),
ModelDef("fcn_resnet", vision_models.get_fcn_resnet, FAST_TASKS, []),
ModelDef("detr", vision_models.get_detr, FAST_TASKS, []),
ModelDef("ppl_simple_reg", ppl_models.get_simple_regression, ALL_TASKS, []),
ModelDef("ppl_robust_reg", ppl_models.get_robust_regression, ALL_TASKS, []),
ModelDef("wav2letter", audio_text_models.get_wav2letter, FAST_TASKS, []),
ModelDef(
"deepspeech",
audio_text_models.get_deepspeech,
FAST_TASKS_NO_DOUBLE_BACK,
DOUBLE_BACKWARD_TASKS,
),
ModelDef("transformer", audio_text_models.get_transformer, FAST_TASKS, []),
ModelDef("multiheadattn", audio_text_models.get_multiheadattn, FAST_TASKS, []),
]
def get_v_for(model: Callable, inp: InputsType, task: str) -> VType:
v: VType
if task in ["vjp"]:
out = model(*inp)
v = torch.rand_like(out)
elif task in ["jvp", "hvp", "vhp"]:
if isinstance(inp, tuple):
v = tuple(torch.rand_like(i) for i in inp)
else:
v = torch.rand_like(inp)
else:
v = None
return v
def run_once(model: Callable, inp: InputsType, task: str, v: VType, **kwargs) -> None:
func = get_task_func(task)
if v is not None:
func(model, inp, v=v, strict=True)
else:
func(model, inp, strict=True)
def run_once_functorch(
model: Callable, inp: InputsType, task: str, v: VType, maybe_check_consistency=False
) -> None:
func = get_task_functorch(task)
if v is not None:
res = func(model, inp, v=v, strict=True)
else:
res = func(model, inp, strict=True)
if maybe_check_consistency:
af_func = get_task_func(task)
if v is not None:
expected = af_func(model, inp, v=v, strict=True)
else:
expected = af_func(model, inp, strict=True)
atol = 1e-2 if task == "vhp" else 5e-3
torch.testing.assert_close(
res,
expected,
rtol=1e-5,
atol=atol,
msg=f"Consistency fail for task '{task}'",
)
def run_model(
model_getter: GetterType, args: Any, task: str, run_once_fn: Callable = run_once
) -> list[float]:
if args.gpu == -1:
device = torch.device("cpu")
def noop():
pass
do_sync = noop
else:
device = torch.device(f"cuda:{args.gpu}")
do_sync = torch.cuda.synchronize
model, inp = model_getter(device)
v = get_v_for(model, inp, task)
# Warmup
# maybe_check_consistency=True checks for consistency between
# functorch vs autograd.functional and is done in run_once_functorch only
run_once_fn(model, inp, task, v, maybe_check_consistency=True)
elapsed = []
for it in range(args.num_iters):
do_sync()
start = time.time()
run_once_fn(model, inp, task, v)
do_sync()
elapsed.append(time.time() - start)
return elapsed
def main():
parser = ArgumentParser("Main script to benchmark functional API of the autograd.")
parser.add_argument(
"--output", type=str, default="", help="Text file where to write the output"
)
parser.add_argument("--num-iters", type=int, default=10)
parser.add_argument(
"--gpu",
type=int,
default=-2,
help="GPU to use, -1 for CPU and -2 for auto-detect",
)
parser.add_argument(
"--run-slow-tasks", action="store_true", help="Run even the slow tasks"
)
parser.add_argument(
"--model-filter",
type=str,
default="",
help="Only run the models in this filter",
)
parser.add_argument(
"--task-filter", type=str, default="", help="Only run the tasks in this filter"
)
parser.add_argument(
"--num-threads",
type=int,
default=10,
help="Number of concurrent threads to use when running on cpu",
)
parser.add_argument("--seed", type=int, default=0, help="The random seed to use.")
args = parser.parse_args()
results: TimingResultType = defaultdict(defaultdict)
torch.set_num_threads(args.num_threads)
torch.set_num_interop_threads(args.num_threads)
# This automatically seed cuda if it is available
torch.manual_seed(args.seed)
if args.gpu == -2:
args.gpu = 0 if torch.cuda.is_available() else -1
for name, model_getter, recommended_tasks, unsupported_tasks in MODELS:
if args.model_filter and name not in args.model_filter:
continue
tasks = ALL_TASKS if args.run_slow_tasks else recommended_tasks
for task in tasks:
if task in unsupported_tasks:
continue
if args.task_filter and task not in args.task_filter:
continue
runtimes = run_model(model_getter, args, task)
runtimes = torch.tensor(runtimes)
mean, var = runtimes.mean(), runtimes.var()
results[name][task] = (mean.item(), var.item())
print(f"Results for model {name} on task {task}: {mean}s (var: {var})")
if has_functorch:
try:
runtimes = run_model(
model_getter, args, task, run_once_fn=run_once_functorch
)
except RuntimeError as e:
print(
f"Failed model using Functorch: {name}, task: {task}, Error message: \n\t",
e,
)
continue
runtimes = torch.tensor(runtimes)
mean, var = runtimes.mean(), runtimes.var()
results[name][f"functorch {task}"] = (mean.item(), var.item())
print(
f"Results for model {name} on task {task} using Functorch: {mean}s (var: {var})"
)
if args.output:
with open(args.output, "w") as f:
f.write(to_markdown_table(results))
if __name__ == "__main__":
main()