Files
pytorch/benchmarks/dynamo/microbenchmarks/operatorbench.py
2024-09-28 19:26:04 +00:00

381 lines
12 KiB
Python

#!/usr/bin/env python3
import csv
import itertools
import sys
import time
import warnings
from contextlib import nullcontext
import click
import numpy as np
from operator_inp_utils import OperatorInputsLoader
from tqdm import tqdm
import torch
from torch._dynamo.backends.cudagraphs import cudagraphs_inner
from torch._dynamo.testing import same
from torch._inductor.compile_fx import compile_fx
from torch._inductor.decomposition import decompositions
from torch._inductor.lowering import lowerings
from torch._inductor.runtime.benchmarking import benchmarker
from torch._inductor.utils import gen_gm_and_inputs
from torch.utils._pytree import tree_map_only
aten = torch.ops.aten
profile_enabled = False
inductor_config_options = {
"halide": {"cpu_backend": "halide", "cuda_backend": "halide"},
"autotune": {
"max_autotune_pointwise": True,
"max_autotune": True,
"max_autotune_gemm": True,
"coordinate_descent_tuning": True,
},
}
def maybe_record_function(name):
return torch.profiler.record_function(name) if profile_enabled else nullcontext()
def compute_speedups(
operator, models, example_inputs, repeats, accuracy_checking=False, device="cuda"
):
expected = models[0](*example_inputs)
if accuracy_checking:
for model in models[1:]:
actual = model(*example_inputs)
# change to assert later
try:
same(actual, expected, cos_similarity=True, equal_nan=True)
except AssertionError as e:
print(e)
print(f"Accuracy check failed: {operator}")
print((expected[0] - actual[0]).abs().max())
timings = np.zeros((repeats, len(models)), np.float64)
for rep in range(repeats):
with maybe_record_function(f"rep_{rep}"):
# interleave the runs to handle frequency scaling and load changes
for m, model in enumerate(models):
with maybe_record_function(f"model_{m}"):
if device == "cuda":
model(*example_inputs)
# benchmarker.benchmark_gpu() clears L2 cache to hide the latency of CPU launch time
# along with cuda synchronization
timings[rep, m] = benchmarker.benchmark_gpu(
lambda: model(*example_inputs)
)
else:
from torch._inductor.utils import timed
timings[rep, m] = timed(model, example_inputs)
return np.median(timings, axis=0)
def strip_overloads(gm):
"""
Modifies the target of graph nodes in :attr:`gm` to strip overloads.
Args:
gm(fx.GraphModule): The input Fx graph module to be modified
"""
for node in gm.graph.nodes:
if isinstance(node.target, torch._ops.OpOverload):
node.target = node.target.overloadpacket
gm.recompile()
def convert_to_jit(gm, gm_args):
strip_overloads(gm)
try:
return torch.jit.script(gm)
except Exception:
pass
return torch.jit.trace(gm, gm_args)
def to_channels_last(ten):
return ten if ten.ndim != 4 else ten.to(memory_format=torch.channels_last)
def microbenchmark(
operator,
args,
kwargs,
accuracy_checking,
repeats,
inductor_configs,
measure_nvfuser,
device,
):
gm, gm_args = gen_gm_and_inputs(operator, args, kwargs)
torch.jit._builtins._register_builtin(
torch.ops.aten.convolution_backward.default, "aten::convolution_backward"
)
compiled = [gm]
for config in inductor_configs:
t = -time.perf_counter()
compiled.append(compile_fx(gm, gm_args, config_patches=config))
t += time.perf_counter()
if t > 10:
print(f"slow compile inductor {t:.1f}s {config}")
if measure_nvfuser:
g = convert_to_jit(gm, gm_args)
cudagraphs_jit = cudagraphs_inner(
g, gm_args, copy_outputs=False, copy_inputs=False
)
compiled += [cudagraphs_jit]
if accuracy_checking:
repeats = 1
medians = compute_speedups(
operator, compiled, gm_args, repeats, accuracy_checking, device
)
return medians
quantiles_thresholds = (0.2, 0.5, 0.8)
def quantiles(timings):
return np.quantile(timings, quantiles_thresholds).tolist()
def skip_operator(operator):
nyi_strings = (
"aten.gather.default",
"nll_loss",
"aten.index",
"aten.scatter_",
"masked_fill_.Scalar",
)
if any(nyi_string in str(operator) for nyi_string in nyi_strings):
# maybe disable aten.native_layer_norm.default
# TODO - inputs cannot be randomly initialized, causes cyda failures
print(f"Skipping {operator}, input generator nyi")
return True
# not covered by other non-compute operator heuristics
if operator == torch.ops.aten._unsafe_view.default:
print(f"Skipping {operator}, non compute operator")
return True
# some of inductor registered to the OpOverload, some registered to OpOverloadPacket
op_impls = [operator]
if isinstance(operator, torch._ops.OpOverload):
op_impls.append(operator.overloadpacket)
# TODO - skip benchmarking fallbacks. for some ops we have both lowerings and fallbacks
# so its not clear just from operator what will be lowered.
if all(op not in decompositions and op not in lowerings for op in op_impls):
print(f"Skipping {operator}, no inductor impl")
return True
if "convolution" in str(operator):
return True
return False
@click.command()
@click.option(
"--suite",
help="suite to load inps from: options: timm, huggingface, torchbench",
default="torchbench",
)
@click.option("--op", help="operator overload to benchmark", default="all")
@click.option("--dtype", help="dtype to benchmark", default="float32")
@click.option("--max-samples", help="max samples per op", default=15)
@click.option("--accuracy-checking", help="check accuracy", default=False)
@click.option(
"--repeats", help="how many times to repeat for perf measurement", default=3
)
@click.option(
"--inductor-config",
multiple=True,
help="Custom inductor config, options: " + ", ".join(inductor_config_options),
)
@click.option(
"--measure-nvfuser/--no-measure-nvfuser",
help="default we only measure inductor",
default=False,
)
@click.option("--device", help="cpu or cuda", default="cuda")
@click.option("--inp-file", help="use custom input file instead of suite", default=None)
@click.option("--start-idx", help="specify start index of samples", default=0)
@click.option(
"--channels-last", help="force inputs to channels last", is_flag=True, default=False
)
@click.option("--profile", help="profile the benchmark", is_flag=True, default=False)
def benchmark(
suite,
op,
dtype,
max_samples,
accuracy_checking,
repeats,
inductor_config,
measure_nvfuser,
device,
inp_file,
start_idx,
channels_last,
profile,
):
warnings.filterwarnings("ignore", module="torch.jit._check")
torch.set_float32_matmul_precision("high")
global profile_enabled
if inp_file is not None:
loader = OperatorInputsLoader(inp_file)
else:
assert suite in ("timm", "huggingface", "torchbench"), f"got {suite}"
if suite == "timm":
loader = OperatorInputsLoader.get_timm_loader()
elif suite == "huggingface":
loader = OperatorInputsLoader.get_huggingface_loader()
else:
loader = OperatorInputsLoader.get_torchbench_loader()
assert dtype in ("float16", "float32"), f"got {dtype}"
inductor_configs = [{}]
backend_names = ["inductor"]
for name in inductor_config or ():
backend_names.append(name)
inductor_configs.append(inductor_config_options[name])
if measure_nvfuser:
backend_names.append("nvfuser")
compare2 = len(backend_names) == 2
if compare2:
a, b = backend_names
backend_names.append(f"{a}/{b}")
output_fd = None
output_csv = None
if op == "all":
filename = f"operatorbench_{suite}_{dtype}.csv"
output_fd = open(filename, "w")
output_csv = csv.writer(output_fd)
output_csv.writerow(
[
"operator",
*[
f"{a} {b}"
for a, b in itertools.product(
backend_names,
[f"{x * 100:.0f}th" for x in quantiles_thresholds],
)
],
"elapsed",
*map("{} abs".format, ["eager", *backend_names]),
]
)
dtype = torch.float16 if dtype == "float16" else torch.float32
if op == "all":
ops = loader.get_all_ops()
else:
ops = [eval(op)]
max_samples = max_samples + start_idx
profile_enabled = profile
for operator in ops:
if skip_operator(operator):
continue
start = time.perf_counter()
inp_gen = loader.get_inputs_for_operator(operator, dtype=dtype, device=device)
timings = []
inputs_list = []
for _ in range(min(max_samples, 1000000)):
try:
inps = next(inp_gen)
inputs_list.append(inps)
except StopIteration:
break
profiler_context = (
torch.profiler.profile(
activities=[
torch.profiler.ProfilerActivity.CPU,
torch.profiler.ProfilerActivity.CUDA,
],
record_shapes=False,
profile_memory=False,
on_trace_ready=torch.profiler.tensorboard_trace_handler(
f"./log/operator_{operator}", use_gzip=True
),
)
if profile_enabled
else nullcontext()
)
with profiler_context:
for i, inps in enumerate(tqdm(inputs_list[start_idx:], desc=str(operator))):
if inps is None:
break
args, kwargs = inps
if channels_last:
args, kwargs = tree_map_only(
torch.Tensor, to_channels_last, (args, kwargs)
)
try:
with maybe_record_function(f"iter_{i}"):
# aten, nvfuser, inductor
timings.append(
microbenchmark(
operator,
args,
kwargs,
accuracy_checking,
repeats,
inductor_configs,
measure_nvfuser,
device,
)
)
except Exception as e:
print(f"error {operator} input {i}: {type(e).__name__}: {e}")
# comment out this line to avoid blocking other tests
# raise e
if not timings:
continue
timings = np.stack(timings)
speedups = [
quantiles(timings[:, 0] / timings[:, x]) for x in range(1, timings.shape[1])
]
if compare2:
speedups.append(quantiles(timings[:, 1] / timings[:, 2]))
assert len(backend_names) == len(speedups)
row = [f"{operator}"]
sys.stdout.write(f"{operator}: ")
for backend, (low, mid, high) in zip(backend_names, speedups):
sys.stdout.write(f"{backend}={mid:.4f}x ({low:.4f}-{high:.4f}) ")
row.extend(map("{:.6f}".format, [low, mid, high]))
elapsed = time.perf_counter() - start
row.append(f"{elapsed:1f}")
row.extend(map("{:.8f}".format, np.mean(timings, axis=0).tolist()))
sys.stdout.write(f"took {elapsed:.0f}s\n")
sys.stdout.flush()
if output_csv:
output_csv.writerow(row)
output_fd.flush()
if output_fd:
print(f"Wrote {filename}")
output_fd.close()
if __name__ == "__main__":
benchmark()