mirror of
https://github.com/pytorch/pytorch.git
synced 2025-10-20 12:54:11 +08:00
Reland of #133298. Remove possible changes that may increase the build time. Pull Request resolved: https://github.com/pytorch/pytorch/pull/133758 Approved by: https://github.com/Skylion007, https://github.com/ezyang
62 lines
2.4 KiB
C++
62 lines
2.4 KiB
C++
#pragma once
|
|
|
|
#include <c10/util/complex.h>
|
|
#include <ATen/NumericUtils.h>
|
|
|
|
namespace at::native {
|
|
inline namespace CPU_CAPABILITY {
|
|
|
|
// custom min and max to be used in logcumsumexp for complex arguments
|
|
template <typename scalar_t>
|
|
std::pair<c10::complex<scalar_t>, c10::complex<scalar_t>> _logcumsumexp_minmax(c10::complex<scalar_t> x, c10::complex<scalar_t> y) {
|
|
if (at::_isnan(y)) { // either real is nan or imag is nan
|
|
return std::make_pair(y, y);
|
|
} else if (at::_isnan(x)) { // either real is nan or imag is nan
|
|
return std::make_pair(x, x);
|
|
} else {
|
|
return (x.real() < y.real()) ? std::make_pair(x, y) : std::make_pair(y, x);
|
|
}
|
|
}
|
|
|
|
template <typename scalar_t>
|
|
scalar_t _log_add_exp_helper(scalar_t x, scalar_t y) {
|
|
// Reference : https://www.tensorflow.org/api_docs/python/tf/math/cumulative_logsumexp
|
|
scalar_t min = at::_isnan(y) ? y : std::min(x, y); // std::min returns first arg if one of the args is nan
|
|
scalar_t max = at::_isnan(y) ? y : std::max(x, y); // std::max returns first arg if one of the args is nan
|
|
if (min != max || std::isfinite(min)) {
|
|
// nan will be propagated here
|
|
return std::log1p(std::exp(min - max)) + max;
|
|
} else {
|
|
// special case to correctly handle infinite cases
|
|
return x;
|
|
}
|
|
}
|
|
|
|
template <typename scalar_t>
|
|
c10::complex<scalar_t> _log_add_exp_helper(const c10::complex<scalar_t>& x, const c10::complex<scalar_t>& y) {
|
|
auto [min, max] = _logcumsumexp_minmax<scalar_t>(x, y);
|
|
auto min_real = std::real(min);
|
|
auto max_real = std::real(max);
|
|
|
|
if (at::_isnan(min)) { // either real is nan or imag is nan
|
|
// handling the "infectious" NaNs
|
|
return {std::numeric_limits<scalar_t>::quiet_NaN(), std::numeric_limits<scalar_t>::quiet_NaN()};
|
|
} else if (!std::isfinite(min_real) && (min_real == max_real)) {
|
|
if (min_real < 0) {
|
|
// handle the -inf case, the imaginary part here does not really matter as the exp(value)
|
|
// will be around 0.0 and the angle (i.e. the imaginary part) cannot be determined.
|
|
// It does not matter if we're taking the exp of this value
|
|
return min;
|
|
} else {
|
|
// handle the +inf case, we don't need the special precision for log1p for small values
|
|
// and to avoid producing nan in case of real(max) == real(min) == +inf
|
|
return std::log(std::exp(min) + std::exp(max));
|
|
}
|
|
} else {
|
|
return std::log1p(std::exp(min - max)) + max;
|
|
}
|
|
}
|
|
|
|
} // end namespace
|
|
} //end at::native
|