Files
pytorch/aten/src/ATen/native/TensorAdvancedIndexing.cpp
Nikita Shulga 1a5b7eca7b [BE] Fold cond into TORCH_CHECK(false,...) (#165593)
Replace `if (!foo) { TORCH_CHECK(false, "bar");}` with `TORCH_CHECK(foo,"bar");`
Pull Request resolved: https://github.com/pytorch/pytorch/pull/165593
Approved by: https://github.com/albanD
ghstack dependencies: #165594
2025-10-16 15:00:30 +00:00

3154 lines
103 KiB
C++

// Indexing tensors by by tensors
//
// This corresponds to "advanced indexing" in NumPy. The two operations are:
//
// index(Tensor self, indices) -> Tensor
// index_put_(Tensor self, indices, value, accumulate=false)
//
// The index is a TensorList containing kLong, kBool or kByte tensors or nulls.
// Byte tensors (boolean masks) are expanded to long tensors via nonzero(). Null
// tensors signify that the dimension is not indexed.
//
// All indexes are broadcast together and iterated as *one*. From NumPy:
//
// result[i_1, ..., i_M] == x[ind_1[i_1, ..., i_M], ind_2[i_1, ..., i_M],
// ..., ind_N[i_1, ..., i_M]]
//
// Note 1: ByteTensors expand to index as many dimensions as there are in the
// mask.
//
// Note 2: The behavior is more complicated when the index tensors are not all
// adjacent (e.g. x[[0, 1], :, [2, 3]]). In this case, self and the index
// tensors are transposed to the front: x.transpose(1, 2)[[0, 1], [2, 3]]
//
// The code contains two implementations of indexing. The more efficient
// implementation treats indexing like an elementwise operation over the
// tensors `result`, `x`, `ind_1`, `ind_2`, etc. This implementation does
// not work for index_put_ with accumulate=True. The other implementation
// combines the indexed tensors into a single linear index that is used
// with Tensor.put_. This is used for index_put_ with accumulate=True.
//
// The more efficient implementation takes the following steps for the
// above operation:
//
// 1) Broadcast ind_1, ind_2, ind_3 together to a common shape
// 2) Record x.stride(i) for each indexed dimension `i`
// 3) Replace the indexed subspace of `x` with the shape of the corresponding
// subspace of `result` but with stride 0
// 4) Add dimensions of size 1 to the index tensors (ind_1, ind_2, etc.) so
// that their shape is compatible with the result shape
//
// The CPU or CUDA kernel then computes element-wise over the broadcasted
// and restrided result, x, ind_1, ind_2, etc.:
//
// result[...] = *(&x[...] +
// ind_1[...] * x.stride(1) +
// ind_2[...] * x.stride(2) +
// ...)
//
// where & and * represent the C-style address-of and indirection operations.
// #define TORCH_ASSERT_ONLY_METHOD_OPERATORS
#include <ATen/ATen.h>
#include <ATen/native/IndexKernel.h>
#include <ATen/native/IndexingUtils.h>
#include <ATen/native/TensorAdvancedIndexing.h>
#include <ATen/Context.h>
#include <ATen/Dispatch.h>
#include <ATen/ExpandUtils.h>
#include <ATen/MemoryOverlap.h>
#include <ATen/NamedTensorUtils.h>
#include <ATen/NumericUtils.h>
#include <ATen/Parallel.h>
#include <ATen/TensorIterator.h>
#include <ATen/TensorMeta.h>
#include <ATen/TensorOperators.h>
#include <ATen/TensorSubclassLikeUtils.h>
#include <ATen/TensorUtils.h>
#include <ATen/WrapDimUtils.h>
#include <ATen/core/IListRef.h>
#include <ATen/core/Tensor.h>
#include <ATen/native/BinaryOps.h>
#include <ATen/native/Copy.h>
#include <ATen/native/Resize.h>
#include <ATen/native/ScatterGatherChecks.h>
#include <ATen/native/TensorAdvancedIndexingUtils.h>
#ifndef AT_PER_OPERATOR_HEADERS
#include <ATen/Functions.h>
#include <ATen/NativeFunctions.h>
#else
#include <ATen/ops/_gather_sparse_backward.h>
#include <ATen/ops/_gather_sparse_backward_native.h>
#include <ATen/ops/_index_put_impl.h>
#include <ATen/ops/_index_put_impl_native.h>
#include <ATen/ops/_sparse_coo_tensor_unsafe.h>
#include <ATen/ops/_unsafe_index_native.h>
#include <ATen/ops/_unsafe_index_put_native.h>
#include <ATen/ops/arange.h>
#include <ATen/ops/argwhere_native.h>
#include <ATen/ops/as_strided.h>
#include <ATen/ops/broadcast_to.h>
#include <ATen/ops/count_nonzero.h>
#include <ATen/ops/count_nonzero_native.h>
#include <ATen/ops/empty.h>
#include <ATen/ops/empty_quantized.h>
#include <ATen/ops/gather.h>
#include <ATen/ops/gather_backward_native.h>
#include <ATen/ops/gather_meta.h>
#include <ATen/ops/gather_native.h>
#include <ATen/ops/index.h>
#include <ATen/ops/index_add_meta.h>
#include <ATen/ops/index_add_native.h>
#include <ATen/ops/index_copy_meta.h>
#include <ATen/ops/index_copy_native.h>
#include <ATen/ops/index_fill_native.h>
#include <ATen/ops/index_meta.h>
#include <ATen/ops/index_native.h>
#include <ATen/ops/index_put_native.h>
#include <ATen/ops/index_reduce_meta.h>
#include <ATen/ops/index_reduce_native.h>
#include <ATen/ops/index_select_backward_native.h>
#include <ATen/ops/index_select_native.h>
#include <ATen/ops/masked_fill_native.h>
#include <ATen/ops/masked_scatter_native.h>
#include <ATen/ops/masked_select_backward_native.h>
#include <ATen/ops/masked_select_native.h>
#include <ATen/ops/nested_to_padded_tensor_native.h>
#include <ATen/ops/nonzero_native.h>
#include <ATen/ops/nonzero_numpy_native.h>
#include <ATen/ops/nonzero_static_native.h>
#include <ATen/ops/ones_like.h>
#include <ATen/ops/put_native.h>
#include <ATen/ops/quantize_per_tensor.h>
#include <ATen/ops/scatter_add_meta.h>
#include <ATen/ops/scatter_add_native.h>
#include <ATen/ops/scatter_meta.h>
#include <ATen/ops/scatter_native.h>
#include <ATen/ops/scatter_reduce_meta.h>
#include <ATen/ops/scatter_reduce_native.h>
#include <ATen/ops/take_along_dim_native.h>
#include <ATen/ops/take_native.h>
#include <ATen/ops/zeros_like.h>
#endif
#ifdef USE_FBGEMM
#include <fbgemm/Utils.h>
#endif
#include <c10/util/Unroll.h>
#include <c10/util/irange.h>
#include <algorithm>
#include <numeric>
#include <utility>
#include <vector>
namespace at::meta {
TORCH_META_FUNC(gather)
(const Tensor& self, int64_t dim, const Tensor& index, bool sparse_grad) {
const Tensor& result = maybe_get_output(0);
int64_t wrapped_dim = at::maybe_wrap_dim(dim, self.dim());
// Memory overlap checks need to be done after resizing (if required) is done.
// But it only makes sense to do these checks when result was defined, hence
// the boolean variable `check_result` here.
// For more details, see:
// https://github.com/pytorch/pytorch/pull/63312#discussion_r694794832 and
// https://github.com/pytorch/pytorch/issues/63837
bool check_result = result.defined();
set_output_raw_strided(0, index.sizes(), {}, self.options());
if (check_result) {
at::assert_no_internal_overlap(result);
at::assert_no_overlap(result, self);
at::assert_no_partial_overlap(result, index);
}
auto is_index_empty = index.numel() == 0;
if (!is_index_empty) {
TORCH_CHECK(
index.scalar_type() == ScalarType::Long ||
index.scalar_type() == ScalarType::Int,
"gather",
"(): Expected dtype int32/int64 for index");
}
if (is_index_empty)
return;
at::native::gather_shape_check(self, wrapped_dim, index);
}
template <bool use_new_options = false, typename Meta>
static void scatter_meta_impl(
Meta& meta,
const Tensor& self,
int64_t dim,
const Tensor& index,
const std::optional<Tensor>& src = std::nullopt,
const std::optional<std::string_view> reduce = std::nullopt) {
int64_t wrapped_dim = at::maybe_wrap_dim(dim, self.dim());
at::native::scatter_gather_dtype_check("scatter", self, index, src);
at::native::scatter_shape_check(self, wrapped_dim, index, src);
auto output = meta.maybe_get_output(0);
if (output.defined()) {
at::assert_no_internal_overlap(output);
at::assert_no_overlap(output, index);
if (src.has_value()) {
at::assert_no_overlap(output, src.value());
}
}
meta.set_output_raw_strided(0, self.sizes(), {}, self.options());
if (reduce.has_value()) {
// Check if we have a valid reduce operator.
at::native::get_operator_enum(reduce.value(), use_new_options);
}
}
TORCH_META_FUNC2(scatter, src)
(const Tensor& self, int64_t dim, const Tensor& index, const Tensor& src) {
scatter_meta_impl(*this, self, dim, index, src);
}
TORCH_META_FUNC2(scatter, value)
(const Tensor& self, int64_t dim, const Tensor& index, const Scalar& value) {
scatter_meta_impl(*this, self, dim, index);
}
TORCH_META_FUNC2(scatter, reduce)
(const Tensor& self,
int64_t dim,
const Tensor& index,
const Tensor& src,
const std::string_view reduce) {
TORCH_WARN_ONCE(
"The reduce argument of torch.scatter with Tensor src is deprecated and will be removed ",
"in a future PyTorch release. Use torch.scatter_reduce instead for more reduction options.");
scatter_meta_impl(*this, self, dim, index, src, reduce);
}
TORCH_META_FUNC2(scatter, value_reduce)
(const Tensor& self,
int64_t dim,
const Tensor& index,
const Scalar& src,
const std::string_view reduce) {
scatter_meta_impl(*this, self, dim, index, std::nullopt, reduce);
}
TORCH_META_FUNC(scatter_add)
(const Tensor& self, int64_t dim, const Tensor& index, const Tensor& src) {
scatter_meta_impl(*this, self, dim, index, src, "add");
}
TORCH_META_FUNC2(scatter_reduce, two)
(const Tensor& self,
int64_t dim,
const Tensor& index,
const Tensor& src,
const std::string_view reduce,
bool include_self) {
(void)include_self;
scatter_meta_impl</*use_new_options=*/true>(
*this, self, dim, index, src, reduce);
}
TORCH_PRECOMPUTE_META_FUNC(index_copy)
(const Tensor& self, int64_t dim, const Tensor& index, const Tensor& source) {
dim = maybe_wrap_dim(dim, self.dim());
const Tensor& result = maybe_get_output(0);
// Memory overlap checks need to be done after resizing (if required) is done.
// But it only makes sense to do these checks when result was defined, hence
// the boolean variable `check_result` here.
// For more details, see:
// https://github.com/pytorch/pytorch/pull/63312#discussion_r694794832 and
// https://github.com/pytorch/pytorch/issues/63837
bool check_result = result.defined();
set_output_raw_strided(0, self.sizes(), {}, self.options());
if (check_result) {
at::assert_no_internal_overlap(result);
at::assert_no_overlap(result, index);
at::assert_no_overlap(result, source);
}
TORCH_CHECK_INDEX(
index.dim() < 2,
"index_copy_(): Index should have dimension 1 or 0 (got ",
index.dim(),
")");
int64_t numIndices = index.numel();
if (source.dim() == 0 && numIndices != 1) {
TORCH_CHECK_INDEX(
false,
"index_copy_(): When source is scalar, index should have one element (got ",
numIndices,
")");
} else if (
(source.dim() != self.dim()) && (source.dim() != 0 && self.dim() != 0)) {
TORCH_CHECK_INDEX(
false,
"index_copy_(): When source and destination are not scalars, their dimensionality must match. Source dimensionality (",
source.dim(),
"), destination dimensionality (",
self.dim(),
")");
}
TORCH_CHECK(
index.scalar_type() == ScalarType::Long,
"index_copy_(): Expected a long tensor for index, but got ",
index.scalar_type());
TORCH_CHECK(
self.scalar_type() == source.scalar_type(),
"index_copy_(): self and source expected to have the same dtype, but got (self) ",
self.scalar_type(),
" and (source) ",
source.scalar_type());
TORCH_CHECK(
self.device() == source.device() && self.device() == index.device(),
"index_copy_(): self, index and source expected to be in the same device, but got (self) ",
self.device(),
", (index) ",
index.device(),
", and (source) ",
source.device());
// Check that source and destination slices have the same size
auto selfSlicedSizes = self.sizes().vec();
if (!selfSlicedSizes.empty()) {
selfSlicedSizes.erase(selfSlicedSizes.begin() + dim);
}
auto sourceSlicedSizes = source.sizes().vec();
if (!sourceSlicedSizes.empty()) {
sourceSlicedSizes.erase(sourceSlicedSizes.begin() + dim);
}
if (selfSlicedSizes.size() != sourceSlicedSizes.size() ||
!std::equal(
selfSlicedSizes.begin(),
selfSlicedSizes.end(),
sourceSlicedSizes.begin())) {
std::stringstream ss;
ss << "index_copy_(): Source/destination tensor must have same slice shapes. ";
ss << "Destination slice shape: " << selfSlicedSizes << " at dimension "
<< dim;
ss << " and source slice shape: " << sourceSlicedSizes
<< " at dimension 0.";
TORCH_CHECK(false, ss.str());
}
TORCH_CHECK_INDEX(
source.dim() == 0 || numIndices == source.size(dim),
"index_copy_(): Number of indices (",
numIndices,
") should be equal to source.size(dim) (",
source.size(dim),
")");
return TORCH_PRECOMPUTE_STRUCT(index_copy)().set_dim(dim);
}
template <typename Meta>
static void index_func_meta_impl(
Meta& meta,
const Tensor& self,
int64_t dim,
const Tensor& index,
const Tensor& source,
std::string_view func) {
auto numel = index.numel();
TORCH_CHECK_INDEX(
index.dim() <= 1,
func,
"_(): Index is supposed to be a vector, but got dim: ",
index.dim(),
" with type: ",
index.scalar_type(),
" and size: ",
index.sizes());
TORCH_CHECK(
index.scalar_type() == ScalarType::Long ||
index.scalar_type() == ScalarType::Int,
func,
"_(): Expected dtype int32/int64 for index but got: ",
index.scalar_type());
TORCH_CHECK(
self.scalar_type() == source.scalar_type(),
func,
"_(): self (",
self.scalar_type(),
") and source (",
source.scalar_type(),
") must have the same scalar type");
TORCH_CHECK(
dim == 0 || dim < source.dim(),
func,
"_(): Indexing dim ",
dim,
" is out of bounds of the source tensor with dim ",
source.dim());
TORCH_CHECK(
numel == (source.dim() == 0 ? 1 : source.size(dim)),
func,
"_(): Number of indices (",
numel,
") should be equal to source.size(dim): (",
source.size(dim),
"), for dim: ",
dim);
auto self_sizes = self.sizes().vec();
auto source_sizes = source.sizes().vec();
if (source.dim() != 0 && self.dim() != 0) {
self_sizes.erase(self_sizes.begin() + dim);
source_sizes.erase(source_sizes.begin() + dim);
}
TORCH_CHECK(
self_sizes == source_sizes,
"source tensor shape must match self tensor shape, excluding the specified dimension. Got self.shape = ",
self.sizes(),
" source.shape = ",
source.sizes());
auto& result = meta.maybe_get_output(0);
bool is_defined = result.defined();
meta.set_output_raw_strided(0, self.sizes(), {}, self.options());
if (is_defined) {
at::assert_no_internal_overlap(result);
at::assert_no_overlap(result, index);
at::assert_no_overlap(result, source);
}
// A hack to run TensorIterator checks in the meta function.
// See comment:
// https://github.com/pytorch/pytorch/pull/65993#discussion_r760307417
// TODO: (@krshrimali) Try inheriting from TensorIteratorBase instead.
if (result.device() == kMeta && result.dim() > 0) {
auto selfSlice = result.select(dim, 0);
auto sourceSlice = source.select(dim, 0);
auto iter =
TensorIterator::borrowing_binary_op(selfSlice, selfSlice, sourceSlice);
}
}
TORCH_PRECOMPUTE_META_FUNC(index_add)
(const Tensor& self,
int64_t dim,
const Tensor& index,
const Tensor& source,
const Scalar& alpha) {
dim = maybe_wrap_dim(dim, self.dim());
index_func_meta_impl(*this, self, dim, index, source, "index_add");
return TORCH_PRECOMPUTE_STRUCT(index_add)().set_dim(dim);
}
TORCH_PRECOMPUTE_META_FUNC(index_reduce)
(const Tensor& self,
int64_t dim,
const Tensor& index,
const Tensor& source,
const std::string_view reduce,
bool include_self) {
(void)include_self;
TORCH_CHECK(
reduce == "prod" || reduce == "mean" || reduce == "amax" ||
reduce == "amin",
"index_reduce(): Expected reduce to be one of prod, mean, amax or amin but got ",
reduce,
".");
dim = maybe_wrap_dim(dim, self.dim());
index_func_meta_impl(*this, self, dim, index, source, "index_reduce");
return TORCH_PRECOMPUTE_STRUCT(index_reduce)().set_dim(dim);
}
static void build_index_op(
TensorIteratorBase& iter,
const at::native::AdvancedIndex& info,
const Tensor& result) {
// 'TensorIterator' needs to own the things coming from 'info', since
// 'info' will be destroyed after the META function.
TensorIteratorConfig config;
// info.src is a restrided view of result
config.set_check_mem_overlap(false)
.check_all_same_dtype(false)
.add_output(result)
.add_owned_const_input(info.src);
for (auto& index : info.indices) {
config.add_owned_const_input(index);
}
if (!result.defined()) {
config.declare_static_dtype_and_device(
info.src.scalar_type(), info.src.device());
}
iter.build(config);
}
static void check_indices_on_cpu_or_selfdevice(
const Tensor& self,
const at::MaterializedIOptTensorListRef& indices) {
auto dev = self.device();
bool indices_on_cpu_or_dev = std::all_of(
indices.begin(), indices.end(), [=](const at::OptionalTensorRef& opt) {
return opt.has_value() ? (opt->is_cpu() || opt->device() == dev) : true;
});
TORCH_CHECK(
indices_on_cpu_or_dev,
"indices should be either on ",
kCPU,
" or on the same device as the indexed tensor (",
dev,
")");
}
TORCH_PRECOMPUTE_META_FUNC2(index, Tensor)
(const Tensor& self, at::IOptTensorListRef indices) {
auto materialized = indices.materialize();
TORCH_CHECK_INDEX(
materialized.size() <= (size_t)self.dim(),
"too many indices for tensor of dimension ",
self.dim(),
" (got ",
materialized.size(),
")");
// Only allow: `dev_tensor[{cpu,dev}_tensor]`.
// See: https://github.com/pytorch/pytorch/pull/69607
check_indices_on_cpu_or_selfdevice(self, materialized);
const auto& result = maybe_get_output();
if (result.defined()) {
TORCH_CHECK(
self.scalar_type() == result.scalar_type(),
"index_out: self (",
self.scalar_type(),
") and result (",
result.scalar_type(),
") must have the same scalar type");
at::assert_no_internal_overlap(result);
at::assert_no_overlap(result, self);
for (const at::OptionalTensorRef& index : materialized) {
if (index.has_value()) {
at::assert_no_overlap(result, *index);
}
}
}
auto info = at::native::make_info(self, std::move(indices));
build_index_op(*this, info, result);
return TORCH_PRECOMPUTE_STRUCT2(index, Tensor)()
.set_sizes(std::move(info.indexed_sizes))
.set_strides(std::move(info.indexed_strides));
}
} // namespace at::meta
namespace at::native {
DEFINE_DISPATCH(index_stub);
DEFINE_DISPATCH(index_fill_stub);
DEFINE_DISPATCH(index_copy_stub);
DEFINE_DISPATCH(index_put_stub);
DEFINE_DISPATCH(index_put_with_sort_stub);
DEFINE_DISPATCH(put_stub);
DEFINE_DISPATCH(take_stub);
DEFINE_DISPATCH(masked_fill_stub);
REGISTER_NO_CPU_DISPATCH(index_put_with_sort_stub)
REGISTER_NO_CPU_DISPATCH(index_put_with_sort_quantized_stub)
DEFINE_DISPATCH(masked_select_serial_stub);
DEFINE_DISPATCH(masked_select_stub);
DEFINE_DISPATCH(masked_scatter_stub);
DEFINE_DISPATCH(gather_stub);
DEFINE_DISPATCH(scatter_stub);
DEFINE_DISPATCH(scatter_fill_stub);
DEFINE_DISPATCH(scatter_add_stub);
DEFINE_DISPATCH(scatter_reduce_stub);
DEFINE_DISPATCH(scatter_scalar_reduce_stub);
DEFINE_DISPATCH(scatter_reduce_two_stub);
DEFINE_DISPATCH(scatter_add_expanded_index_stub);
DEFINE_DISPATCH(scatter_reduce_expanded_index_stub);
DEFINE_DISPATCH(gather_expanded_index_stub);
static bool all_strides_match(TensorList tensors) {
TORCH_CHECK(!tensors.empty());
auto strides = tensors[0].strides();
for (auto& tensor : tensors.slice(1)) {
if (!strides.equals(tensor.strides())) {
return false;
}
}
return true;
}
// Replace indexed dimensions in src with stride 0 and the size of the result
// tensor. The offset in these dimensions is computed by the kernel using the
// index tensor's values and the stride of src. The new shape is not meaningful.
// It's used to make the shape compatible with the result tensor.
static Tensor restride_src(
const Tensor& src,
int64_t dims_before,
int64_t dims_indexed,
IntArrayRef replacement_shape) {
auto shape = DimVector(src.sizes());
auto strides = DimVector(src.strides());
int64_t end = dims_before + dims_indexed;
shape.erase(shape.begin() + dims_before, shape.begin() + end);
strides.erase(strides.begin() + dims_before, strides.begin() + end);
shape.insert(
shape.begin() + dims_before,
replacement_shape.begin(),
replacement_shape.end());
strides.insert(strides.begin() + dims_before, replacement_shape.size(), 0);
return src.as_strided(shape, strides);
}
// Add dimensions of size 1 to an index tensor so that it can be broadcast to
// the result shape and iterated over element-wise like the result tensor and
// the restrided src.
static Tensor reshape_indexer(
const Tensor& index,
int64_t dims_before,
int64_t dims_after) {
auto orig_shape = index.sizes();
auto shape = DimVector();
shape.append(dims_before, 1);
shape.append(orig_shape.begin(), orig_shape.end());
shape.append(dims_after, 1);
return index.reshape(shape);
}
AdvancedIndex::AdvancedIndex(const Tensor& src, TensorList indices_list) {
int64_t element_size_bytes = src.element_size();
int64_t dims_before = 0, dims_after = 0, dims_indexed = 0;
IntArrayRef replacement_shape;
for (const auto dim : c10::irange(indices_list.size())) {
if (!indices_list[dim].defined()) {
if (dims_indexed == 0) {
dims_before++;
} else {
dims_after++;
}
} else {
dims_indexed++;
replacement_shape = indices_list[dim].sizes();
indexed_sizes.push_back(src.size(dim));
indexed_strides.push_back(src.stride(dim) * element_size_bytes);
}
}
// Check if the indexed subspace contains a dim of size 0, but the replacement
// shape does not. This implies that an index is out of bounds, because there
// is no number that's a valid index for an empty tensor. Normally, out of
// bounds is handled in the indexing kernel, but this case fails earlier in
// restride_src with an unhelpful error message.
if (std::find(indexed_sizes.begin(), indexed_sizes.end(), 0) !=
indexed_sizes.end() &&
std::find(replacement_shape.begin(), replacement_shape.end(), 0) ==
replacement_shape.end()) {
TORCH_CHECK_INDEX(
false, "index is out of bounds for dimension with size 0");
}
this->dims_before = dims_before;
this->dims_after = dims_after;
this->src = restride_src(src, dims_before, dims_indexed, replacement_shape);
for (auto& index : indices_list) {
if (index.defined()) {
indices.push_back(reshape_indexer(index, dims_before, dims_after));
}
}
// For CUDA/MPS/XPU tensors, force all index tensors to have the same striding
// to simplify the CUDA/MPS/XPU kernel.
if (indices.size() >= 2 &&
(this->src.device().type() == kCUDA ||
this->src.device().type() == kMPS ||
this->src.device().type() == kXPU)) {
if (!all_strides_match(indices)) {
for (auto& indice : indices) {
indice = indice.contiguous();
}
}
}
}
static TensorIterator make_index_put_iterator(
const AdvancedIndex& info,
const Tensor& value) {
TORCH_CHECK(
is_expandable_to(value.sizes(), info.src.sizes()),
"shape mismatch: value tensor of shape ",
value.sizes(),
" cannot be broadcast to indexing result of shape ",
info.src.sizes());
TORCH_CHECK(
value.scalar_type() == info.src.scalar_type(),
"Index put requires the source and destination dtypes match, "
"got ",
info.src.scalar_type(),
" for the destination "
"and ",
value.scalar_type(),
" for the source.");
TensorIteratorConfig config;
// info.src is restrided by restride_src with 0 strided dimensions
config.set_check_mem_overlap(false);
config.resize_outputs(false);
config.check_all_same_dtype(false);
config.add_output(info.src);
config.add_const_input(value);
for (auto& index : info.indices) {
config.add_const_input(index);
}
return config.build();
}
TORCH_IMPL_FUNC(index_out)
(const Tensor& self, DimVector sizes, DimVector strides, const Tensor& result) {
index_stub(device_type(), *this, sizes, strides);
}
Tensor quantized_index(
const Tensor& self,
const torch::List<std::optional<Tensor>>& indices) {
TORCH_INTERNAL_ASSERT(
self.qscheme() == c10::kPerTensorAffine ||
self.qscheme() == c10::kPerTensorSymmetric,
"Indexing is only supported for per-Tensor quantized Tensors.");
// For now, this is a naive implementation which does dq -> index -> q.
// TODO(future PR): improve performance by removing the copies.
const auto& self_dq = self.dequantize();
auto result = at::index(self_dq, indices);
return at::quantize_per_tensor(
result, self.q_scale(), self.q_zero_point(), self.scalar_type());
}
Tensor _unsafe_index(
const Tensor& self,
const torch::List<std::optional<Tensor>>& indices) {
// Disallow boolean indexing since it leads to dynamic output shapes
for (auto i : c10::irange(indices.size())) {
auto index = indices.get(i);
if (index.has_value()) {
auto dtype = index->scalar_type();
TORCH_CHECK(
dtype == kLong || dtype == kInt,
"_unsafe_index found unexpected index type ",
dtype);
}
}
return at::index(self, indices);
}
Tensor _unsafe_masked_index(
const Tensor& self,
const Tensor& mask,
const torch::List<std::optional<Tensor>>& indices,
const Scalar& fill) {
// Unsafe masked index is equivalent to
// where(mask, self[indices], fill)
// with the main difference being that the when the `mask` is false, the
// tensor `self` is not indexed using `indices`. This allows `indices` to be
// out-of-bounds when `mask` is false. When `mask` is true, the `indices` are
// expected to be in bounds and is not checked. We also assume that the
// `indices` are non-negative
//
// This function is not meant to be executed on eager mode. An unoptimized
// version is provided here.
//
// compiler backends should implement this op such that `self[indices]` is not
// loaded when `mask` is true. See inductor for a reference.
auto clamp = [](const std::optional<Tensor>& index,
auto size) -> std::optional<Tensor> {
if (!index) {
return index;
}
// Disallow bool
auto dtype = index->scalar_type();
TORCH_CHECK(
dtype == kLong || dtype == kInt,
"_unsafe_masked_index found unexpected index type ",
dtype);
return at::clamp(*index, -size, size - 1);
};
torch::List<std::optional<Tensor>> clamped_indices(indices);
std::transform(
indices.begin(),
indices.end(),
self.sizes().begin(),
clamped_indices.begin(),
clamp);
if (self.numel() == 0) {
// Returns a tensor filled with `fill` value
// We use a hack here since we do not have a method to get the
// correct size of the tensor. (except with meta impl which is
// not available on mobile builds)
std::vector<int64_t> new_sizes(self.dim());
auto compute_new_size = [](const std::optional<Tensor>& index,
auto size) -> int64_t {
if (index && size == 0) {
return 1;
} else {
return size;
}
};
std::transform(
indices.begin(),
indices.end(),
self.sizes().begin(),
new_sizes.begin(),
compute_new_size);
auto result = self.new_full(new_sizes, fill);
return at::_unsafe_index(result, clamped_indices);
}
auto result = at::_unsafe_index(self, clamped_indices);
return result.masked_fill(at::logical_not(mask), fill);
}
Tensor _unsafe_masked_index_put_accumulate(
const Tensor& self,
const Tensor& mask,
const torch::List<std::optional<Tensor>>& indices,
const Tensor& values) {
// This is the backward of _unsafe_masked_index.
// This function is not meant to be executed on eager mode.
if (self.numel() == 0) {
return self.clone();
}
// We recompute the clamped indices and rely on inductor to CSE the
// computation
auto clamp = [](const std::optional<Tensor>& index,
auto size) -> std::optional<Tensor> {
if (!index) {
return index;
}
// Disallow bool
auto dtype = index->scalar_type();
TORCH_CHECK(
dtype == kLong || dtype == kInt,
"_unsafe_masked_index found unexpected index type ",
dtype);
return at::clamp(*index, -size, size - 1);
};
torch::List<std::optional<Tensor>> clamped_indices(indices);
std::transform(
indices.begin(),
indices.end(),
self.sizes().begin(),
clamped_indices.begin(),
clamp);
auto masked_value = values.masked_fill(at::logical_not(mask), 0);
return at::_unsafe_index_put(self, clamped_indices, masked_value, true);
}
Tensor& put_(
Tensor& self,
const Tensor& index,
const Tensor& source,
const bool accumulate) {
// See note [Writing Nondeterministic Operations]
// Nondeterministic when index contains duplicate entries and we do not
// accumulate If we accumulate on GPU, we use atomicGPUAdd, which is
// non-deterministic
if (!accumulate || (accumulate && self.device().type() == DeviceType::CUDA)) {
at::globalContext().alertNotDeterministic("put_");
}
// Type and device checks
TORCH_CHECK(
index.scalar_type() == ScalarType::Long,
"put_(): Expected a long tensor for index, but got ",
index.scalar_type())
TORCH_CHECK(
self.scalar_type() == source.scalar_type(),
"put_(): self and source expected to have the same dtype, but got self.dtype = ",
self.scalar_type(),
" and source.dtype = ",
source.scalar_type());
TORCH_CHECK(
self.device() == source.device() && self.device() == index.device(),
"put_(): self, index and source expected to be in the same device, but got self.device = ",
self.device(),
", index.device = ",
index.device(),
", and source.device = ",
source.device());
// index checks
TORCH_CHECK_INDEX(
source.numel() == index.numel(),
"put_(): Expected source and index to have the same number of elements, but got source.numel() = ",
source.numel(),
", index.numel() = ",
index.numel());
TORCH_CHECK_INDEX(
!(self.numel() == 0 && index.numel() != 0),
"put_(): Tried to put elements into an empty tensor");
at::assert_no_internal_overlap(self);
at::assert_no_overlap(self, index);
at::assert_no_overlap(self, source);
// Early return
if (index.numel() == 0) {
return self;
}
auto index_reshaped = index.reshape(source.sizes());
// Do not iterate over self, we will compute the offsets manually
auto iter = TensorIteratorConfig()
.set_check_mem_overlap(false)
.check_all_same_dtype(false)
.add_const_input(source)
.add_const_input(index_reshaped)
.build();
put_stub(iter.device_type(), iter, self, accumulate);
return self;
}
Tensor put(
const Tensor& self,
const Tensor& index,
const Tensor& source,
const bool accumulate) {
return self.clone(at::MemoryFormat::Preserve).put_(index, source, accumulate);
}
Tensor index_put(
const Tensor& self,
const torch::List<std::optional<Tensor>>& indices,
const Tensor& value,
bool accumulate) {
return self.clone(at::MemoryFormat::Preserve)
.index_put_(indices, value, accumulate);
}
Tensor _unsafe_index_put(
const Tensor& self,
const torch::List<std::optional<Tensor>>& indices,
const Tensor& value,
bool accumulate) {
return at::index_put(self, indices, value, accumulate);
}
Tensor& _index_put_impl_(
Tensor& self,
const torch::List<std::optional<Tensor>>& indices,
const Tensor& value,
const bool accumulate,
const bool unsafe) {
TORCH_CHECK_INDEX(
indices.size() <= (size_t)self.dim(),
"too many indices for tensor of dimension ",
self.dim(),
" (got ",
indices.size(),
")");
if (at::has_internal_overlap(self) == MemOverlap::Yes) {
TORCH_WARN(
"Use of index_put_ on expanded tensors is deprecated. "
"Please clone() the tensor before performing this operation. "
"This also applies to advanced indexing e.g. tensor[indices] = tensor");
}
if (!accumulate) {
auto masked_fill_dispatch = canDispatchToMaskedFill(self, indices, value);
if (std::get<0>(masked_fill_dispatch)) {
return self.masked_fill_(std::get<1>(masked_fill_dispatch), value.item());
}
}
auto value_ = value;
if (value.device() != self.device() && value.numel() == 1 &&
value.dim() == 0) {
value_ = value.to(self.device());
}
at::assert_no_overlap(self, value);
// NOLINTNEXTLINE(performance-implicit-conversion-in-loop)
for (const std::optional<Tensor>& index : indices) {
if (index.has_value()) {
at::assert_no_overlap(self, *index);
}
}
if ((self.device().type() == DeviceType::CUDA ||
self.device().type() == DeviceType::XPU) &&
(accumulate ||
(globalContext().deterministicAlgorithms() && value_.numel() > 1))) {
TORCH_CHECK(
value_.device() == self.device(),
"expected device ",
self.device(),
" but got device ",
value_.device(),
" for value tensor");
index_put_with_sort_stub(
self.device().type(), self, indices, value_, accumulate, unsafe);
return self;
}
auto info = make_info(self, indices);
auto iter = make_index_put_iterator(info, value_);
index_put_stub(
iter.device_type(),
iter,
info.indexed_sizes,
info.indexed_strides,
accumulate);
return self;
}
Tensor& take_out(const Tensor& self, const Tensor& index, Tensor& out) {
// Type and device checks
TORCH_CHECK(
index.scalar_type() == ScalarType::Long,
"take(): Expected a long tensor for index, but got ",
index.scalar_type())
TORCH_CHECK(
self.scalar_type() == out.scalar_type(),
"take(): self and out expected to have the same dtype, but got self.dtype = ",
self.scalar_type(),
" and out.dtype = ",
out.scalar_type());
TORCH_CHECK(
self.device() == out.device() && self.device() == index.device(),
"take(): self, index and out expected to be in the same device, but got self.device = ",
self.device(),
", index.device = ",
index.device(),
", and out.device = ",
out.device());
// index checks
TORCH_CHECK_INDEX(
!(self.numel() == 0 && index.numel() != 0),
"take(): tried to take from an empty tensor");
at::assert_no_internal_overlap(out);
at::assert_no_overlap(out, index);
at::assert_no_overlap(out, self);
// Do not iterate over self, we will compute the offsets manually
// out is resized inside tensor_iterator
auto iter = TensorIteratorConfig()
.set_check_mem_overlap(false)
.check_all_same_dtype(false)
.add_output(out)
.add_const_input(index)
.build();
// Early return after out has been resized
if (index.numel() == 0) {
return out;
}
take_stub(iter.device_type(), iter, self);
return out;
}
Tensor take(const Tensor& self, const Tensor& index) {
auto out = at::empty(index.sizes(), self.options());
at::native::take_out(self, index, out);
return out;
}
Tensor& index_put_(
Tensor& self,
const torch::List<std::optional<Tensor>>& indices,
const Tensor& value,
const bool accumulate) {
return at::_index_put_impl_(
self, indices, value, accumulate, /*unsafe=*/false);
}
TORCH_IMPL_FUNC(index_copy_out)
(const Tensor& self,
int64_t dim,
const Tensor& index,
const Tensor& source,
const Tensor& result) {
if (!result.is_same(self))
result.copy_(self);
// See Note [Enabling Deterministic Operations]
if (result.is_cuda() && globalContext().deterministicAlgorithms()) {
torch::List<std::optional<Tensor>> indices;
indices.resize(dim + 1);
indices.set(dim, index);
result.index_put_(indices, source, false);
return;
}
// Handle the case when self / source is 0-dim
Tensor result_nonzero = result.dim() == 0 ? result.unsqueeze(0) : result;
Tensor source_nonzero = source.dim() == 0 ? source.unsqueeze(0) : source;
// The only difference between the following tensor iterator and that of
// index_fill_ is that this one has also source as an input. We should
// refactor it when if constexpr is available (C++17)
// Prepare `index` for TensorIterator.
// It is restrided to be broadcastable over `self` in TensorIterator.
auto index_sizes = std::vector<int64_t>(result_nonzero.dim(), 1);
auto index_strides = std::vector<int64_t>(result_nonzero.dim(), 0);
index_sizes[dim] = index.numel();
index_strides[dim] =
(index.dim() > 0) ? index.stride(0) : 1; // `index` is 1d or scalar
auto index_restrided = index.as_strided(index_sizes, index_strides);
// Prepare `result` for TensorIterator.
// Restride `result` to not advance in dimension `dim`.
// We do not use squash_dim here because `index` will
// need to advance in this dimension.
// Note that self_sizes[dim] is set to index.numel().
// This is done so that self_sizes[dim] and index_sizes[dim]
// match as required by TensorIterator (input shape should
// strictly broadcast over output shape, i.e.
// output.shape[i] >= input.shape[i] for i in range(dims)).
auto result_sizes = result_nonzero.sizes().vec();
auto result_strides = result_nonzero.strides().vec();
result_sizes[dim] = index.numel();
result_strides[dim] = 0;
auto result_restrided =
result_nonzero.as_strided(result_sizes, result_strides);
auto iter = TensorIteratorConfig()
// We do not check for overlap because `result` is restrided
// with zero stride. Zero strides trigger memory overlap
// assert within TensorIterator.
.set_check_mem_overlap(false)
.check_all_same_dtype(false)
.resize_outputs(false)
.add_output(result_restrided)
.add_const_input(index_restrided)
.add_const_input(source_nonzero)
.build();
auto result_dim_size = result_nonzero.size(dim);
auto result_dim_stride = result_nonzero.stride(dim);
index_copy_stub(
iter.device_type(), iter, dim, result_dim_size, result_dim_stride);
}
// Not calling into index_reduce_func_impl because of a different dtype dispatch
TORCH_IMPL_FUNC(index_add_cpu_out)
(const Tensor& self,
int64_t dim,
const Tensor& index,
const Tensor& source,
const Scalar& alpha,
const Tensor& result) {
if (!result.is_same(self)) {
result.copy_(self);
}
auto numel = index.numel();
auto index_contig = index.contiguous();
if (result.dim() > 1) {
// Equivalent to:
// for (const auto i : c10::irange(numel)) {
// auto selfSlice = self.select(dim, index_data[i]);
// auto sourceSlice = source.select(dim, i);
// selfSlice.add_(sourceSlice);
// }
// But much faster as this reuses the iterator from add_
if (numel == 0 || self.numel() == 0) {
return;
}
dim = maybe_wrap_dim(dim, self.dim());
// When the slice of source or result is noncontiguous,
// original index_add is slow as it uses add for the sliced tensor,
// which is serial on index and parallel on sliced tensor to avoid write
// conflict. Doing parallel on the sliced tensor is not optimal as the size
// of sliced tensor may be not big enough to parallel and also causes
// multiple parallelizations. scatter_add is used to speedup for this case
// as scatter_add parallels on the outer dimension of input and is serial on
// the inner dimension to avoid write conflict. scatter_add only need one
// parallel and the size of outer dimensions is bigger to do parallel.
if ((dim == 0 || dim == self.dim() - 1) &&
// Data type of index should be long and alpha should be 1 to use
// scatter_add.
alpha.equal(1.0) && index_contig.scalar_type() == ScalarType::Long &&
// scatter_add does not support ComplexHalf
source.scalar_type() != ScalarType::ComplexHalf &&
result.scalar_type() != ScalarType::ComplexHalf) {
std::vector<int64_t> ep_sizes(result.sizes().size());
std::vector<int64_t> ep_strides(source.sizes().size());
// Check whether result and source are matched apart from the dimension
// dim. Note that the broadcast case: source.select(dim, i) is broadcast
// for result.select(dim, index_data[i]) The broadcast case is not
// applicable for scatter_add
auto check_sizes =
[&ep_sizes, &ep_strides, &numel](
IntArrayRef a, IntArrayRef b, int64_t dim) -> bool {
ep_sizes[dim] = numel;
ep_strides[dim] = 1;
for (const int64_t i : c10::irange(a.size())) {
if (i == dim) {
continue;
}
if (a[i] != b[i]) {
return false;
}
ep_sizes[i] = a[i];
ep_strides[i] = 0;
}
return true;
};
if (check_sizes(result.sizes(), source.sizes(), dim)) {
auto ep_index = index_contig.as_strided(ep_sizes, ep_strides);
result.scatter_add_(dim, ep_index, source);
return;
}
}
auto selfSlice = result.select(dim, 0);
auto sourceSlice = source.select(dim, 0);
auto self_stride_bytes =
result.stride(dim) * elementSize(result.scalar_type());
auto source_stride_bytes =
source.stride(dim) * elementSize(source.scalar_type());
auto self_dim_size = result.size(dim);
auto iter =
TensorIterator::borrowing_binary_op(selfSlice, selfSlice, sourceSlice);
AT_DISPATCH_INDEX_TYPES(index.scalar_type(), "index_add_cpu_", [&]() {
auto index_data = index_contig.const_data_ptr<index_t>();
for (const auto i : c10::irange(numel)) {
auto self_i = index_data[i];
TORCH_CHECK_INDEX(
(self_i >= 0) && (self_i < self_dim_size),
"index out of range in self");
auto self_data = static_cast<char*>(selfSlice.data_ptr()) +
self_i * self_stride_bytes;
auto source_data =
static_cast<const char*>(sourceSlice.const_data_ptr()) +
i * source_stride_bytes;
iter.unsafe_replace_operand(0, self_data);
iter.unsafe_replace_operand(1, self_data);
iter.unsafe_replace_operand(2, const_cast<char*>(source_data));
add_stub(iter.device_type(), iter, alpha);
}
});
} else {
TORCH_CHECK(
source.dim() <= 1,
"source.dim() (",
source.dim(),
") must one or zero for given self.dim() (",
self.dim(),
")");
// explicitly capture all required variables to work around windows build
// TODO: fix this when windows can correctly capture variables in nested
// lambda
AT_DISPATCH_ALL_TYPES_AND_COMPLEX_AND4(
ScalarType::Half,
ScalarType::Bool,
ScalarType::BFloat16,
ScalarType::ComplexHalf,
result.scalar_type(),
"index_add_",
[&result, &source, &dim, &index_contig, &numel, &alpha] {
auto alpha_value = alpha.to<scalar_t>();
auto result_stride = result.dim() == 0 ? 1 : result.stride(dim);
auto source_stride = source.dim() == 0 ? 1 : source.stride(dim);
// TODO: Maybe TensorAccessor can be used here?
auto* result_ptr = result.data_ptr<scalar_t>();
auto* source_ptr = source.const_data_ptr<scalar_t>();
AT_DISPATCH_INDEX_TYPES(
index_contig.scalar_type(),
"index_add_cpu_",
[&index_contig,
&numel,
&result,
&result_ptr,
&result_stride,
&source_ptr,
&source_stride,
&alpha_value] {
auto index_data = index_contig.const_data_ptr<index_t>();
for (const auto i : c10::irange(numel)) {
auto self_i = index_data[i];
TORCH_CHECK_INDEX(
(self_i >= 0) && (self_i < result.numel()),
"index out of range in self");
scalar_t* self_ip = result_ptr + self_i * result_stride;
*self_ip +=
c10::load(source_ptr + i * source_stride) * alpha_value;
}
});
});
}
}
static void index_reduce_func_impl(
const Tensor& self,
int64_t dim,
const Tensor& index,
const Tensor& source,
bool include_self,
const Tensor& result,
const ReductionType& op) {
if (!result.is_same(self))
result.copy_(self);
if (!include_self) {
AT_DISPATCH_ALL_TYPES_AND2(
at::ScalarType::Half,
at::ScalarType::BFloat16,
self.scalar_type(),
"index_reduce_func_exclude_input_init",
[&] {
scalar_t init_val;
switch (op) {
case ReductionType::PROD:
init_val = (scalar_t)1;
break;
case ReductionType::MAX:
init_val = std::numeric_limits<scalar_t>::has_infinity
? -std::numeric_limits<scalar_t>::infinity()
: std::numeric_limits<scalar_t>::lowest();
break;
case ReductionType::MIN:
init_val = std::numeric_limits<scalar_t>::has_infinity
? std::numeric_limits<scalar_t>::infinity()
: std::numeric_limits<scalar_t>::max();
break;
default:
init_val = (scalar_t)0;
break;
}
// index_fill_ requires index to be a LongTensor
result.index_fill_(dim, index.to(at::ScalarType::Long), init_val);
});
}
auto numel = index.numel();
auto index_contig = index.contiguous();
if (result.dim() > 1) {
// Equivalent to:
// for (const auto i : c10::irange(numel)) {
// auto selfSlice = self.select(dim, index_data[i]);
// auto sourceSlice = source.select(dim, i);
// selfSlice.op_(sourceSlice);
// }
// But much faster as this reuses the iterator from the binary op
if (numel == 0) {
return;
}
auto selfSlice = result.select(dim, 0);
auto sourceSlice = source.select(dim, 0);
auto self_stride_bytes =
result.stride(dim) * elementSize(result.scalar_type());
auto source_stride_bytes =
source.stride(dim) * elementSize(source.scalar_type());
auto self_dim_size = result.size(dim);
auto iter =
TensorIterator::borrowing_binary_op(selfSlice, selfSlice, sourceSlice);
AT_DISPATCH_INDEX_TYPES(index.scalar_type(), "index_func_cpu_", [&]() {
auto index_data = index_contig.const_data_ptr<index_t>();
for (const auto i : c10::irange(numel)) {
auto self_i = index_data[i];
TORCH_CHECK_INDEX(
(self_i >= 0) && (self_i < self_dim_size),
"index out of range in self");
auto self_data = static_cast<char*>(selfSlice.data_ptr()) +
self_i * self_stride_bytes;
auto source_data =
static_cast<const char*>(sourceSlice.const_data_ptr()) +
i * source_stride_bytes;
iter.unsafe_replace_operand(0, self_data);
iter.unsafe_replace_operand(1, self_data);
iter.unsafe_replace_operand(2, const_cast<char*>(source_data));
switch (op) {
case ReductionType::PROD:
mul_stub(iter.device_type(), iter);
break;
case ReductionType::MIN:
minimum_stub(iter.device_type(), iter);
break;
case ReductionType::MAX:
maximum_stub(iter.device_type(), iter);
break;
default:
add_stub(iter.device_type(), iter, 1);
break;
}
}
});
if (op == ReductionType::MEAN) {
auto counts =
include_self ? at::ones_like(result) : at::zeros_like(result);
counts.index_add_(dim, index, at::ones_like(source));
counts.masked_fill_(counts == 0, 1);
if (result.is_floating_point() || result.is_complex()) {
result.div_(counts);
} else {
result.div_(counts, "floor");
}
}
} else {
TORCH_CHECK(
source.dim() <= 1,
"source.dim() (",
source.dim(),
") must one or zero for given self.dim() (",
self.dim(),
")");
auto counts = include_self ? at::ones_like(result) : at::zeros_like(result);
// explicitly capture all required variables to work around windows build
// TODO: fix this when windows can correctly capture variables in nested
// lambda
AT_DISPATCH_ALL_TYPES_AND2(
ScalarType::Half,
ScalarType::BFloat16,
result.scalar_type(),
"index_func_",
[&result, &source, &dim, &index_contig, &numel, &op, &counts] {
auto result_stride = result.dim() == 0 ? 1 : result.stride(dim);
auto source_stride = source.dim() == 0 ? 1 : source.stride(dim);
auto counts_stride = counts.dim() == 0 ? 1 : counts.stride(dim);
// TODO: Maybe TensorAccessor can be used here?
auto* result_ptr = result.data_ptr<scalar_t>();
auto* source_ptr = source.const_data_ptr<scalar_t>();
auto counts_ptr = counts.data_ptr<scalar_t>();
AT_DISPATCH_INDEX_TYPES(
index_contig.scalar_type(),
"index_func_cpu_",
[&index_contig,
&numel,
&result,
&result_ptr,
&result_stride,
&source_ptr,
&source_stride,
&op,
&counts_ptr,
&counts_stride] {
auto index_data = index_contig.const_data_ptr<index_t>();
for (const auto i : c10::irange(numel)) {
auto self_i = index_data[i];
TORCH_CHECK_INDEX(
(self_i >= 0) && (self_i < result.numel()),
"index out of range in self");
scalar_t* self_ip = result_ptr + self_i * result_stride;
scalar_t* count_ip;
scalar_t val;
switch (op) {
case ReductionType::MEAN:
*self_ip += *(source_ptr + i * source_stride);
count_ip = counts_ptr + self_i * counts_stride;
*count_ip += 1;
break;
case ReductionType::PROD:
*self_ip *= *(source_ptr + i * source_stride);
break;
case ReductionType::MIN:
val = *(source_ptr + i * source_stride);
*self_ip = at::_isnan<scalar_t>(val)
? val
: std::min(*self_ip, val);
break;
case ReductionType::MAX:
val = *(source_ptr + i * source_stride);
*self_ip = at::_isnan<scalar_t>(val)
? val
: std::max(*self_ip, val);
break;
default:
break;
}
}
});
});
if (op == ReductionType::MEAN) {
counts.masked_fill_(counts == 0, 1);
if (result.is_floating_point() || result.is_complex()) {
result.div_(counts);
} else {
result.div_(counts, "floor");
}
}
}
}
TORCH_IMPL_FUNC(index_reduce_cpu_out)
(const Tensor& self,
int64_t dim,
const Tensor& index,
const Tensor& source,
const std::string_view reduce,
bool include_input,
const Tensor& result) {
TORCH_WARN_ONCE(
"index_reduce() is in beta and the API may change at any time.");
auto op = get_operator_enum(reduce, true);
index_reduce_func_impl(self, dim, index, source, include_input, result, op);
}
// Check that indices fall within dimension array size
// Avoid redispatch call to min/max
template <typename IndexType>
static void check_indexarray_range(
const IndexType* indices,
int64_t n,
IndexType indexing_axis_dim) {
for (const auto i : c10::irange(n)) {
auto idx = indices[i];
TORCH_CHECK(
0 <= idx && idx < indexing_axis_dim,
"INDICES element is out of DATA bounds, id=",
idx,
" axis_dim=",
indexing_axis_dim);
}
}
static Tensor& index_select_out_cpu_dim1_(
Tensor& result_contig,
const Tensor& self,
const Tensor& index_contig) {
auto self_contig = self.contiguous();
const caffe2::TypeMeta dataType = self_contig.dtype();
size_t item_bytesize = dataType.itemsize();
auto out = static_cast<char*>(result_contig.data_ptr());
auto src_base = static_cast<const char*>(self_contig.const_data_ptr());
auto self_sizes = self_contig.sizes();
auto outer_dims_product = c10::size_to_dim_(1, self_sizes);
auto block_size = c10::size_from_dim_(2, self_sizes);
auto block_bytesize = block_size * item_bytesize;
auto src_indexing_axis_dim = self_sizes[1];
auto src_batch_bytesize = self_sizes[1] * block_bytesize;
auto N = index_contig.numel();
auto gathered_batch_bytesize = N * block_bytesize;
AT_DISPATCH_INDEX_TYPES(
index_contig.scalar_type(), "batch_index_select_compute", [&]() {
const auto* idxs = index_contig.const_data_ptr<index_t>();
check_indexarray_range<index_t>(idxs, N, src_indexing_axis_dim);
// Special-case single-float copy for efficiency
if (self.scalar_type() == ScalarType::Float && block_size == 1) {
for (const auto batch : c10::irange(outer_dims_product)) {
const float* src_floats =
(const float*)(src_base + batch * src_batch_bytesize);
float* dst_floats = (float*)(out + batch * gathered_batch_bytesize);
for (const auto i : c10::irange(N)) {
auto idx = idxs[i];
dst_floats[i] = src_floats[idx];
}
}
} else {
// outer_dims_product specifies how many times we repeat inner
// dimensions, so we just iterate over it to cover all outer
// dimensions.
for (const auto batch : c10::irange(outer_dims_product)) {
for (const auto i : c10::irange(N)) {
auto idx = idxs[i];
auto src =
src_base + batch * src_batch_bytesize + idx * block_bytesize;
auto dst =
out + batch * gathered_batch_bytesize + i * block_bytesize;
memcpy(dst, src, block_bytesize);
}
}
}
});
return result_contig;
}
Tensor& index_select_out_cpu_(
const Tensor& self,
int64_t dim,
const Tensor& index,
Tensor& result) {
if (self.is_quantized()) {
TORCH_CHECK(
self.qscheme() == kPerTensorAffine,
"Only per_tensor quantized quantized tensors are supported by index_select.")
}
dim = maybe_wrap_dim(dim, self.dim());
auto numel = index.numel();
TORCH_CHECK_INDEX(
index.dim() <= 1, "index_select(): Index is supposed to be a vector");
TORCH_CHECK(
!(self.dim() == 0 && numel != 1),
"index_select(): Index to scalar can have only 1 value, got ",
numel,
" value(s)");
TORCH_CHECK(
index.scalar_type() == ScalarType::Long ||
index.scalar_type() == ScalarType::Int,
"index_select(): Expected dtype int32 or int64 for index");
TORCH_CHECK(
self.scalar_type() == result.scalar_type(),
"index_select(): self and result must have the same scalar type");
at::assert_no_internal_overlap(result);
at::assert_no_overlap(result, self);
at::assert_no_overlap(result, index);
auto result_size = self.sizes().vec();
if (self.dim() > 0) {
result_size[dim] = numel;
}
at::native::resize_output(result, result_size);
auto index_contig = index.contiguous();
if (self.dim() > 1) {
if (numel == 0) {
return result;
}
if (self.numel() == 0) {
auto src_indexing_axis_dim = self.size(dim);
TORCH_CHECK(
src_indexing_axis_dim > 0,
"index_select(): self indexing axis dim should be positive");
AT_DISPATCH_INDEX_TYPES(
index_contig.scalar_type(),
"index_select_empty_self_bound_check",
[&]() {
const auto* idxs = index_contig.const_data_ptr<index_t>();
check_indexarray_range<index_t>(idxs, numel, src_indexing_axis_dim);
});
return result;
}
if (dim == 1 && result.is_contiguous()) {
// fast pass
return index_select_out_cpu_dim1_(result, self, index_contig);
}
auto selfSlice = self.select(dim, 0);
auto resultSlice = result.select(dim, 0);
auto selfSlice_data = selfSlice.const_data_ptr();
auto resultSlice_data = resultSlice.data_ptr();
auto self_stride_bytes = self.stride(dim) * elementSize(self.scalar_type());
auto result_stride_bytes =
result.stride(dim) * elementSize(result.scalar_type());
auto self_dim_size = self.size(dim);
auto slice_size = selfSlice.numel();
auto iter = TensorIteratorConfig()
.check_all_same_dtype(false)
.resize_outputs(false)
.add_output(resultSlice)
.add_const_input(selfSlice)
.build();
auto grain_size = at::internal::GRAIN_SIZE;
auto outer_loop =
// explicitly capture all required variables to work around windows
// build
// TODO: fix this when windows can correctly capture variables in nested
// lambda
[&index_contig,
&iter,
&self_dim_size,
&selfSlice_data,
&self_stride_bytes,
&resultSlice_data,
&result_stride_bytes](int64_t start, int64_t end) {
auto sub_iter = TensorIterator(iter);
AT_DISPATCH_INDEX_TYPES(
index_contig.scalar_type(),
"index_select_out_cpu_",
[&index_contig,
&start,
&end,
&sub_iter,
&self_dim_size,
&selfSlice_data,
&self_stride_bytes,
&resultSlice_data,
&result_stride_bytes]() {
auto index_data = index_contig.const_data_ptr<index_t>();
for (const auto i : c10::irange(start, end)) {
auto self_i = index_data[i];
TORCH_CHECK_INDEX(
(self_i >= 0) && (self_i < self_dim_size),
"index out of range in self");
auto self_data = static_cast<const char*>(selfSlice_data) +
self_i * self_stride_bytes;
auto result_data = static_cast<char*>(resultSlice_data) +
i * result_stride_bytes;
sub_iter.unsafe_replace_operand(0, result_data);
sub_iter.unsafe_replace_operand(
1, const_cast<char*>(self_data));
copy_stub(sub_iter.device_type(), sub_iter, false);
};
});
};
// parallel on inner loop in case the slice is large enough;
// otherwise parallel on outer loop
if (slice_size >= grain_size) {
outer_loop(0, numel);
} else {
// use a fast loop when self and result are contiguous and of the same
// data type
if (iter.is_contiguous() && self.scalar_type() == result.scalar_type()) {
auto slice_size_bytes = slice_size * elementSize(self.scalar_type());
// explicitly capture all required variables to work around windows
// build
// TODO: fix this when windows can correctly capture variables in nested
// lambda
at::parallel_for(
0,
numel,
grain_size / slice_size,
[&index_contig,
&slice_size_bytes,
&self_dim_size,
&selfSlice_data,
&self_stride_bytes,
&resultSlice_data,
&result_stride_bytes](int64_t start, int64_t end) {
AT_DISPATCH_INDEX_TYPES(
index_contig.scalar_type(),
"index_select_out_cpu_",
[&index_contig,
&slice_size_bytes,
&self_dim_size,
&selfSlice_data,
&self_stride_bytes,
&resultSlice_data,
&result_stride_bytes,
&start,
&end]() {
auto index_data = index_contig.const_data_ptr<index_t>();
for (const auto i : c10::irange(start, end)) {
auto self_i = index_data[i];
TORCH_CHECK_INDEX(
(self_i >= 0) && (self_i < self_dim_size),
"index out of range in self");
auto self_data =
static_cast<const char*>(selfSlice_data) +
self_i * self_stride_bytes;
auto result_data = static_cast<char*>(resultSlice_data) +
i * result_stride_bytes;
memcpy(result_data, self_data, slice_size_bytes);
}
});
});
} else {
at::parallel_for(0, numel, grain_size / slice_size, outer_loop);
}
}
} else {
TORCH_CHECK(
result.dim() <= 1,
"result.dim() (",
result.dim(),
") must one or zero for given self.dim() (",
self.dim(),
")");
// explicitly capture all required variables to work around windows build
// TODO: fix this when windows can correctly capture variables in nested
// lambda
if (self.is_quantized()) {
AT_DISPATCH_QINT_TYPES(
self.scalar_type(),
"index_select_quant",
[&index_contig, &self, &result, &dim, &numel] {
auto self_stride = self.dim() == 0 ? 1 : self.stride(dim);
auto result_stride = result.dim() == 0 ? 1 : result.stride(dim);
auto self_data_ptr = self.const_data_ptr<scalar_t>();
auto result_data_ptr = result.data_ptr<scalar_t>();
auto self_numel = self.numel();
AT_DISPATCH_INDEX_TYPES(
index_contig.scalar_type(),
"index_select_out_cpu_quant_",
[&index_contig,
&numel,
&self_numel,
&self_data_ptr,
&self_stride,
&result_data_ptr,
&result_stride] {
auto index_data = index_contig.const_data_ptr<index_t>();
for (const auto i : c10::irange(numel)) {
auto self_i = index_data[i];
TORCH_CHECK_INDEX(
(self_i >= 0) && (self_i < self_numel),
"index out of range in self");
const scalar_t* self_ip =
self_data_ptr + self_i * self_stride;
*(result_data_ptr + i * result_stride) = *self_ip;
}
});
});
} else {
AT_DISPATCH_V2(
self.scalar_type(),
"index_select",
AT_WRAP([&index_contig, &self, &result, &dim, &numel] {
auto self_stride = self.dim() == 0 ? 1 : self.stride(dim);
auto result_stride = result.dim() == 0 ? 1 : result.stride(dim);
auto self_data_ptr = self.const_data_ptr<scalar_t>();
auto result_data_ptr = result.data_ptr<scalar_t>();
auto self_numel = self.numel();
AT_DISPATCH_INDEX_TYPES(
index_contig.scalar_type(),
"index_select_out_cpu_",
[&index_contig,
&numel,
&self_numel,
&self_data_ptr,
&self_stride,
&result_data_ptr,
&result_stride] {
auto index_data = index_contig.const_data_ptr<index_t>();
for (const auto i : c10::irange(numel)) {
auto self_i = index_data[i];
TORCH_CHECK_INDEX(
(self_i >= 0) && (self_i < self_numel),
"index out of range in self");
const scalar_t* self_ip =
self_data_ptr + self_i * self_stride;
*(result_data_ptr + i * result_stride) = *self_ip;
}
});
}),
AT_EXPAND(AT_ALL_TYPES_AND_COMPLEX),
ScalarType::ComplexHalf,
ScalarType::Half,
ScalarType::Bool,
ScalarType::BFloat16,
AT_EXPAND(AT_FLOAT8_TYPES));
}
}
return result;
}
Tensor index_select_cpu_(const Tensor& self, int64_t dim, const Tensor& index) {
Tensor result = at::empty({0}, self.options());
return at::native::index_select_out_cpu_(self, dim, index, result);
}
Tensor index_select_quantized_cpu_(
const Tensor& self,
int64_t dim,
const Tensor& index) {
TORCH_CHECK(
self.qscheme() == kPerTensorAffine,
"Only per_tensor quantized quantized tensors are supported by index_select.")
Tensor result = at::empty_quantized({0}, self);
return at::native::index_select_out_cpu_(self, dim, index, result);
}
Tensor index_select_backward_symint(
const Tensor& grad,
c10::SymIntArrayRef self_sizes,
int64_t dim,
const Tensor& index) {
// for composite compliance, use out-of-place variant of
// `index_add` if index tensor is a Tensor Subclass.
if (isTensorSubclassLike(index)) {
return grad.new_zeros_symint(self_sizes, grad.options())
.index_add(dim, index, grad);
}
return grad.new_zeros_symint(self_sizes, grad.options())
.index_add_(dim, index, grad);
}
Tensor& index_fill_(
Tensor& self,
int64_t dim,
const Tensor& index,
const Scalar& source) {
at::NoNamesGuard guard;
TORCH_CHECK_INDEX(
index.scalar_type() == ScalarType::Long,
"index_fill_(): Expected dtype int64 for index.");
at::assert_no_overlap(self, index);
if (at::has_internal_overlap(self) == at::MemOverlap::Yes) {
TORCH_WARN(
"Use of index_fill_ on expanded tensors is deprecated. "
"Please clone() the tensor before performing this operation. "
"This also applies to advanced indexing e.g. tensor[mask] = scalar");
}
TORCH_CHECK(
self.is_complex() || !source.isComplex(),
"index_fill_(): Converting complex Scalar to non-complex type is not supported");
// Handle the case when `self` is 0-dim
Tensor self_nonzero_dim = (self.dim() == 0) ? self.unsqueeze(-1) : self;
dim = at::maybe_wrap_dim(dim, self_nonzero_dim);
TORCH_CHECK(index.dim() <= 1, "Index has to be a vector/scalar");
// Prepare `index` for TensorIterator.
// It is restrided to be broadcastable over `self` in TensorIterator.
auto index_sizes = std::vector<int64_t>(self_nonzero_dim.dim(), 1);
auto index_strides = std::vector<int64_t>(self_nonzero_dim.dim(), 0);
index_sizes[dim] = index.numel();
index_strides[dim] =
(index.dim() > 0) ? index.stride(0) : 1; // `index` is 1d or scalar
auto index_restrided = index.as_strided(index_sizes, index_strides);
// Prepare `self` for TensorIterator.
// Restride `self` to not advance in dimension `dim`.
// We do not use squash_dim here because `index` will
// need to advance in this dimension.
// Note that self_sizes[dim] is set to index.numel().
// This is done so that self_sizes[dim] and index_sizes[dim]
// match as required by TensorIterator (input shape should
// strictly broadcast over output shape, i.e.
// output.shape[i] >= input.shape[i] for i in range(dims)).
auto self_sizes = self_nonzero_dim.sizes().vec();
auto self_strides = self_nonzero_dim.strides().vec();
self_sizes[dim] = index.numel();
self_strides[dim] = 0;
auto self_restrided = self_nonzero_dim.as_strided(self_sizes, self_strides);
auto iter = TensorIteratorConfig()
// We do not check for overlap because `self` is restrided
// with zero stride. Zero strides trigger memory overlap
// assert within TensorIterator.
.set_check_mem_overlap(false)
.check_all_same_dtype(false)
.resize_outputs(false)
.add_output(self_restrided)
.add_const_input(index_restrided)
.build();
auto self_dim_size = (self_nonzero_dim.sizes())[dim];
auto self_dim_stride = (self_nonzero_dim.strides())[dim];
index_fill_stub(
iter.device_type(), iter, dim, self_dim_size, self_dim_stride, source);
return self;
}
Tensor& index_fill_(
Tensor& self,
int64_t dim,
const Tensor& index,
const Tensor& source) {
TORCH_CHECK(
source.dim() == 0,
"index_fill_ only supports a 0-dimensional value tensor, but got tensor "
"with ",
source.dim(),
" dimension(s).");
return self.index_fill_(dim, index, source.item());
}
Tensor index_fill(
const Tensor& self,
int64_t dim,
const Tensor& index,
const Scalar& source) {
return self.clone(at::MemoryFormat::Preserve).index_fill_(dim, index, source);
}
Tensor index_fill(
const Tensor& self,
int64_t dim,
const Tensor& index,
const Tensor& source) {
return self.clone(at::MemoryFormat::Preserve).index_fill_(dim, index, source);
}
// fast paths for GNN usage
static bool can_use_expanded_index_path(
const Tensor& self,
int64_t dim,
const Tensor& index,
const Tensor& src,
bool is_scatter_like) {
#ifdef USE_FBGEMM
if (!fbgemm::is_radix_sort_accelerated_with_openmp()) {
return false;
}
#else
return false;
#endif
if (!self.device().is_cpu()) {
return false;
}
const auto st = self.scalar_type();
if (!(c10::isFloatingType(st))) {
return false;
}
// skip when having empty tensor
if (self.numel() == 0 || index.numel() == 0 || src.numel() == 0) {
return false;
}
// skip when having scalar tensor
if (self.ndimension() == 0 || index.ndimension() == 0 ||
src.ndimension() == 0) {
return false;
}
// allow only different size on dim 0 for src and index
// https://github.com/pytorch/pytorch/issues/99595
for (const auto dim : c10::irange(1, index.dim())) {
if (src.size(dim) != index.size(dim)) {
return false;
}
}
if (is_scatter_like) {
// using `spmm` for scatter would require sorting on index,
// this is only perf beneficial when the inner dimension, aka, `channels`
// is big enough.
constexpr int64_t threshold = 16;
if (index.numel() / index.size(0) < threshold) {
return false;
}
}
// usually the expanded index has stride on the first dimension to be 1,
// and strides on other dims to be 0 or 1, e.g.
// shape [108365, 16]; strides [1, 0]
// shape [13264, 1, 7]; strides [1, 1, 0]
// Note: the size should not > 1 when the stride == 1
// See https://github.com/pytorch/pytorch/issues/129093
auto index_strides = index.strides().vec();
auto index_sizes = index.sizes().vec();
bool is_index_expanded = index_strides[0] == 1;
for (const auto dim : c10::irange(1, index_strides.size())) {
if (index_strides[dim] > 1 ||
(index_strides[dim] == 1 && index_sizes[dim] > 1)) {
is_index_expanded = false;
}
}
// index is expanded
return dim == 0 && is_index_expanded && src.is_contiguous() &&
self.is_contiguous();
}
// gather_out_cpu_cuda
TORCH_IMPL_FUNC(gather_out)
(const Tensor& self,
int64_t dim,
const Tensor& index,
bool sparse_grad,
const Tensor& result) {
if (index.numel() == 0)
return;
dim = at::maybe_wrap_dim(dim, self.dim());
if (can_use_expanded_index_path(
result, dim, index, self, /*is_scatter_like=*/false)) {
gather_expanded_index_stub(result.device().type(), result, self, index);
} else {
gather_stub(result.device().type(), result, self, dim, index);
}
}
Tensor gather_backward(
const Tensor& grad,
const Tensor& self,
int64_t dim,
const Tensor& index,
bool sparse_grad) {
if (sparse_grad) {
return at::_gather_sparse_backward(self, dim, index, grad);
}
auto result = grad.new_zeros_symint(self.sym_sizes());
// for composite, vmap and inductor compliance, use out-of-place variant of
// `scatter_add` if index or grad tensors is a Tensor Subclass.
if (areAnyTensorSubclassLike({index, grad})) {
return result.scatter_add(dim, index, grad);
}
result.scatter_add_(dim, index, grad);
return result;
}
static void scatter_reduce_exclude_self_helper(
const Tensor& self,
int64_t dim,
const Tensor& index,
const ReductionType& op) {
AT_DISPATCH_ALL_TYPES_AND_COMPLEX_AND3(
at::ScalarType::Half,
at::ScalarType::BFloat16,
at::ScalarType::Bool,
self.scalar_type(),
"scatter_reduce_exclude_input_init",
[&] {
scalar_t init_val;
switch (op) {
case ReductionType::SUM:
init_val = (scalar_t)0;
break;
case ReductionType::PROD:
init_val = (scalar_t)1;
break;
case ReductionType::MAX:
init_val = std::numeric_limits<scalar_t>::has_infinity
? -std::numeric_limits<scalar_t>::infinity()
: std::numeric_limits<scalar_t>::lowest();
break;
case ReductionType::MIN:
init_val = std::numeric_limits<scalar_t>::has_infinity
? std::numeric_limits<scalar_t>::infinity()
: std::numeric_limits<scalar_t>::max();
break;
case ReductionType::MEAN:
init_val = (scalar_t)0;
break;
}
self.scatter_(dim, index, init_val);
});
}
static void _scatter_via_index_put(
const Tensor& self,
int64_t dim,
const Tensor& index,
const Tensor& src,
const Tensor& mut_out,
bool accumulate) {
// If index is expanded with zero strides across non-scatter dimensions,
// advanced indexing with the index tensor alone achieves the desired
// semantics and avoids creating large intermediate tensors.
bool broadcast_index = true;
for (const auto i : c10::irange(index.dim())) {
if (i == dim) {
continue;
}
if (index.stride(i) != 0) {
broadcast_index = false;
break;
}
}
auto src_view = at::as_strided(src, index.sizes(), src.strides());
torch::List<std::optional<Tensor>> indices;
indices.reserve(self.dim());
if (self.dim() == 1 || broadcast_index) {
Tensor squeezed = index;
if (broadcast_index && index.dim() > 1) {
for (int64_t d = index.dim() - 1; d >= 0; --d) {
if (d == dim) {
continue;
}
squeezed = squeezed.select(d, 0);
}
}
for ([[maybe_unused]] const auto d : c10::irange(dim)) {
indices.push_back(Tensor());
}
indices.push_back(squeezed);
mut_out.index_put_(indices, src_view, accumulate);
return;
}
for (const auto d : c10::irange(self.dim())) {
if (d == dim) {
indices.push_back(index);
} else {
auto arange = at::arange(index.size(d), index.options());
std::vector<int64_t> shape(index.dim(), 1);
shape[d] = index.size(d);
indices.push_back(arange.view(shape).expand(index.sizes()));
}
}
mut_out.index_put_(indices, src_view, accumulate);
}
template <
bool use_new_options = false,
typename T,
typename ReduceStub,
typename FillStub>
static void scatter_impl(
const Tensor& self,
int64_t dim,
const Tensor& index,
const T& src,
const Tensor& out,
ReduceStub& reduce_stub,
FillStub& fill_stub,
const std::optional<std::string_view> reduce = std::nullopt,
bool reduce_includes_self = true) {
dim = at::maybe_wrap_dim(dim, self.dim());
auto mut_out = const_cast<Tensor&>(out);
if (!self.is_same(mut_out)) {
mut_out.copy_(self);
}
if (index.numel() == 0)
return;
auto op = ReductionType::SUM;
bool deterministic = globalContext().deterministicAlgorithms() &&
(self.device().type() == DeviceType::CUDA ||
self.device().type() == DeviceType::XPU);
if (reduce.has_value()) {
op = get_operator_enum(reduce.value(), use_new_options);
if (!reduce_includes_self) {
// scatter inits for reduction to appropriate indices (used by
// scatter_reduce.two)
scatter_reduce_exclude_self_helper(mut_out, dim, index, op);
}
// _scatter_via_index_put can only handle sum and mean reduction type
deterministic = deterministic &&
(op == ReductionType::SUM || op == ReductionType::MEAN);
}
// Scalar src should already be deterministic
if (deterministic && std::is_same_v<T, Tensor>) {
// both runtime and compile check are required
if constexpr (std::is_same_v<T, Tensor>) {
bool accumulate = reduce.has_value();
_scatter_via_index_put(self, dim, index, src, mut_out, accumulate);
return;
}
}
if (reduce.has_value()) {
reduce_stub(self.device().type(), mut_out, dim, index, src, op);
} else {
fill_stub(self.device().type(), mut_out, dim, index, src);
}
}
TORCH_IMPL_FUNC(scatter_src_out)
(const Tensor& self,
int64_t dim,
const Tensor& index,
const Tensor& src,
const Tensor& out) {
scatter_impl(self, dim, index, src, out, scatter_reduce_stub, scatter_stub);
}
TORCH_IMPL_FUNC(scatter_value_out)
(const Tensor& self,
int64_t dim,
const Tensor& index,
const Scalar& value,
const Tensor& out) {
scatter_impl(
self,
dim,
index,
value,
out,
scatter_scalar_reduce_stub,
scatter_fill_stub);
}
TORCH_IMPL_FUNC(scatter_reduce_out)
(const Tensor& self,
int64_t dim,
const Tensor& index,
const Tensor& src,
const std::string_view reduce,
const Tensor& out) {
scatter_impl(
self, dim, index, src, out, scatter_reduce_stub, scatter_stub, reduce);
}
TORCH_IMPL_FUNC(scatter_value_reduce_out)
(const Tensor& self,
int64_t dim,
const Tensor& index,
const Scalar& value,
const std::string_view reduce,
const Tensor& out) {
scatter_impl(
self,
dim,
index,
value,
out,
scatter_scalar_reduce_stub,
scatter_fill_stub,
reduce);
}
TORCH_IMPL_FUNC(scatter_add)
(const Tensor& self,
int64_t dim,
const Tensor& index,
const Tensor& src,
const Tensor& out) {
auto mut_out = const_cast<Tensor&>(out);
dim = maybe_wrap_dim(dim, self.dim());
if (!self.is_same(mut_out)) {
mut_out.copy_(self);
}
if (index.numel() == 0)
return;
// See Note [Enabling Deterministic Operations]
// Avoid gpuAtomicAdd for CUDA and XPU if deterministic mode is turned on
if (globalContext().deterministicAlgorithms() &&
(self.device().type() == DeviceType::CUDA ||
self.device().type() == DeviceType::XPU)) {
_scatter_via_index_put(self, dim, index, src, mut_out, /*accumulate*/ true);
} else {
if (can_use_expanded_index_path(
mut_out, dim, index, src, /*is_scatter_like*/ true)) {
scatter_add_expanded_index_stub(
self.device().type(), mut_out, index, src);
} else {
scatter_add_stub(self.device().type(), mut_out, dim, index, src);
}
}
}
TORCH_IMPL_FUNC(scatter_reduce_two)
(const Tensor& self,
int64_t dim,
const Tensor& index,
const Tensor& src,
const std::string_view reduce,
bool include_self,
const Tensor& out) {
dim = at::maybe_wrap_dim(dim, self.dim());
if (!self.is_same(out)) {
out.copy_(self);
}
const auto op = get_operator_enum(reduce, true);
if (can_use_expanded_index_path(
out, dim, index, src, /*is_scatter_like*/ true)) {
scatter_reduce_expanded_index_stub(
self.device().type(), out, index, src, op, include_self);
return;
}
scatter_impl</*use_new_options=*/true>(
self,
dim,
index,
src,
out,
scatter_reduce_two_stub,
scatter_stub,
reduce,
include_self);
if (op == ReductionType::MEAN) {
auto ones = at::ones_like(src);
auto count = include_self ? at::ones_like(out) : at::zeros_like(out);
count.scatter_add_(dim, index, ones);
count.masked_fill_(count == 0, 1);
if (out.is_floating_point() || out.is_complex()) {
out.div_(count);
} else {
out.div_(count, "floor");
}
}
}
Tensor masked_scatter(
const Tensor& self,
const Tensor& mask,
const Tensor& source) {
auto [_mask, _self] = expand_outplace(mask, self);
return _self->clone(at::MemoryFormat::Contiguous)
.masked_scatter_(*_mask, source);
}
Tensor masked_scatter_backward_symint(
const Tensor& grad,
const Tensor& mask,
c10::SymIntArrayRef sizes) {
c10::SymInt numel = 1;
for (const auto& size : sizes) {
numel *= size;
}
auto mask_selected = grad.masked_select(mask);
auto diff_nelem = numel - mask_selected.sym_numel();
if (diff_nelem > 0) {
// because mask_selected returns a 1-d tensor with size of masked elements
// that are 1, we need to fill out the rest with zeros then reshape back to
// tensor2's size.
auto zeros_fillin =
at::zeros_symint({std::move(diff_nelem)}, grad.options());
mask_selected = at::cat({mask_selected, std::move(zeros_fillin)}, 0);
}
return mask_selected.view_symint(sizes);
}
static Tensor& masked_fill_impl_cpu(
Tensor& self,
const Tensor& mask,
const Scalar& value) {
NoNamesGuard guard;
TORCH_CHECK(
mask.dtype() == ScalarType::Bool,
"masked_fill_ only supports boolean masks, but got mask "
"with dtype ",
mask.dtype());
if (at::has_internal_overlap(self) == MemOverlap::Yes) {
TORCH_WARN(
"Use of masked_fill_ on expanded tensors is deprecated. "
"Please clone() the tensor before performing this operation. "
"This also applies to advanced indexing e.g. tensor[mask] = scalar");
}
at::assert_no_partial_overlap(self, mask);
auto iter =
TensorIteratorConfig()
.set_check_mem_overlap(false) // deprecated, but not a hard error
.check_all_same_dtype(false)
.resize_outputs(false)
.add_output(self)
.add_const_input(mask)
.build();
masked_fill_stub(iter.device_type(), iter, value);
return self;
}
Tensor& masked_fill__cpu(
Tensor& self,
const Tensor& mask,
const Scalar& value) {
auto maybe_outnames =
namedinference::broadcast_to_outnames(self, mask, "masked_fill_");
masked_fill_impl_cpu(self, mask, value);
namedinference::propagate_names_if_nonempty(self, maybe_outnames);
return self;
}
Tensor& masked_fill__cpu(
Tensor& self,
const Tensor& mask,
const Tensor& value) {
auto maybe_outnames =
namedinference::broadcast_to_outnames(self, mask, "masked_fill_");
TORCH_CHECK(
value.dim() == 0,
"masked_fill_ only supports a 0-dimensional value tensor, but got tensor "
"with ",
value.dim(),
" dimension(s).");
masked_fill_impl_cpu(self, mask, value.item());
namedinference::propagate_names_if_nonempty(self, maybe_outnames);
return self;
}
Tensor masked_fill(
const Tensor& self,
const Tensor& mask,
const Scalar& source) {
Tensor result;
auto maybe_outnames =
namedinference::broadcast_to_outnames(mask, self, "masked_fill");
{
NoNamesGuard guard;
auto [_mask, _self] = expand_outplace(mask, self);
result = _self->clone(at::MemoryFormat::Contiguous);
result.masked_fill_(mask, source);
}
namedinference::propagate_names_if_nonempty(result, maybe_outnames);
return result;
}
Tensor masked_fill(
const Tensor& self,
const Tensor& mask,
const Tensor& source) {
Tensor result;
auto maybe_outnames =
namedinference::broadcast_to_outnames(mask, self, "masked_fill");
{
NoNamesGuard guard;
auto [_mask, _self] = expand_outplace(mask, self);
result = _self->clone(at::MemoryFormat::Contiguous);
result.masked_fill_(mask, source);
}
namedinference::propagate_names_if_nonempty(result, maybe_outnames);
return result;
}
static Tensor& masked_select_out_impl_cpu(
Tensor& result,
const Tensor& self,
const Tensor& mask) {
NoNamesGuard guard;
TORCH_CHECK(
mask.scalar_type() == ScalarType::Bool,
"masked_select: expected BoolTensor for mask");
TORCH_CHECK(
self.scalar_type() == result.scalar_type(),
"masked_select(): self and result must have the same scalar type");
at::assert_no_internal_overlap(result);
at::assert_no_overlap(result, self);
at::assert_no_overlap(result, mask);
auto [_mask, _self] = expand_outplace(mask, self);
auto shape = _self->sizes();
int64_t numel = _mask->sum().item().toLong();
at::native::resize_output(result, {numel});
if (numel == 0) {
return result;
}
// Create strided view of result before feeding into TensorIterator
auto strides = DimVector(shape.size(), 0);
auto orig_stride = result.strides()[0];
auto result_strided = result.as_strided(shape, strides);
// serial kernel
// serial kernel requires that src is traversed in its logical order. However,
// TensorIterator might have reordered dimensions so that src would be
// traversed in its physical order, producing wrong answers. A sufficient
// condition that no reorder happened is that both _self and _mask is
// contiguous. If it is not satisfied, use parallel kernel that handles
// permutations correctly
bool use_serial_kernel =
(self.numel() < at::internal::GRAIN_SIZE || at::get_num_threads() == 1) &&
_self->is_contiguous() && _mask->is_contiguous();
if (use_serial_kernel) {
auto iter = TensorIteratorConfig()
.set_check_mem_overlap(
false) // result is intentionally zero-strided above
.check_all_same_dtype(false)
.resize_outputs(false)
.add_output(result_strided)
.add_const_input(*_self)
.add_const_input(*_mask)
.build();
masked_select_serial_stub(iter.device_type(), iter, orig_stride);
return result;
}
// Use a prefix sum to record the output locations of the masked elements,
// so as to parallel with TensorIterator.
auto mask_long =
at::empty(shape, self.options().dtype(at::kLong)).copy_(*_mask);
auto mask_prefix_sum = at::empty(shape, self.options().dtype(at::kLong));
auto mask_long_data = mask_long.data_ptr<int64_t>();
auto mask_prefix_sum_data = mask_prefix_sum.data_ptr<int64_t>();
// TODO: Here can only use std::partial_sum for C++14,
// use std::exclusive_scan when PyTorch upgrades to C++17, which have better
// performance. std::exclusive_scan(mask_long_data, mask_long_data +
// mask_long.numel(), mask_prefix_sum_data, 0);
std::partial_sum(
mask_long_data, mask_long_data + mask_long.numel(), mask_prefix_sum_data);
auto iter = TensorIteratorConfig()
.set_check_mem_overlap(
false) // result is intentionally zero-strided above
.check_all_same_dtype(false)
.resize_outputs(false)
.add_output(result_strided)
.add_const_input(*_self)
.add_const_input(*_mask)
.add_const_input(mask_prefix_sum)
.build();
masked_select_stub(iter.device_type(), iter, orig_stride);
return result;
}
Tensor& masked_select_out_cpu(
const Tensor& self,
const Tensor& mask,
Tensor& result) {
namedinference::compute_broadcast_outnames(self, mask);
return masked_select_out_impl_cpu(result, self, mask);
}
Tensor masked_select_cpu(const Tensor& self, const Tensor& mask) {
Tensor result = at::empty({0}, self.options());
return at::native::masked_select_out_cpu(self, mask, result);
}
Tensor masked_select_backward(
const Tensor& grad,
const Tensor& input,
const Tensor& mask) {
// The following could just be written as
// `zeros_like(input).masked_scatter(mask, grad)`. However, as an
// optimization, we call the in-place variant of masked_scatter.
// Unfortunately, that doesn't allow for the broadcasting of the LHS, so we
// need to explicitly broadcast here (the out-of-place variant of
// masked_scatter implicitly handles broadcasting).
auto result = at::zeros_like(
input.expand(at::infer_size(input.sizes(), mask.sizes())),
at::MemoryFormat::Preserve);
// for composite compliance, use out-of-place variant
// of `masked_scatter`.
if (areAnyTensorSubclassLike({grad, mask})) {
return result.masked_scatter(mask, grad);
}
result.masked_scatter_(mask, grad);
return result;
}
namespace {
inline std::tuple<Tensor, Tensor, int64_t> _take_along_dim_helper(
const Tensor& self,
const Tensor& indices,
int64_t dim) {
TORCH_CHECK(
self.dim() == indices.dim(),
"torch.take_along_dim(): input and indices should have the same number of dimensions, ",
"but got ",
self.dim(),
" dimensions for input, and ",
indices.dim(),
" dimensions for indices")
TORCH_CHECK(
indices.scalar_type() == ScalarType::Long,
"torch.take_along_dim(): dtype of indices should be Long but got ",
indices.scalar_type())
dim = at::maybe_wrap_dim(dim, self.dim());
SymDimVector self_sizes{self.sym_sizes()};
// update number of elements at dim as per indices
self_sizes[dim] = indices.sym_size(dim);
auto broadcast_shape = infer_size_symint(self_sizes, indices.sym_sizes());
auto indices_broadcasted = at::broadcast_to_symint(indices, broadcast_shape);
SymDimVector indices_sizes{indices.sym_sizes()};
// update number of elements at dim as per self
indices_sizes[dim] = self.sym_size(dim);
broadcast_shape = infer_size_symint(indices_sizes, self.sym_sizes());
auto self_broadcasted = at::broadcast_to_symint(self, broadcast_shape);
return std::make_tuple(
std::move(self_broadcasted),
std::move(indices_broadcasted),
std::move(dim));
}
inline void checkDevice(CheckedFrom c, const Tensor& t, Device device) {
TORCH_CHECK(
!t.defined() || t.device() == device,
"Expected tensor to have ",
device,
" Device, but got tensor with ",
t.device(),
" Device ",
"(while checking arguments for ",
c,
")");
}
inline void checkDevice(
CheckedFrom c,
at::ArrayRef<Tensor> tensors,
Device device) {
for (auto& t : tensors) {
checkDevice(c, t, device);
}
}
} // anonymous namespace
Tensor take_along_dim(
const Tensor& self,
const Tensor& indices,
std::optional<int64_t> opt_dim) {
checkDevice("torch.take_along_dim():", {self, indices}, self.device());
if (opt_dim.has_value()) {
auto [self_broadcasted, indices_broadcasted, dim] =
_take_along_dim_helper(self, indices, opt_dim.value());
return self_broadcasted.gather(dim, indices_broadcasted);
}
// similar to `take`, but `take` doesn't support the same dtypes as `gather`.
return self.view(-1).gather(0, indices.view(-1));
}
Tensor& take_along_dim_out(
const Tensor& self,
const Tensor& indices,
std::optional<int64_t> opt_dim,
Tensor& result) {
checkDevice(
"torch.take_along_dim():", {self, indices, result}, self.device());
if (opt_dim.has_value()) {
auto [self_broadcasted, indices_broadcasted, dim] =
_take_along_dim_helper(self, indices, opt_dim.value());
return at::gather_out(result, self_broadcasted, dim, indices_broadcasted);
}
// similar to `take`, but `take` doesn't support the same dtypes as `gather`.
return at::gather_out(result, self.view(-1), 0, indices.view(-1));
}
Tensor _gather_sparse_backward(
const Tensor& self,
int64_t dim,
const Tensor& index,
const Tensor& grad) {
// special case scalar input and/or index
if (self.ndimension() == 0)
return at::_sparse_coo_tensor_unsafe_symint(
at::empty_symint({0, grad.sym_numel()}, index.options()),
grad,
self.sym_sizes());
if (grad.ndimension() == 0)
return at::_sparse_coo_tensor_unsafe_symint(
index.view({1, 1}), grad, self.sym_sizes());
Tensor sparse_ind = at::empty_symint(
{self.ndimension(), grad.sym_numel()}, self.options().dtype(at::kLong));
SymInt grad_numel = grad.sym_numel();
if (grad_numel > 0) {
SymInt n_above = grad_numel;
SymInt n_below = 1;
if (dim < 0)
dim += self.ndimension();
for (const auto i : c10::irange(self.ndimension())) {
n_above /= grad.sym_size(i);
if (i == dim) {
sparse_ind[i] = index.reshape(-1);
} else {
sparse_ind[i] =
at::arange(grad.sym_size(i), self.options().dtype(at::kLong))
.unsqueeze(1)
.expand_symint({grad.sym_size(i), n_above})
.reshape(-1)
.repeat_symint(n_below);
}
n_below *= grad.sym_size(i);
}
}
return at::_sparse_coo_tensor_unsafe_symint(
sparse_ind, grad.reshape(-1), self.sym_sizes());
}
template <typename scalar_t>
static int64_t count_nonzero_impl(TensorIteratorBase& iter, Range range) {
int64_t num_nonzero = 0;
auto loop = [&](char** data, const int64_t* strides, int64_t n) {
constexpr int ilp_factor = 4;
const char* ptr = data[0];
const auto stride = strides[0];
int64_t nonzero[ilp_factor] = {0};
int64_t i = 0;
for (; i + (ilp_factor - 1) < n; i += ilp_factor) {
c10::ForcedUnroll<ilp_factor>{}([&](int k) {
const auto& val = c10::load<scalar_t>(ptr + k * stride);
if (val != scalar_t(0)) {
++nonzero[k];
}
});
ptr += ilp_factor * stride;
}
for (; i < n; ++i) {
const auto& val = c10::load<scalar_t>(ptr);
if (val != scalar_t(0)) {
++nonzero[0];
}
ptr += stride;
}
for (const auto k : c10::irange(1, ilp_factor)) {
nonzero[0] += nonzero[k];
}
num_nonzero += nonzero[0];
};
iter.serial_for_each(loop, range);
return num_nonzero;
}
Tensor count_nonzero_cuda(const Tensor& self, IntArrayRef dims) {
auto reduce = self;
if (reduce.scalar_type() != kBool) {
reduce = reduce != 0;
}
return reduce.sum(dims);
}
Tensor count_nonzero_cpu(const Tensor& self, IntArrayRef dims) {
if (!dims.empty()) {
auto reduce = self;
if (reduce.scalar_type() != kBool) {
reduce = reduce != 0;
}
return reduce.sum(dims);
}
// Optimized all-reduce
auto iter = TensorIteratorConfig().add_const_input(self).build();
const auto num_threads = at::get_num_threads();
DimVector thread_count_nonzero(num_threads);
AT_DISPATCH_ALL_TYPES_AND_COMPLEX_AND4(
kComplexHalf,
kHalf,
kBFloat16,
kBool,
self.scalar_type(),
"nonzero_count_cpu",
[&] {
at::parallel_for(
0,
iter.numel(),
internal::GRAIN_SIZE,
[&](int64_t begin, int64_t end) {
const auto tid = at::get_thread_num();
thread_count_nonzero[tid] =
count_nonzero_impl<scalar_t>(iter, {begin, end});
});
});
for (const auto i : c10::irange(1, num_threads)) {
thread_count_nonzero[0] += thread_count_nonzero[i];
}
auto out = at::empty({}, self.options().dtype(kLong));
*out.mutable_data_ptr<int64_t>() = thread_count_nonzero[0];
return out;
}
Tensor count_nonzero(const Tensor& self, std::optional<int64_t> dim) {
if (dim) {
return at::count_nonzero(self, IntArrayRef{*dim});
}
return at::count_nonzero(self, IntArrayRef{});
}
Tensor& nonzero_out_cpu(const Tensor& self, Tensor& result) {
TORCH_CHECK(
result.scalar_type() == kLong,
"nonzero: Expected out tensor to have scalar type Long "
"but got scalar type",
result.scalar_type());
at::assert_no_internal_overlap(result);
at::assert_no_overlap(result, self);
auto iter = TensorIteratorConfig()
.add_const_input(self)
.enforce_linear_iteration()
.build();
const auto numel = iter.numel();
const auto num_threads = at::get_num_threads();
DimVector thread_begin(num_threads, -1);
DimVector thread_count_nonzero(num_threads + 1);
// Pass 1: Count nonzero element per-thread
AT_DISPATCH_ALL_TYPES_AND_COMPLEX_AND4(
kComplexHalf,
kHalf,
kBFloat16,
kBool,
self.scalar_type(),
"nonzero_count_cpu",
[&] {
at::parallel_for(
0, numel, internal::GRAIN_SIZE, [&](int64_t begin, int64_t end) {
const auto tid = at::get_thread_num();
thread_begin[tid] = begin;
thread_count_nonzero[tid + 1] =
count_nonzero_impl<scalar_t>(iter, {begin, end});
});
});
// Convert thread-local counts to cumulative sum
for (const auto i : c10::irange(1, thread_count_nonzero.size())) {
thread_count_nonzero[i] += thread_count_nonzero[i - 1];
}
const auto self_sizes = self.sizes();
const auto total_nonzero = thread_count_nonzero.back();
const int64_t ndim = self_sizes.size();
if (resize_output(result, {total_nonzero, ndim})) {
// Default to fortran-contiguous output (see gh-46224)
result.as_strided_({total_nonzero, ndim}, {1, total_nonzero});
}
if (result.numel() == 0) {
return result;
}
auto out_accessor = result.accessor<int64_t, 2>();
// Pass 2: Write indexes
AT_DISPATCH_ALL_TYPES_AND_COMPLEX_AND4(
kComplexHalf,
kHalf,
kBFloat16,
kBool,
self.scalar_type(),
"nonzero_cpu",
[&] {
at::parallel_for(
0, numel, internal::GRAIN_SIZE, [&](int64_t begin, int64_t end) {
auto tid = at::get_thread_num();
// Work needs to be distributed the same on both passes
TORCH_INTERNAL_ASSERT_DEBUG_ONLY(begin == thread_begin[tid]);
// +1 faster than additional condition check inside loop
c10::SmallVector<int64_t, 33> sizes(ndim + 1, -1);
std::copy(
self_sizes.begin(), self_sizes.end(), sizes.begin() + 1);
c10::SmallVector<int64_t, 33> current_idx(ndim + 1);
if (begin > 0) {
auto idx = begin;
for (int64_t k = ndim; idx > 0 && k > 0; --k) {
current_idx[k] = idx % sizes[k];
idx /= sizes[k];
}
}
auto out_ptr = out_accessor[thread_count_nonzero[tid]].data();
auto loop = [&](char** data,
const int64_t* strides,
int64_t n1,
int64_t n2) {
// Copy into local variables to improve compiler alias analysis
int64_t* C10_RESTRICT local_idx = current_idx.data() + 1;
const int64_t* C10_RESTRICT local_sizes = sizes.data() + 1;
const auto in_stride = strides[0];
const auto out_stride1 = out_accessor.stride(1);
const auto out_stride0 =
out_accessor.stride(0) - ndim * out_stride1;
const auto ndim = out_accessor.size(1);
int64_t* out = out_ptr;
for (const auto i : c10::irange(n2)) {
const char* ptr = data[0] + i * strides[1];
for ([[maybe_unused]] const auto j : c10::irange(n1)) {
const auto& val = c10::load<scalar_t>(ptr);
// If nonzero, write index
if (val != scalar_t(0)) {
for (const auto k : c10::irange(ndim)) {
*out = local_idx[k];
out += out_stride1;
}
out += out_stride0;
}
ptr += in_stride;
// Advance current index
int64_t k = ndim - 1;
++local_idx[k];
while (C10_UNLIKELY(local_idx[k] == local_sizes[k])) {
local_idx[k] = 0;
--k;
++local_idx[k];
}
}
}
out_ptr = out;
};
iter.serial_for_each(loop, {begin, end});
TORCH_INTERNAL_ASSERT(
out_ptr ==
out_accessor[thread_count_nonzero[tid + 1]].data());
});
});
return result;
}
Tensor nonzero_cpu(const Tensor& self) {
auto result = at::empty({0}, self.options().dtype(kLong));
nonzero_out_cpu(self, result);
return result;
}
Tensor& nonzero_static_out_cpu(
const Tensor& self,
int64_t size,
int64_t fill_value,
Tensor& result) {
// Check if `size` is not negative
TORCH_CHECK(
size >= 0, "nonzero_static: 'size' must be an non-negative integer");
TORCH_CHECK(
result.scalar_type() == kLong,
"nonzero_static: Expected out tensor to have scalar type Long "
"but got scalar type",
result.scalar_type());
int64_t ndim = self.dim();
if (result.dim() != 2 || result.size(0) != size || result.size(1) != ndim) {
at::native::resize_output(result, {size, ndim});
}
// Verify that the output tensor is resized to expected size=(size, ndim)
TORCH_CHECK(
result.dim() == 2,
"nonzero_static: Expected out tensor to be a 2D tensor but got a ",
result.dim(),
"D tensor");
TORCH_CHECK(
result.size(0) == size && result.size(1) == ndim,
"nonzero_static: Expected out tensor to have Size([",
size,
", ",
ndim,
"]) but got Size([",
result.size(0),
", ",
result.size(1),
"]) ");
at::assert_no_internal_overlap(result);
at::assert_no_overlap(result, self);
// Return earlier if either dim is 0
if (result.size(0) == 0 || result.size(1) == 0) {
return result;
}
// Delegate call to regular nonzero to get a data-dependent output
auto dyn_result = nonzero_cpu(self);
int64_t num_nonzeros = dyn_result.size(0);
int64_t copy_len = std::min(size, num_nonzeros);
// Copy the dynamic result to the fixed-size tensor
result.narrow(0, 0, copy_len).copy_(dyn_result.narrow(0, 0, copy_len));
if (size > copy_len) {
// Pad result with `fill_value`
result.narrow(0, copy_len, size - copy_len).fill_(fill_value);
}
return result;
}
Tensor nonzero_static_cpu(
const Tensor& self,
int64_t size,
int64_t fill_value) {
// Check if `size` is not negative
TORCH_CHECK(
size >= 0, "nonzero_static: 'size' must be an non-negative integer");
// Allocate fixed-size out tensor
int64_t ndim = self.dim();
auto result = at::empty(
{size, ndim},
at::TensorOptions().dtype(at::ScalarType::Long).device(at::kCPU));
nonzero_static_out_cpu(self, size, fill_value, result);
return result;
}
std::vector<Tensor> nonzero_numpy(const Tensor& self) {
// special case scalar for compatibility with numpy:
//
// >>> np.array(5).nonzero()
// (array([0]),)
// >>> np.array(0).nonzero()
// (array([], dtype=int64),)
if (self.dim() == 0) {
return self.unsqueeze(0).nonzero().unbind(1);
}
return self.nonzero().unbind(1);
}
Tensor argwhere(const Tensor& self) {
return self.nonzero();
}
Tensor& masked_scatter__cpu(
Tensor& self,
const Tensor& mask,
const Tensor& source) {
at::assert_no_internal_overlap(self);
TORCH_CHECK(
self.scalar_type() == source.scalar_type(),
"masked_scatter: expected self and source to have same dtypes but got",
self.scalar_type(),
" and ",
source.scalar_type());
TORCH_CHECK(
self.device().type() == at::kCPU,
"device type of self (",
self.device().type(),
") is not CPU");
TORCH_CHECK(
mask.device().type() == at::kCPU,
"device type of mask (",
mask.device().type(),
") is not CPU");
TORCH_CHECK(
source.device().type() == at::kCPU,
"device type of source (",
source.device().type(),
") is not CPU");
c10::MaybeOwned<Tensor> b_mask =
expand_inplace(self, mask, "masked_scatter_");
if (b_mask->dtype() == ScalarType::Byte) {
TORCH_WARN(
"masked_scatter_ received a mask with dtype torch.uint8, this behavior is now deprecated,"
"please use a mask with dtype torch.bool instead.");
}
auto src_cont = source.contiguous();
auto iter = TensorIteratorConfig()
.set_check_mem_overlap(false)
.check_all_same_dtype(false)
.resize_outputs(false)
// order of indexing matters
.enforce_linear_iteration()
.add_output(self)
.add_const_input(*b_mask)
.build();
masked_scatter_stub(iter.device_type(), iter, src_cont);
return self;
}
} // namespace at::native