# mypy: ignore-errors import builtins import collections import functools import inspect import itertools import types from typing import ( Any, Callable, Dict, List, Optional, Tuple, TYPE_CHECKING, TypeVar, Union, ) from typing_extensions import Never import torch from .. import polyfills, variables from ..bytecode_transformation import create_call_function, create_rot_n from ..exc import unimplemented, Unsupported from ..guards import GuardBuilder, install_guard from ..source import AttrSource, ConstantSource, DefaultsSource, GetItemSource from ..utils import ( check_constant_args, check_unspec_or_constant_args, identity, is_function, is_wrapper_or_member_descriptor, istype, make_cell, ) from .base import MutableLocal, typestr, VariableTracker from .constant import ConstantVariable try: from torch.distributed._composable.fsdp import _fsdp_param_group except ModuleNotFoundError: _fsdp_param_group = None if TYPE_CHECKING: from torch._dynamo.symbolic_convert import InstructionTranslator from torch._guards import Source from torch._higher_order_ops.triton_kernel_wrap import ( TritonGridType, TritonKernelType, ) _F = TypeVar("_F", bound=Callable) def wrap_bound_arg(tx: "InstructionTranslator", val, source=None): # Source propagation is best effort since not every object we encounter has a source to begin with. if isinstance(val, VariableTracker): return val elif not source: return VariableTracker.build(tx, val) else: # Create a lazy variable to avoid guarding on __defaults__ unless really # needed. return variables.LazyVariableTracker.create(val, source) def wrap_args_kwargs(tx: "InstructionTranslator", result): for k, v in list(result.items()): if isinstance(v, (tuple, dict)): # args/kwargs result[k] = wrap_bound_arg(tx, v) def init_cellvars(parent, result, code): closure_cells = {} side_effects = parent.output.side_effects # for name in itertools.chain(code.co_cellvars, code.co_freevars): for name in code.co_cellvars: closure_cells[name] = side_effects.track_cell_new() if name in result: side_effects.store_cell(closure_cells[name], result.pop(name)) return closure_cells def _create_nested_fn( code, f_globals, name, defaults, closure, kwdefaults, annotations ): from types import FunctionType func = FunctionType(code, f_globals, name, defaults, closure) func.__kwdefaults__ = kwdefaults if isinstance(annotations, tuple): from itertools import pairwise annotations = dict(pairwise(annotations)) # TypeError: __annotations__ must be set to a dict object assert annotations is None or isinstance(annotations, dict) func.__annotations__ = annotations return func class BaseUserFunctionVariable(VariableTracker): def get_filename(self): return self.get_code().co_filename def get_name(self): return self.get_code().co_name def call_function( self, tx: "InstructionTranslator", args: "List[VariableTracker]", kwargs: "Dict[str, VariableTracker]", ) -> "VariableTracker": return tx.inline_user_function_return(self, [*self.self_args(), *args], kwargs) def call_hasattr(self, tx: "InstructionTranslator", name: str) -> VariableTracker: result = False try: result = hasattr(self.get_function(), name) except NotImplementedError: if name == "__name__" and isinstance(self, NestedUserFunctionVariable): result = True return variables.ConstantVariable.create(result) def inspect_parameter_names(self): return list(inspect.signature(self.get_function()).parameters) def closure_vars(self, tx): return {} class UserFunctionVariable(BaseUserFunctionVariable): """Some unsupported user-defined global function""" _nonvar_fields = { "fn", "is_constant", *BaseUserFunctionVariable._nonvar_fields, } @classmethod def create_with_source(cls, value, source): install_guard(source.make_guard(GuardBuilder.CLOSURE_MATCH)) return cls(value, source=source) def __init__(self, fn, is_constant=False, **kwargs) -> None: super().__init__(**kwargs) if getattr(fn, "_dynamo_marked_constant", False): # This method should be treated as a constant for the purposes of compilation self.is_constant = True else: self.is_constant = False assert isinstance( fn, (types.FunctionType, torch.jit.ScriptFunction) ), f"expected FunctionType found {typestr(fn)} {fn}" # TODO(anijain2305) - Replace directly calling UserFunctionVariable with # VariableBuilder, which handles the wrapping of _torchdynamo_inline. # unpack @torch._dynamo.optimize()(fn) wrapped function fn = inspect.getattr_static(fn, "_torchdynamo_inline", fn) self.fn: types.FunctionType = fn def as_python_constant(self): if istype(self, UserFunctionVariable): return self.fn # subclasses (such as methods) usually aren't a constant return super().as_python_constant() def self_args(self): return [] def get_function(self): return self.fn def get_code(self): return self.fn.__code__ def python_type(self): return types.FunctionType def has_self(self): return getattr(self.fn, "__self__", None) is not None def get_globals(self): return self.fn.__globals__ def bind_args(self, parent, args, kwargs): assert not self.is_constant tx = parent.output.root_tx wrap = functools.partial(wrap_bound_arg, tx=tx) fn: types.FunctionType = self.fn defaults = fn.__defaults__ or [] defaults_sources = [ None if self.source is None else DefaultsSource(self.source, idx) for idx, _ in enumerate(defaults) ] fake_func = types.FunctionType( fn.__code__, fn.__globals__, fn.__name__, tuple( [ wrap(val=arg, source=source) for arg, source in zip(defaults, defaults_sources) ] ), fn.__closure__, ) if fn.__kwdefaults__: kwdefaults_sources = { k: ( None if self.source is None else DefaultsSource(self.source, k, is_kw=True) ) for k in fn.__kwdefaults__ } fake_func.__kwdefaults__ = { k: wrap(val=v, source=kwdefaults_sources[k]) for k, v in fn.__kwdefaults__.items() } bound = inspect.signature(fake_func).bind(*args, **kwargs) bound.apply_defaults() result = dict(bound.arguments.items()) wrap_args_kwargs(tx, result) closure_cells = init_cellvars(parent, result, fn.__code__) closure = self.fn.__closure__ or () assert len(closure) == len(self.fn.__code__.co_freevars) for idx, name, cell in zip( itertools.count(), self.fn.__code__.co_freevars, closure ): if name == "__class__": source = AttrSource(self.source, "__class__") if self.source else None result[name] = variables.UserDefinedClassVariable( cell.cell_contents, source=source, ) else: var = tx.match_nested_cell(name, cell) if var is not None: # optimization for cleaner codegen result[name] = var elif self.source: side_effects = parent.output.side_effects if cell in side_effects: out = side_effects[cell] else: closure_cell = GetItemSource( AttrSource(self.source, "__closure__"), idx ) closure_cell_contents = AttrSource( closure_cell, "cell_contents" ) try: contents_var = VariableTracker.build( parent, cell.cell_contents, closure_cell_contents ) except ValueError: # Cell has not yet been assigned contents_var = variables.DeletedVariable() if id(cell) not in tx.mutated_closure_cell_ids: # Optimistically don't allocate the cell, to # reduce the number of side effects. This is # important for cond, as without it, any accesses # to closures create side effects and cond doesn't # support side effects. If we're wrong and this # closure cell gets written to, we will restart # the analysis with this cell's name in the # mutated list here result[name] = contents_var # Map the variable to the original cell so we can # look it up later, see # `InliningInstructionTranslator.STORE_DEREF`. tx.contents_var_to_mutated_cell[contents_var] = cell continue # cells are written to with "cell_contents", # so the source should just be the closure_cell, not its contents out = side_effects.track_cell_existing(closure_cell, cell) side_effects.store_cell( out, contents_var, ) result[name] = out else: result[name] = VariableTracker.build(tx, cell.cell_contents) return result, closure_cells def export_freevars(self, parent, child): pass def var_getattr(self, tx: "InstructionTranslator", name: str): source = self.source and AttrSource(self.source, name) try: subobj = inspect.getattr_static(self.fn, name) except AttributeError: return variables.GetAttrVariable(self, name, source=source) if source: return variables.LazyVariableTracker.create(subobj, source) return VariableTracker.build(tx, subobj) def call_hasattr(self, tx: "InstructionTranslator", name: str) -> VariableTracker: result = hasattr(self.fn, name) return variables.ConstantVariable.create(result) def call_function( self, tx: "InstructionTranslator", args: "List[VariableTracker]", kwargs: "Dict[str, VariableTracker]", ) -> "VariableTracker": if self.is_constant: return invoke_and_store_as_constant( tx, self.fn, self.get_name(), args, kwargs ) if ( tx.output.current_tracer.under_activation_checkpoint and not tx.output.current_tracer.allow_side_effects_under_checkpoint ): try: from torch.distributed._composable.fsdp._fsdp_state import FSDPState except Exception: FSDPState = None if FSDPState is not None and self.fn in [ FSDPState._pre_forward, FSDPState._post_forward, ]: with torch._dynamo.side_effects.allow_side_effects_under_checkpoint(tx): return super().call_function(tx, args, kwargs) return super().call_function(tx, args, kwargs) class UserMethodVariable(UserFunctionVariable): """Some unsupported user-defined method""" def __init__(self, fn, obj, **kwargs) -> None: super().__init__(fn=fn, **kwargs) self.obj = obj def __repr__(self) -> str: return f"{self.__class__.__name__}({self.fn}, {self.obj})" def self_args(self): return [self.obj] def python_type(self): return types.MethodType def call_function( self, tx: "InstructionTranslator", args: "List[VariableTracker]", kwargs: "Dict[str, VariableTracker]", ) -> "VariableTracker": # For nn.Module methods, redirecting to NNModuleVariable.call_method for optimized solution # rather than simple inlining. E.g, putting `call_method` op in FX graph for `forward` method # since we ensure `forward` of allowed modules can be traced by AOT safely. # Note this is not only for allowed modules, as user customized modules can extend from # allowed modules but using parent's `forward` method, which is also covered by this branch. # If we are tracing the higher order op, we want Dynamo to step inside # the module call so that Dynamo can see the underlying parameters and # buffers and raise them as inputs to the graph. The is_root_tracer # check bypasses the if condition for non-root tracers and directly # calls the super().call_function at the end, which is basically # equivalent of inlining the method. if tx.output.is_root_tracer() and isinstance( self.obj, variables.NNModuleVariable ): module_attr = getattr(self.fn, "__module__", "") # inline torch.nn.utils.parametrize if ( module_attr is not None and module_attr.startswith("torch.nn.") and module_attr != "torch.nn.utils.parametrize" or self.is_constant ): return self.obj.call_method( tx, self.fn.__name__, args, kwargs, constant=self.is_constant ) elif ( _fsdp_param_group is not None and self.fn is _fsdp_param_group.FSDPParamGroup.use_training_state ): return variables.TorchCtxManagerClassVariable(self.fn).call_function( tx, (self.obj, *args), kwargs ) if self.is_constant: fn = getattr(self.obj.value, self.fn.__name__) return invoke_and_store_as_constant(tx, fn, self.get_name(), args, kwargs) return super().call_function(tx, args, kwargs) def inspect_parameter_names(self): return super().inspect_parameter_names()[1:] class WrappedUserMethodVariable(UserMethodVariable): def __init__(self, wrapped, context, **kwargs) -> None: kwargs.pop("fn", None) kwargs.pop("obj", None) super().__init__(wrapped.fn, wrapped.obj, **kwargs) self.wrapped = wrapped self.context = context def call_function( self, tx: "InstructionTranslator", args: "List[VariableTracker]", kwargs: "Dict[str, VariableTracker]", ) -> "VariableTracker": self.context.enter(tx) result = super().call_function(tx, args, kwargs) self.context.exit(tx) return result class WrappedUserFunctionVariable(UserFunctionVariable): def __init__(self, wrapped, context, **kwargs) -> None: kwargs.pop("fn", None) kwargs.pop("obj", None) super().__init__(wrapped.fn, **kwargs) self.wrapped = wrapped self.context = context def call_function( self, tx: "InstructionTranslator", args: "List[VariableTracker]", kwargs: "Dict[str, VariableTracker]", ) -> "VariableTracker": self.context.enter(tx) result = super().call_function(tx, args, kwargs) self.context.exit(tx) return result def invoke_and_store_as_constant(tx: "InstructionTranslator", fn, name, args, kwargs): def convert(x): if isinstance(x, variables.TensorVariable): return x.get_real_value() return x.as_python_constant() args = [convert(x) for x in args] kwargs = {k: convert(v) for k, v in kwargs.items()} res = fn(*args, **kwargs) return tx.output.register_attr_or_module( res, name, source=ConstantSource(name), ) class NestedUserFunctionVariable(BaseUserFunctionVariable): _nonvar_fields = { "closure_scope", "f_globals", *BaseUserFunctionVariable._nonvar_fields, } def __init__( self, fn_name, code, f_globals, defaults, kwdefaults, annotations, closure, closure_scope, wrapped_reconstructible=None, **kwargs, ) -> None: super().__init__(**kwargs) assert isinstance(fn_name.as_python_constant(), str) assert isinstance(code.as_python_constant(), types.CodeType) assert isinstance(f_globals, dict) self.fn_name = fn_name self.code = code self.f_globals = f_globals self.defaults = defaults self.kwdefaults = kwdefaults self.annotations = annotations self.closure = closure if closure is None: closure_scope = None self.closure_scope = closure_scope # Either a source or a VT with .can_reconstruct() == True self.wrapped_reconstructible: Optional[ Union[Source, VariableTracker] ] = wrapped_reconstructible def self_args(self): return [] def get_code(self): return self.code.as_python_constant() def get_function(self): if self.closure: raise NotImplementedError func = types.FunctionType( self.code.as_python_constant(), self.f_globals, self.fn_name.as_python_constant(), ) if self.defaults: func.__defaults__ = self.defaults.as_python_constant() if self.kwdefaults: func.__kwdefaults__ = self.kwdefaults.as_python_constant() if self.annotations: annotations = self.annotations.as_python_constant() if isinstance(annotations, tuple): from itertools import pairwise annotations = dict(pairwise(annotations)) # TypeError: __annotations__ must be set to a dict object assert isinstance(annotations, dict) func.__annotations__ = annotations return func def has_closure(self): return self.closure is not None def has_self(self): return False def get_globals(self): return self.f_globals def bind_args(self, parent, args, kwargs): # Avoid circular import from .misc import ClosureVariable, NewCellVariable code = self.get_code() func = types.FunctionType( code, self.f_globals, self.fn_name.as_python_constant(), tuple(self.defaults.items) if self.defaults else None, tuple(make_cell(None) for _ in range(len(self.get_code().co_freevars))), ) if self.kwdefaults: func.__kwdefaults__ = self.kwdefaults.keys_as_python_constant() bound = inspect.signature(func).bind(*args, **kwargs) bound.apply_defaults() result = dict(bound.arguments.items()) wrap_args_kwargs(parent.output.root_tx, result) closure_cells = init_cellvars(parent, result, code) for idx, name in enumerate(code.co_freevars): cell = self.closure.items[idx] assert name not in result # In the regular case, a cell is either a `ClosureVariable` or # `NewCellVariable`. if isinstance(cell, (ClosureVariable, NewCellVariable)): closure_cells[name] = cell else: # We model unmodified cells captured by `UserFunctionVariable` as # their contents, in tracer's `symbolic_locals`. See # `UserFunctionVariable::bind_args`. result[name] = cell return result, closure_cells def export_freevars(self, parent, child): code = self.get_code() for var in code.co_freevars: if var in child.symbolic_locals: parent.symbolic_locals[var] = child.symbolic_locals[var] def reconstruct(self, codegen): codegen.add_push_null( lambda: codegen.load_import_from(__name__, "_create_nested_fn") ) codegen(self.code) codegen.extend_output([codegen._create_load_const(self.f_globals)]) codegen(ConstantVariable.create(self.code.value.co_name)) if self.defaults: codegen(self.defaults) else: codegen.extend_output([codegen.create_load_const(None)]) if self.closure: codegen(self.closure) else: codegen.extend_output([codegen.create_load_const(None)]) if self.kwdefaults: codegen(self.kwdefaults) else: codegen.extend_output([codegen.create_load_const(None)]) if self.annotations: try: annotations = self.annotations.as_python_constant() codegen.extend_output([codegen._create_load_const(annotations)]) except NotImplementedError: codegen(self.annotations) else: codegen.extend_output([codegen.create_load_const(None)]) codegen.extend_output(create_call_function(7, False)) if self.wrapped_reconstructible: codegen.add_push_null( lambda: codegen.load_import_from("functools", "wraps") ) codegen(self.wrapped_reconstructible) codegen.extend_output(create_call_function(1, False)) codegen.extend_output(create_rot_n(2)) codegen.extend_output(create_call_function(1, True)) class SkipFunctionVariable(VariableTracker): _nonvar_fields = { "value", "reason", *VariableTracker._nonvar_fields, } def __init__(self, value, reason=None, **kwargs) -> None: super().__init__(**kwargs) self.value = value self.reason = reason def as_python_constant(self): return self.value @classmethod def create_with_source(cls, value, source): if not is_wrapper_or_member_descriptor(value): # These descriptors are not guaranteed to return the same object on # attribute lookup. They are unlikely to be changed, so we can skip # guarding them. install_guard(source.make_guard(GuardBuilder.FUNCTION_MATCH)) return cls(value, source=source) @staticmethod @functools.lru_cache(None) def fold_through_function_to_wrapper(): return { collections.namedtuple: variables.UserDefinedClassVariable, } def call_function( self, tx: "InstructionTranslator", args: "List[VariableTracker]", kwargs: "Dict[str, VariableTracker]", ) -> "VariableTracker": if inspect.getattr_static(self.value, "_torchdynamo_disable", False): unimplemented(f"call torch._dynamo.disable() wrapped function {self.value}") # Fold through the functions(e.g, collections.namedtuple) # that inputs & outputs are all python constants elif ( self.value in self.fold_through_function_to_wrapper().keys() and check_constant_args(args, kwargs) ): value = self.value( *[x.as_python_constant() for x in args], **{k: v.as_python_constant() for k, v in kwargs.items()}, ) return self.fold_through_function_to_wrapper().get(self.value)( value, mutable_local=MutableLocal() ) elif ( self.value is functools.wraps and not kwargs and len(args) == 1 and ( args[0].source is not None or args[0].can_reconstruct(tx.output.root_tx) ) ): def wraps(fn): if isinstance(fn, variables.NestedUserFunctionVariable): if args[0].source: reconstructible = args[0].source else: reconstructible = args[0] return fn.clone(wrapped_reconstructible=reconstructible) unimplemented(f"functools.wraps({fn})") return variables.LambdaVariable(wraps) else: try: path = inspect.getfile(self.value) msg = f"'skip function {self.value.__qualname__} in file {path}'" except TypeError: known_python_builtin_modules = {"_abc", "_warnings"} if self.value.__module__ in known_python_builtin_modules: msg = ( f"Graph break due to unsupported Python builtin {self.value.__module__}.{self.value.__qualname__}. " f"Please file an issue on GitHub " f"so the PyTorch team can add support for it. " ) elif ( self.value.__module__ is not None and self.value.__module__.startswith("optree") ): msg = ( f"Graph break for an optree C/C++ function {self.value.__module__}.{self.value.__qualname__}." f" Consider using torch.utils._pytree - " f"https://github.com/pytorch/pytorch/blob/main/torch/utils/_pytree.py" ) # also warn on it because most users won't see the graph break message torch._dynamo.utils.warn_once(msg) else: msg = ( f"Graph break due to unsupported builtin {self.value.__module__}.{self.value.__qualname__}. " f"This function is either a Python builtin (e.g. _warnings.warn) " f"or a third-party C/C++ Python extension (perhaps created with pybind). " f"If it is a Python builtin, please file an issue on GitHub " f"so the PyTorch team can add support for it and see the next case for a workaround. " f"If it is a third-party C/C++ Python extension, please " f"either wrap it into a PyTorch-understood custom operator " f"(see https://pytorch.org/tutorials/advanced/custom_ops_landing_page.html " f"for more details) or, if it is traceable, use " f"torch.compiler.allow_in_graph." ) # also warn on it because most users won't see the graph break message torch._dynamo.utils.warn_once(msg) if self.value.__qualname__ == "allow_in_graph": msg = ( "Found an allow_in_graph decorator to a function which " "is created inside the parent function that is getting " "compiled. This is not supported for now." ) msg += f"', {self.reason}'" if self.reason else "" unimplemented(msg) class WrapperUserFunctionVariable(VariableTracker): """ Used to represent a wrapper object that contains the actual callable as an attribute. For example, torch.jit.script/trace have the original function at their _torchdynamo_inline attribute. Similarly, functions with __script_if_tracing_wrapper have the original attr at "__original_fn". """ def __init__(self, wrapper_obj, attr_to_trace, **kwargs) -> None: super().__init__(**kwargs) self.wrapper_obj = wrapper_obj self.attr_to_trace = attr_to_trace def var_getattr(self, tx: "InstructionTranslator", name): if name == self.attr_to_trace: val = getattr(self.wrapper_obj, self.attr_to_trace) source = self.source and AttrSource(self.source, name) return VariableTracker.build(tx, val, source) return super().var_getattr(tx, name) def call_function( self, tx: "InstructionTranslator", args: "List[VariableTracker]", kwargs: "Dict[str, VariableTracker]", ) -> "VariableTracker": return variables.UserFunctionVariable( polyfills.getattr_and_trace ).call_function( tx, [self, variables.ConstantVariable(self.attr_to_trace), *args], kwargs ) def _traceable_collective_remaps(): # We can't rely on importing from distributed, since it's not always built if torch.distributed.is_available(): from torch.distributed._functional_collectives import ( traceable_collective_remaps, ) return traceable_collective_remaps return {} def _traceable_collectives_source(tx: "InstructionTranslator", fn): assert torch.distributed.is_available(), "Illegal invocation." assert fn in _traceable_collective_remaps().values() inner_name = fn.__name__ path_source = tx.import_source("torch.distributed._functional_collectives") return AttrSource(path_source, inner_name) class CollectiveFunctionRewriteVariable(UserFunctionVariable): """ Some of the torch.distributed.* collective APIs are possible to rewrite to 'traceable' collectives. This class provides both a way to check if a function is remappable, and perform the remapping. In the case that a function is 'remappable' but only for some combinations of call-time arguments, we check the args at `call_function` time and fall back to graph-breaking if needed. This is no worse than status-quo as we currently graph-break on all distributed.* collectives. """ def __init__(self, fn, *, replacement_var, **kwargs) -> None: super().__init__(fn, **kwargs) assert isinstance(replacement_var, UserFunctionVariable) self.replacement_var = replacement_var @staticmethod def create(tx: "InstructionTranslator", old_fn, source, **options): new_fn, new_source = CollectiveFunctionRewriteVariable.rewrite(tx, old_fn) return CollectiveFunctionRewriteVariable( old_fn, replacement_var=UserFunctionVariable(new_fn, source=new_source, **options), source=source, **options, ) @staticmethod def can_rewrite(variable): return ( inspect.isfunction(variable) and variable in _traceable_collective_remaps() ) @staticmethod def rewrite(tx: "InstructionTranslator", fn): new_fn = _traceable_collective_remaps()[fn] return new_fn, _traceable_collectives_source(tx, new_fn) def call_function( self, tx: "InstructionTranslator", args: "List[VariableTracker]", kwargs: "Dict[str, VariableTracker]", ) -> "VariableTracker": # call_function must check any unsupported arguments and graph-break. # It's safe to assume args/kwargs from orig_fn map 1:1 to args/kwargs of remapped_fn, # since that's the contract for putting a mapping in `traceable_collective_remaps` import torch.distributed as dist from torch.distributed._functional_collectives import REDUCE_OP_TO_STR # Merge args into kwargs so positional and keyword args # can be processed the same way. signature = inspect.signature(self.fn) kwargs = dict(signature.bind(*args, **kwargs).arguments) args = () if "async_op" in kwargs and kwargs["async_op"].as_python_constant(): unimplemented( f"CollectiveFunctionRewriteVariable can't support async_op=True for {self.fn}" ) if self.fn in ( dist.all_reduce, dist.reduce_scatter_tensor, dist._reduce_scatter_base, ): reduce_op_var = kwargs.get("op") reduce_op = ( reduce_op_var.value if reduce_op_var is not None else signature.parameters["op"].default ) if reduce_op not in REDUCE_OP_TO_STR: raise ValueError(f"Unsupported all_reduce op: {reduce_op}") kwargs["op"] = variables.ConstantVariable.create( REDUCE_OP_TO_STR[reduce_op] ) return self.replacement_var.call_function(tx, args, kwargs) class FunctoolsPartialVariable(VariableTracker): def __init__(self, func: VariableTracker, args, keywords, **kwargs) -> None: super().__init__(**kwargs) self.func = func assert isinstance(args, list) self.args = args assert isinstance(keywords, dict) self.keywords = keywords def reconstruct(self, codegen): codegen.add_push_null(lambda: codegen.load_import_from("functools", "partial")) codegen(self.func) if self.args: codegen.foreach(self.args) if not self.keywords: codegen.extend_output(create_call_function(len(self.args) + 1, False)) return codegen.foreach(self.keywords.values()) keys = tuple(self.keywords.keys()) codegen.extend_output( codegen.create_call_function_kw(len(keys) + len(self.args) + 1, keys, False) ) def get_function(self): return self.as_python_constant() def call_function( self, tx: "InstructionTranslator", args: "List[VariableTracker]", kwargs: "Dict[str, VariableTracker]", ) -> "VariableTracker": merged_args = self.args + args merged_kwargs = {**self.keywords, **kwargs} return self.func.call_function(tx, merged_args, merged_kwargs) def call_hasattr(self, tx: "InstructionTranslator", name: str) -> VariableTracker: # functools.partial uses slots, so attributes are constant return variables.ConstantVariable.create( hasattr(functools.partial(identity), name) ) def as_python_constant(self): return functools.partial( self.func.as_python_constant(), *[arg.as_python_constant() for arg in self.args], **{k: v.as_python_constant() for k, v in self.keywords.items()}, ) def guard_as_python_constant(self): """Similar to as_python_constant(), but add ID_MATCH guards to try to force things to become constants""" return functools.partial( self.func.guard_as_python_constant(), *[v.guard_as_python_constant() for v in self.args], **{k: v.guard_as_python_constant() for k, v in self.keywords.items()}, ) class PolyfilledFunctionVariable(VariableTracker): _nonvar_fields = { "fn", "wrapped_fn", "traceable_fn", *VariableTracker._nonvar_fields, } @classmethod @functools.lru_cache(None) def _get_polyfill_handlers(cls) -> Dict[Callable[..., Any], types.FunctionType]: return {} @classmethod def create_with_source(cls, value, source): install_guard(source.make_guard(GuardBuilder.FUNCTION_MATCH)) return cls(value, source=source) def __init__(self, fn: _F, **kwargs) -> None: super().__init__(**kwargs) self.fn: _F = fn handler = self._get_polyfill_handlers().get(fn, fn) assert callable(handler), f"Polyfill handler {handler} is not callable for {fn}" for candidate_attr in ( "__torch_dynamo_polyfill__", # registered polyfill "__python_implementation__", # self handler from third-party libraries ): candidate = getattr(handler, candidate_attr, None) if candidate: assert callable(candidate) traceable_fn = candidate break else: raise RuntimeError( f"Polyfill handler {handler} does not have a traceable function" ) self.wrapped_fn: _F = handler self.traceable_fn: _F = traceable_fn @property def polyfill_fn(self) -> _F: return self.traceable_fn def can_constant_fold_through(self): return getattr( self.wrapped_fn, "__torch_dynamo_can_constant_fold_through__", False ) def get_function(self): return self.as_python_constant() def call_function( self, tx: "InstructionTranslator", args: "List[VariableTracker]", kwargs: "Dict[str, VariableTracker]", ) -> "VariableTracker": if self.can_constant_fold_through() and check_unspec_or_constant_args( args, kwargs ): result = ( self.fn( # use the original function which is faster than the polyfill *[x.as_python_constant() for x in args], **{k: v.as_python_constant() for k, v in kwargs.items()}, ) ) return VariableTracker.build(tx, result) # Special case for sum on tuple/list of ints if ( self.fn is builtins.sum and len(args) == 1 and not kwargs and isinstance(args[0], (variables.ListVariable, variables.TupleVariable)) and all( (isinstance(x, variables.ConstantVariable) and isinstance(x.value, int)) or (isinstance(x, variables.SymNodeVariable) and x.python_type() is int) for x in args[0].items ) ): return variables.SymNodeVariable.create( tx, tx.output.create_proxy( "call_function", torch.sym_sum, (tuple(a.as_proxy() for a in args[0].items),), {}, ), sym_num=torch.sym_sum( [ ( x.value if isinstance(x, variables.ConstantVariable) else x.sym_num ) for x in args[0].items ] ), ) traceable_function_variable = VariableTracker.build(tx, self.traceable_fn) return traceable_function_variable.call_function(tx, args, kwargs) def call_method( self, tx, name, args: "List[VariableTracker]", kwargs: "Dict[str, VariableTracker]", ) -> "VariableTracker": if name == "__call__": return self.call_function(tx, args, kwargs) method = getattr(self.fn, name, None) assert method is not None, f"Member {name} not found in {self.fn}" assert is_function(method), f"Member {name} is not callable in {self.fn}" options = {} if self.source: options["source"] = AttrSource(self.source, name) polyfilled_method_variable = PolyfilledFunctionVariable(method, **options) return polyfilled_method_variable.call_function(tx, args, kwargs) def as_python_constant(self): return self.fn from torch._higher_order_ops.triton_kernel_wrap import ( TMADescriptorMetadata, TritonHOPifier, ) class DynamoTritonHOPifier(TritonHOPifier): def raise_unsupported(self, msg: str) -> Never: raise Unsupported(msg) def is_callable(self, maybe_callable: Any) -> bool: return isinstance( maybe_callable, (NestedUserFunctionVariable, UserFunctionVariable) ) def get_value(self, val: Any) -> Any: return val.value def check_grid(self, grid) -> Tuple[torch.fx.proxy.Proxy, ...]: from .lists import BaseListVariable if isinstance(grid, BaseListVariable): return grid.as_proxy() else: unimplemented(f"grid for the triton kernel is {type(grid)}") def call_grid(self, grid, meta, tx): meta = {variables.ConstantVariable.create(k): v for k, v in meta.items()} grid = grid.call_function(tx, [meta], {}) return grid def call_HOP(self, variable, grids, combined_args_raw, tx) -> ConstantVariable: from .constant import ConstantVariable from .dicts import ConstDictVariable # as we can only pass tensors as non-const args in fx graph, # here we replace TMA descriptors (TMADescriptorVariable # instances) with the underlying tensors, while moving the # TMA descriptor-related metadata to a separate argument, # so that we can reconstruct the TMA descriptors downstream tma_descriptor_metadata: TMADescriptorMetadata = {} for k in list(combined_args_raw.keys()): v = combined_args_raw[k] if isinstance(v, TMADescriptorVariable): tma_descriptor_metadata[k] = v.to_metadata() combined_args_raw[k] = v.data_ptr.from_tensor combined_args = { variables.ConstantVariable.create(k): v for k, v in combined_args_raw.items() } from torch._higher_order_ops.triton_kernel_wrap import ( kernel_side_table, triton_kernel_wrapper_mutation, ) # Combine args and kwargs and pass as a dict so that if user defined triton # kernel uses variables as 'grid' or 'kernel', it does not conflict with # parameters of the wrapper function constant_args = { k: v.as_python_constant() for k, v in combined_args_raw.items() if isinstance(v, ConstantVariable) } non_constant_args = { k: v for k, v in combined_args.items() if not isinstance(v, ConstantVariable) } for v in non_constant_args.values(): v = v.realize() if not isinstance(v, (variables.TensorVariable, variables.SymNodeVariable)): self.raise_unsupported( f"Unexpected argument type for a Triton kernel: {repr(v)}." ) constant_args_idx = kernel_side_table.add_constant_args(constant_args) meta = ConstDictVariable(non_constant_args, dict) tx.output.create_proxy( "call_function", triton_kernel_wrapper_mutation, (), { "kernel_idx": variable.kernel_idx, "constant_args_idx": constant_args_idx, "grid": grids, "tma_descriptor_metadata": tma_descriptor_metadata, "kwargs": meta.as_proxy(), }, ) return variables.ConstantVariable( None, ) dynamo_triton_hopifier_singleton = DynamoTritonHOPifier() class TritonKernelVariable(VariableTracker): grid: "TritonGridType" kernel: "TritonKernelType" kernel_idx: Optional[int] def __init__(self, kernel, kernel_idx, grid, **kwargs) -> None: super().__init__(**kwargs) dynamo_triton_hopifier_singleton.init_variable(self, kernel, kernel_idx, grid) def call_function( self, tx: "InstructionTranslator", args: "List[VariableTracker]", kwargs: "Dict[str, VariableTracker]", ) -> "VariableTracker": return dynamo_triton_hopifier_singleton.call_triton_kernel( self, args, kwargs, tx ) def call_method( self, tx, name, args: "List[VariableTracker]", kwargs: "Dict[str, VariableTracker]", ) -> "VariableTracker": if name == "__getitem__": return dynamo_triton_hopifier_singleton.call_getitem(self, args) elif name == "run": return dynamo_triton_hopifier_singleton.call_run(self, args, kwargs, tx) # Bail out to parent's implementation return super().call_method(tx, name, args, kwargs) def specialize_symbolic(self, arg: Any) -> Any: from .constant import ConstantVariable from .tensor import SymNodeVariable # See [Note: Specialize tl.constexpr args in user-defined triton kernels] if isinstance(arg, SymNodeVariable): return ConstantVariable.create(arg.evaluate_expr()) return arg class TMADescriptorVariable(VariableTracker): def __init__( self, data_ptr: "variables.DataPtrVariable", dims: "List[ConstantVariable]", block_dims: "List[ConstantVariable]", element_size: "ConstantVariable", **kwargs, ): assert isinstance(data_ptr, variables.DataPtrVariable) super().__init__(**kwargs), self.data_ptr = data_ptr self.dims = dims self.block_dims = block_dims self.element_size = element_size def to_metadata(self): return ( [dim.as_proxy() for dim in self.dims], [dim.as_proxy() for dim in self.block_dims], self.element_size.as_proxy(), ) def reconstruct(self, codegen): codegen.add_push_null( lambda: codegen.load_import_from( "triton.tools.experimental_descriptor", f"create_{len(self.dims)}d_tma_descriptor", ) ) self.data_ptr.reconstruct(codegen) args = [*self.dims, *self.block_dims, self.element_size] codegen.foreach(args) codegen.call_function(len(args) + 1, False) class CreateTMADescriptorVariable(VariableTracker): def __init__( self, rank: int, **kwargs, ) -> None: super().__init__(**kwargs), assert rank in (1, 2) self.rank = rank def call_function( self, tx: "InstructionTranslator", args: "List[VariableTracker]", kwargs: "Dict[str, VariableTracker]", ) -> "VariableTracker": ptr = kwargs["ptr"] if "ptr" in kwargs else args[0] if not isinstance(ptr, variables.DataPtrVariable): raise Unsupported( "Please ensure there were no graph breaks between " f"create_{self.rank}d_tma_descriptor and the upstream " ".data_ptr() call." ) if self.rank == 1: assert len(args) + len(kwargs) == 4 dims = [ kwargs["dim"] if "dim" in kwargs else args[1], ] block_dims = [ kwargs["block_dim"] if "block_dim" in kwargs else args[2], ] else: assert len(args) + len(kwargs) == 6 dims = [ kwargs["dim1"] if "dim1" in kwargs else args[1], kwargs["dim0"] if "dim0" in kwargs else args[2], ] block_dims = [ kwargs["block_dim1"] if "block_dim1" in kwargs else args[3], kwargs["block_dim2"] if "block_dim2" in kwargs else args[4], ] element_size = kwargs["ptr"] if "ptr" in kwargs else args[-1] return TMADescriptorVariable( data_ptr=ptr, dims=dims, block_dims=block_dims, element_size=element_size, )