#!/usr/bin/env python3 # Owner(s): ["module: internals"] import unittest import torch from torch.testing._internal.common_utils import run_tests, TestCase class TestComparisonUtils(TestCase): def test_all_equal_no_assert(self): t = torch.tensor([0.5]) torch._assert_tensor_metadata(t, [1], [1], torch.float) def test_all_equal_no_assert_nones(self): t = torch.tensor([0.5]) torch._assert_tensor_metadata(t, None, None, None) def test_assert_dtype(self): t = torch.tensor([0.5]) with self.assertRaises(RuntimeError): torch._assert_tensor_metadata(t, None, None, torch.int32) def test_assert_strides(self): t = torch.tensor([0.5]) with self.assertRaises(RuntimeError): torch._assert_tensor_metadata(t, None, [3], torch.float) def test_assert_sizes(self): t = torch.tensor([0.5]) with self.assertRaises(RuntimeError): torch._assert_tensor_metadata(t, [3], [1], torch.float) @unittest.skipIf(not torch.cuda.is_available(), "Requires cuda") def test_assert_device(self): t = torch.tensor([0.5], device="cpu") with self.assertRaises(RuntimeError): torch._assert_tensor_metadata(t, device="cuda") def test_assert_layout(self): t = torch.tensor([0.5]) with self.assertRaises(RuntimeError): torch._assert_tensor_metadata(t, layout=torch.sparse_coo) if __name__ == "__main__": run_tests()