#include #include #include #include #include #include #include #include using namespace torch; using namespace at; using namespace c10; namespace { // NB: This is a macro and not a template function (like it was before) // because passing in constexpr char* as template argument breaks some // versions of MSVC that are being used internally at Meta. // MSVC 14.16.27023 (vs2017_15.9) #define CONCRETE_TRACE_CUDA(func_name, ...) \ at::impl::MaybeSetTLSOnEntryGuard guard; \ if (Py_IsInitialized()) { \ pybind11::gil_scoped_acquire gil; \ try { \ py::module mod = py::module::import("torch.utils._cuda_trace"); \ py::object hook = mod.attr(func_name).attr("fire_callbacks"); \ hook(__VA_ARGS__); \ } catch (const std::exception& e) { \ LOG(ERROR) << "CUDA trace hook execution failed: " << e.what(); \ } \ } struct ConcretePyInterpreterVTable final : public c10::impl::PyInterpreterVTable { std::string name() const override; void decref(PyObject* pyobj, bool is_tensor) const override; // TODO: Need to make this work for StorageImpl too. I imagine I'll want to // operate upon a PyObjectSlot rather than a TensorImpl c10::intrusive_ptr detach( const c10::TensorImpl* self) const override; void dispatch(const c10::OperatorHandle& op, torch::jit::Stack* stack) const override; void python_dispatcher( const c10::OperatorHandle& op, c10::DispatchKeySet, torch::jit::Stack* stack) const override; // NB: this is defined in python_dispatch.cpp void python_op_registration_trampoline( const c10::OperatorHandle& op, c10::DispatchKey key, torch::jit::Stack* stack) const override { torch::impl::dispatch::python_op_registration_trampoline_impl( op, key, stack); } bool is_contiguous(const c10::TensorImpl* self, at::MemoryFormat) const override; bool is_strides_like(const c10::TensorImpl* self, at::MemoryFormat) const override; bool is_non_overlapping_and_dense(const c10::TensorImpl* self) const override; c10::Device device(const c10::TensorImpl* self) const override; int64_t dim(const c10::TensorImpl* self) const override; c10::IntArrayRef strides(const c10::TensorImpl* self) const override; c10::IntArrayRef sizes(const c10::TensorImpl* self) const override; c10::SymIntArrayRef sym_sizes(const c10::TensorImpl* self) const override; c10::Layout layout(const c10::TensorImpl* self) const override; c10::SymInt sym_numel(const c10::TensorImpl* self) const override; c10::SymIntArrayRef sym_strides(const c10::TensorImpl* self) const override; c10::SymInt sym_storage_offset(const c10::TensorImpl* self) const override; void trace_gpu_event_creation(uintptr_t event) const override { CONCRETE_TRACE_CUDA("CUDAEventCreationCallbacks", event); } void trace_gpu_event_deletion(uintptr_t event) const override { CONCRETE_TRACE_CUDA("CUDAEventDeletionCallbacks", event); } void trace_gpu_event_record(uintptr_t event, uintptr_t stream) const override { CONCRETE_TRACE_CUDA("CUDAEventRecordCallbacks", event, stream); } void trace_gpu_event_wait(uintptr_t event, uintptr_t stream) const override { CONCRETE_TRACE_CUDA("CUDAEventWaitCallbacks", event, stream); } void trace_gpu_memory_allocation(uintptr_t ptr) const override { CONCRETE_TRACE_CUDA("CUDAMemoryAllocationCallbacks", ptr); } void trace_gpu_memory_deallocation(uintptr_t ptr) const override { CONCRETE_TRACE_CUDA("CUDAMemoryDeallocationCallbacks", ptr); } void trace_gpu_stream_creation(uintptr_t stream) const override { CONCRETE_TRACE_CUDA("CUDAStreamCreationCallbacks", stream); } void trace_gpu_device_synchronization() const override { CONCRETE_TRACE_CUDA("CUDADeviceSynchronizationCallbacks"); } void trace_gpu_stream_synchronization(uintptr_t stream) const override { CONCRETE_TRACE_CUDA("CUDAStreamSynchronizationCallbacks", stream); } void trace_gpu_event_synchronization(uintptr_t event) const override { CONCRETE_TRACE_CUDA("CUDAEventSynchronizationCallbacks", event); } void reset_backward_hooks(const c10::TensorImpl* self) const override; static ConcretePyInterpreterVTable* instance() { static ConcretePyInterpreterVTable s; return &s; } }; class PyInterpreterHolder { public: PyInterpreterHolder() : impl_(new c10::impl::PyInterpreter( ConcretePyInterpreterVTable::instance())) { is_main_interpreter_ = at::impl::PythonOpRegistrationTrampoline::registerInterpreter(impl_); } // NB: intentionally leaks the PyInterpreter, as there may still be // references to it that are live, living in objects that aren't being // destructed while Python is being cleaned up. ~PyInterpreterHolder() { impl_->disarm(); } c10::impl::PyInterpreter* get() const noexcept { return impl_; } bool is_main_interpreter() const noexcept { return is_main_interpreter_; } private: c10::impl::PyInterpreter* impl_; bool is_main_interpreter_; }; py::object torchDispatchFromTensorImpl( const c10::TensorImpl* self, const char* func_name, PyObject* torch_api_function, const char* module_name, // WARNING: MUST NOT BE TENSOR ARGS c10::SmallVector extra_args = {}) { if (torch_api_function == nullptr) { throw python_error(); } TORCH_CHECK( PyGILState_Check(), "GIL must be held before you call parseIValuesToPyArgsKwargs"); std::vector overloaded_args; // TODO: there should be a shorter way to spell this // TODO: fix the constness of target at::Tensor self_t = at::Tensor( c10::intrusive_ptr:: unsafe_reclaim_from_nonowning(const_cast(self))); auto self_p = py::reinterpret_steal(THPVariable_Wrap(std::move(self_t))); // NB: this may not be a python tensor if you got here from a mode! // TORCH_INTERNAL_ASSERT(isPythonTensor(self_t)); append_overloaded_tensor(&overloaded_args, self_p.ptr()); auto args = py::reinterpret_steal(PyTuple_New(1 + extra_args.size())); PyTuple_SET_ITEM(args.ptr(), 0, self_p.release().ptr()); int64_t i = 1; for (auto& a : extra_args) { if (a.ptr() == nullptr) throw python_error(); PyTuple_SET_ITEM(args.ptr(), i, std::move(a).release().ptr()); i++; } py::dict kwargs; return py::reinterpret_steal( handle_torch_function_no_python_arg_parser( overloaded_args, args.ptr(), kwargs.ptr(), func_name, torch_api_function, module_name, TorchFunctionName::TorchDispatch)); } // NOTE [PyInterpreter::decref takes an `is_tensor` arg] // Before calling PyInterpreter::decref, we must statically know if the // pyobj is a Tensor or not. // - If it is a tensor, we need to be careful about PyObject resurrection // - If it is not a tensor, we can freely decref // One alternative to this is using PyObject_IsInstance // to get at this information. However, we don't want to risk an incorrect // `__instancecheck__` changing the semantics here. void ConcretePyInterpreterVTable::decref(PyObject* pyobj, bool is_tensor) const { // Leak the pyobj if not initialized. This can happen if we are running // exit handlers that are destructing tensors with residual (owned) // PyObjects stored in them. if (!Py_IsInitialized()) return; pybind11::gil_scoped_acquire gil; // Two possibilities: // 1. We are decref-ing a tensor. Then we must be careful about // PyObject resurrection (this only applies to Tensors, see // THPVariable_clear). // 2. We are decref-ing some other Python object. We don't do // PyObject resurrection on non-Tensors, so we just carry on as usual if (is_tensor && Py_REFCNT(pyobj) > 1) { // It's still alive! This can happen if a weak ref resurrected // the PyObject without flipping ownership. At this point it is // too late to rescue the object, so just stub out the PyObject // so that it fails on subsequent uses. Don't raise an error here; // you're probably in a destructor. TORCH_WARN( "Deallocating Tensor that still has live PyObject references. " "This probably happened because you took out a weak reference to " "Tensor and didn't call _fix_weakref() after dereferencing it. " "Subsequent accesses to this tensor via the PyObject will now fail."); ((THPVariable*)pyobj)->cdata = c10::MaybeOwned(); } Py_DECREF(pyobj); }; py::handle getTorchApiFunction(const c10::OperatorHandle& op) { return op.getPythonOp(getPyInterpreter(), [&]() -> PyObject* { // Parse the name into namespace and name (no overload_name) // TODO: put this into the library const auto& schema = op.schema(); const auto& qualified_name = op.operator_name().name; const auto& overload_name = schema.overload_name(); auto pos = qualified_name.find("::"); TORCH_INTERNAL_ASSERT(pos != std::string::npos, qualified_name); // Make me some null terminated strings std::string ns_str = qualified_name.substr(0, pos); const char* ns = ns_str.c_str(); const char* func_name = qualified_name.c_str() + pos + strlen("::"); py::handle torch_api_function = py::module::import("torch").attr("ops").attr(ns).attr(func_name); if (overload_name.empty()) { return torch_api_function.attr("default").ptr(); } else { return torch_api_function.attr(overload_name.c_str()).ptr(); } }); } bool isPythonTensor(const at::Tensor& tensor) { return tensor.unsafeGetTensorImpl()->key_set().has(c10::DispatchKey::Python); } void ConcretePyInterpreterVTable::dispatch( const c10::OperatorHandle& op, torch::jit::Stack* stack) const { const auto& schema = op.schema(); const auto num_arguments = schema.arguments().size(); auto arguments = torch::jit::pop(*stack, num_arguments); // The plan: convert all the arguments back into PyObjects, // extracting out the tensor handles, then call // handle_torch_function_no_python_arg_parser // NB: at the point arguments are pushed to the stack, ALL defaults // are already present py::gil_scoped_acquire g; std::vector overloaded_args; py::handle torch_api_function_overload = getTorchApiFunction(op); // Find overloaded tensors for (const auto idx : c10::irange(arguments.size())) { const auto& ivalue = arguments[idx]; if (ivalue.isTensor()) { const auto& tensor = ivalue.toTensor(); if (isPythonTensor(tensor)) { append_overloaded_tensor(&overloaded_args, py::cast(tensor).ptr()); } } else if (ivalue.isList()) { const auto& list = ivalue.toListRef(); for (const auto jdx : c10::irange(list.size())) { const auto& nv = list[jdx]; if (nv.isTensor()) { const auto& tensor = nv.toTensor(); if (isPythonTensor(tensor)) { append_overloaded_tensor(&overloaded_args, py::cast(tensor).ptr()); } } } } } auto args_kwargs = parseIValuesToPyArgsKwargs(op, arguments); auto args = std::move(args_kwargs.first); auto kwargs = std::move(args_kwargs.second); PyObject* obj = handle_torch_function_no_python_arg_parser( overloaded_args, args.ptr(), kwargs.ptr(), nullptr, torch_api_function_overload.ptr(), nullptr, TorchFunctionName::TorchDispatch); pushPyOutToStack( op, stack, py::reinterpret_steal(obj), "__torch_dispatch__"); } void ConcretePyInterpreterVTable::python_dispatcher( const c10::OperatorHandle& op, c10::DispatchKeySet ks, torch::jit::Stack* stack) const { py::gil_scoped_acquire g; py::handle torch_api_function_overload = getTorchApiFunction(op); // TODO: if necessary, can optimize to cache the cache lookup // TODO: if necessary, can optimize OpOverload to have slots auto cache = py::dict(torch_api_function_overload.attr("_dispatch_cache")); if (cache.ptr() == nullptr) { throw python_error(); } c10::DispatchKey k = ks.highestPriorityTypeId(); // TODO: allow this to be non-owning auto handler = py::reinterpret_borrow( PyDict_GetItem(cache.ptr(), py::cast(k).ptr())); if (handler.ptr() == nullptr) { // Slow path handler = torch_api_function_overload.attr("_get_dispatch")(k); } if (py::isinstance(handler)) { // NB: not redispatch, as that will permanently remove the python // dispatcher for subsequent redispatches op.callBoxedForDispatchKey(py::cast(handler), *stack); return; } const auto& schema = op.schema(); const auto num_arguments = schema.arguments().size(); auto arguments = torch::jit::pop(*stack, num_arguments); auto args_kwargs = parseIValuesToPyArgsKwargs(op, arguments); auto args = std::move(args_kwargs.first); auto kwargs = std::move(args_kwargs.second); py::object obj = py::reinterpret_steal( PyObject_Call(handler.ptr(), args.ptr(), kwargs.ptr())); if (obj.ptr() == nullptr) { throw python_error(); } pushPyOutToStack(op, stack, std::move(obj), "Python dispatcher"); } c10::intrusive_ptr ConcretePyInterpreterVTable::detach( const c10::TensorImpl* self) const { pybind11::gil_scoped_acquire gil; at::impl::MaybeSetTLSOnEntryGuard guard; auto out = torchDispatchFromTensorImpl( self, "detach", py::module::import("torch") .attr("ops") .attr("aten") .attr("detach") .attr("default") .ptr(), "torch.ops.aten"); TORCH_CHECK( THPVariable_Check(out.ptr()), "detach returned invalid type ", py::detail::get_fully_qualified_tp_name(Py_TYPE(out.ptr())), ", expected Tensor"); const at::Tensor& res_t = THPVariable_Unpack(out.ptr()); return res_t.getIntrusivePtr(); } bool ConcretePyInterpreterVTable::is_contiguous( const c10::TensorImpl* self, at::MemoryFormat memory_format) const { pybind11::gil_scoped_acquire gil; at::impl::MaybeSetTLSOnEntryGuard guard; py::object out; if (memory_format == at::MemoryFormat::Contiguous) { // For backwards compatibility out = torchDispatchFromTensorImpl( self, "is_contiguous", py::module::import("torch") .attr("ops") .attr("aten") .attr("is_contiguous") .attr("default") .ptr(), "torch.ops.aten"); } else { out = torchDispatchFromTensorImpl( self, "is_contiguous", py::module::import("torch") .attr("ops") .attr("aten") .attr("is_contiguous") .attr("memory_format") .ptr(), "torch.ops.aten", {py::cast(memory_format)}); } if (out.is_none()) { return self->is_contiguous_default(memory_format); } TORCH_CHECK( PyBool_Check(out.ptr()), "is_contiguous returned invalid type ", py::detail::get_fully_qualified_tp_name(Py_TYPE(out.ptr())), ", expected bool"); return PyObject_IsTrue(out.ptr()); } bool ConcretePyInterpreterVTable::is_strides_like( const c10::TensorImpl* self, at::MemoryFormat memory_format) const { pybind11::gil_scoped_acquire gil; at::impl::MaybeSetTLSOnEntryGuard guard; auto out = torchDispatchFromTensorImpl( self, "is_strides_like", py::module::import("torch") .attr("ops") .attr("aten") // NB: intentionally suffixed with _format to avoid // triggering matches against "_like" suffix .attr("is_strides_like_format") .attr("default") .ptr(), "torch.ops.aten", {py::cast(memory_format)}); if (out.is_none()) { return self->is_strides_like_default(memory_format); } TORCH_CHECK( PyBool_Check(out.ptr()), "is_strides_like_format returned invalid type ", py::detail::get_fully_qualified_tp_name(Py_TYPE(out.ptr())), ", expected bool"); return PyObject_IsTrue(out.ptr()); } bool ConcretePyInterpreterVTable::is_non_overlapping_and_dense( const c10::TensorImpl* self) const { pybind11::gil_scoped_acquire gil; at::impl::MaybeSetTLSOnEntryGuard guard; auto out = torchDispatchFromTensorImpl( self, "is_non_overlapping_and_dense", py::module::import("torch") .attr("ops") .attr("aten") .attr("is_non_overlapping_and_dense") .attr("default") .ptr(), "torch.ops.aten"); if (out.is_none()) { return self->is_non_overlapping_and_dense_default(); } TORCH_CHECK( PyBool_Check(out.ptr()), "is_non_overlapping_and_dense returned invalid type ", py::detail::get_fully_qualified_tp_name(Py_TYPE(out.ptr())), ", expected bool"); return PyObject_IsTrue(out.ptr()); } int64_t ConcretePyInterpreterVTable::dim(const c10::TensorImpl* self) const { pybind11::gil_scoped_acquire gil; at::impl::MaybeSetTLSOnEntryGuard guard; auto out = torchDispatchFromTensorImpl( self, "dim", py::module::import("torch") .attr("ops") .attr("aten") .attr("dim") .attr("default") .ptr(), "torch.ops.aten"); TORCH_CHECK( PyLong_Check(out.ptr()), "dim returned invalid type ", py::detail::get_fully_qualified_tp_name(Py_TYPE(out.ptr())), ", expected int"); return THPUtils_unpackLong(out.ptr()); } c10::Device ConcretePyInterpreterVTable::device( const c10::TensorImpl* self) const { pybind11::gil_scoped_acquire gil; at::impl::MaybeSetTLSOnEntryGuard guard; auto out = torchDispatchFromTensorImpl( self, "device", py::module::import("torch") .attr("ops") .attr("prim") .attr("device") .attr("default") .ptr(), "torch.ops.prim"); return toDevice(out.ptr()); } c10::IntArrayRef ConcretePyInterpreterVTable::strides( const c10::TensorImpl* self) const { pybind11::gil_scoped_acquire gil; at::impl::MaybeSetTLSOnEntryGuard guard; auto out = torchDispatchFromTensorImpl( self, "stride", py::module::import("torch") .attr("ops") .attr("aten") .attr("stride") .attr("default") .ptr(), "torch.ops.aten"); if (out.is_none()) { TORCH_CHECK( !self->has_symbolic_sizes_strides(), "Cannot call strides on a tensor with symbolic shapes/strides"); return self->strides_default(); } py::object values = py::reinterpret_steal(out.ptr()); c10::optional mb_obj = self->pyobj_slot()->check_pyobj(getPyInterpreter()); TORCH_CHECK( mb_obj.has_value(), "Tensor subclass's PyInterpreter has no value"); PyObject* subclass = *mb_obj; Py_INCREF(subclass); py::object sub = py::reinterpret_steal(subclass); py::object os = py::module_::import("torch").attr("overrides"); py::function get_buffer = py::reinterpret_borrow(os.attr("get_buffer")); auto buffer = get_buffer(sub, values, "stride"); auto result = THPUtils_unpackLongs(buffer.ptr()); int64_t* start = (int64_t*)result[0]; int64_t len = result[1]; return c10::IntArrayRef(start, len); } static std::vector values_from_buffer( const c10::TensorImpl* self, py::handle values) { c10::TensorImpl* ptr = const_cast(self); c10::optional mb_obj = ptr->pyobj_slot()->check_pyobj(getPyInterpreter()); TORCH_CHECK( mb_obj.has_value(), "Tensor subclass's PyInterpreter has no value"); py::object os = py::module_::import("torch").attr("overrides"); py::function get_buffer = py::reinterpret_borrow(os.attr("get_buffer")); auto buffer = get_buffer(py::handle(*mb_obj), values, "size"); auto result = THPUtils_unpackLongs(buffer.ptr()); return result; } c10::IntArrayRef ConcretePyInterpreterVTable::sizes( const c10::TensorImpl* self) const { pybind11::gil_scoped_acquire gil; at::impl::MaybeSetTLSOnEntryGuard guard; auto out = torchDispatchFromTensorImpl( self, "size", py::module::import("torch") .attr("ops") .attr("aten") .attr("size") .attr("default") .ptr(), "torch.ops.aten"); if (out.is_none()) { TORCH_CHECK( !self->has_symbolic_sizes_strides(), "Cannot call sizes on a tensor with symbolic shapes/strides"); return self->sizes_default(); } py::object values = py::reinterpret_steal(out.ptr()); auto result = values_from_buffer(self, values); int64_t* start = (int64_t*)result[0]; int64_t len = result[1]; return c10::IntArrayRef(start, len); } c10::SymIntArrayRef ConcretePyInterpreterVTable::sym_sizes( const c10::TensorImpl* self) const { pybind11::gil_scoped_acquire gil; at::impl::MaybeSetTLSOnEntryGuard guard; HANDLE_TH_ERRORS auto out = torchDispatchFromTensorImpl( self, "sym_size", py::module::import("torch") .attr("ops") .attr("aten") .attr("sym_size") .attr("default") .ptr(), "torch.ops.aten"); if (out.is_none()) { return self->sym_sizes_default(); } // We need to squeeze SymIntNodes and ints into `SymInts` // since it's a format `sym_sizes()` are stored in TORCH_CHECK( py::isinstance(out) || py::isinstance(out), "Symshape must be a list or a tuple"); py::list symints; for (auto it = out.begin(); it != out.end(); it++) { auto elm = *it; auto si = py::cast(elm); // TODO: the buffer will need to be made owning later symints.append(si.as_int_unchecked()); } auto result = values_from_buffer(self, symints); c10::SymInt* start = (c10::SymInt*)result[0]; int64_t len = result[1]; return c10::SymIntArrayRef(start, len); END_HANDLE_TH_ERRORS_PYBIND } c10::Layout ConcretePyInterpreterVTable::layout( const c10::TensorImpl* self) const { pybind11::gil_scoped_acquire gil; at::impl::MaybeSetTLSOnEntryGuard guard; auto out = torchDispatchFromTensorImpl( self, "layout", py::module::import("torch") .attr("ops") .attr("prim") .attr("layout") .attr("default") .ptr(), "torch.ops.prim"); TORCH_CHECK( THPLayout_Check(out.ptr()), "layout returned invalid type ", py::detail::get_fully_qualified_tp_name(Py_TYPE(out.ptr())), ", expected Layout"); return toLayout(out.ptr()); } c10::SymInt ConcretePyInterpreterVTable::sym_numel( const c10::TensorImpl* self) const { pybind11::gil_scoped_acquire gil; at::impl::MaybeSetTLSOnEntryGuard guard; auto out = torchDispatchFromTensorImpl( self, "sym_numel", py::module::import("torch") .attr("ops") .attr("aten") .attr("sym_numel") .attr("default") .ptr(), "torch.ops.aten"); if (out.is_none()) { TORCH_CHECK( !self->has_symbolic_sizes_strides(), "Cannot call numel on a tensor with symbolic shapes/strides"); return self->sym_numel_default(); } return torch::is_symint(out) ? out.cast() : c10::SymInt{py::cast(out)}; } c10::SymInt ConcretePyInterpreterVTable::sym_storage_offset( const c10::TensorImpl* self) const { pybind11::gil_scoped_acquire gil; at::impl::MaybeSetTLSOnEntryGuard guard; auto out = torchDispatchFromTensorImpl( self, "sym_storage_offset", py::module::import("torch") .attr("ops") .attr("aten") .attr("sym_storage_offset") .attr("default") .ptr(), "torch.ops.aten"); if (out.is_none()) { return self->sym_storage_offset_default(); } return torch::is_symint(out) ? out.cast() : c10::SymInt{py::cast(out)}; } c10::SymIntArrayRef ConcretePyInterpreterVTable::sym_strides( const c10::TensorImpl* self) const { pybind11::gil_scoped_acquire gil; at::impl::MaybeSetTLSOnEntryGuard guard; HANDLE_TH_ERRORS auto out = torchDispatchFromTensorImpl( self, "sym_stride", py::module::import("torch") .attr("ops") .attr("aten") .attr("sym_stride") .attr("default") .ptr(), "torch.ops.aten"); if (out.is_none()) { return self->sym_strides_default(); } // We need to squeeze SymIntNodes and ints into `SymInts` // since it's a format `sym_strides()` are stored in TORCH_CHECK( py::isinstance(out) || py::isinstance(out), "Symshape must be a list or a tuple"); py::list symints; for (auto it = out.begin(); it != out.end(); it++) { auto elm = *it; auto si = torch::is_symint(elm) ? elm.cast() : c10::SymInt{py::cast(elm)}; symints.append(si.as_int_unchecked()); } auto result = values_from_buffer(self, symints); c10::SymInt* start = (c10::SymInt*)result[0]; int64_t len = result[1]; return c10::SymIntArrayRef(start, len); END_HANDLE_TH_ERRORS_PYBIND } PyInterpreterHolder self_interpreter; void ConcretePyInterpreterVTable::reset_backward_hooks( const c10::TensorImpl* self) const { pybind11::gil_scoped_acquire gil; at::impl::MaybeSetTLSOnEntryGuard guard; HANDLE_TH_ERRORS Tensor self_t = Tensor( c10::intrusive_ptr:: unsafe_reclaim_from_nonowning(const_cast(self))); auto self_p = py::reinterpret_steal(THPVariable_Wrap(std::move(self_t))); PyObject_SetAttrString(self_p.ptr(), "_backward_hooks", Py_None); END_HANDLE_TH_ERRORS_PYBIND } } // anonymous namespace c10::impl::PyInterpreter* getPyInterpreter() { return self_interpreter.get(); } bool isMainPyInterpreter() { return self_interpreter.is_main_interpreter(); } std::string ConcretePyInterpreterVTable::name() const { std::stringstream ss; ss << getPyInterpreter(); return ss.str(); }