"""Various linear algebra utility methods for internal use. """ from typing import Optional, Tuple import torch from torch import Tensor def is_sparse(A): """Check if tensor A is a sparse tensor""" if isinstance(A, torch.Tensor): return A.layout == torch.sparse_coo error_str = "expected Tensor" if not torch.jit.is_scripting(): error_str += " but got {}".format(type(A)) raise TypeError(error_str) def get_floating_dtype(A): """Return the floating point dtype of tensor A. Integer types map to float32. """ dtype = A.dtype if dtype in (torch.float16, torch.float32, torch.float64): return dtype return torch.float32 def matmul(A: Optional[Tensor], B: Tensor) -> Tensor: """Multiply two matrices. If A is None, return B. A can be sparse or dense. B is always dense. """ if A is None: return B if is_sparse(A): return torch.sparse.mm(A, B) return torch.matmul(A, B) def conjugate(A): """Return conjugate of tensor A. .. note:: If A's dtype is not complex, A is returned. """ if A.is_complex(): return A.conj() return A def transpose(A): """Return transpose of a matrix or batches of matrices.""" ndim = len(A.shape) return A.transpose(ndim - 1, ndim - 2) def transjugate(A): """Return transpose conjugate of a matrix or batches of matrices.""" return conjugate(transpose(A)) def bform(X: Tensor, A: Optional[Tensor], Y: Tensor) -> Tensor: """Return bilinear form of matrices: :math:`X^T A Y`.""" return matmul(transpose(X), matmul(A, Y)) def qform(A: Optional[Tensor], S: Tensor): """Return quadratic form :math:`S^T A S`.""" return bform(S, A, S) def basis(A): """Return orthogonal basis of A columns.""" return torch.linalg.qr(A).Q def symeig(A: Tensor, largest: Optional[bool] = False) -> Tuple[Tensor, Tensor]: """Return eigenpairs of A with specified ordering.""" if largest is None: largest = False E, Z = torch.linalg.eigh(A, UPLO="U") # assuming that E is ordered if largest: E = torch.flip(E, dims=(-1,)) Z = torch.flip(Z, dims=(-1,)) return E, Z # These functions were deprecated and removed # This nice error message can be removed in version 1.13+ def matrix_rank(input, tol=None, symmetric=False, *, out=None) -> Tensor: raise RuntimeError( "This function was deprecated since version 1.9 and is now removed.", "Please use the `torch.linalg.matrix_rank` function instead.", ) def solve(input: Tensor, A: Tensor, *, out=None) -> Tuple[Tensor, Tensor]: raise RuntimeError( "This function was deprecated since version 1.9 and is now removed. Please use the `torch.linalg.solve` function instead.", ) def lstsq(input: Tensor, A: Tensor, *, out=None) -> Tuple[Tensor, Tensor]: raise RuntimeError( "This function was deprecated since version 1.9 and is now removed.", "Please use the `torch.linalg.lstsq` function instead.", ) def _symeig( input, eigenvectors=False, upper=True, *, out=None ) -> Tuple[Tensor, Tensor]: raise RuntimeError( "This function was deprecated since version 1.9 and is now removed. Please use the `torch.linalg.eigh` function instead.", ) def eig( self: Tensor, eigenvectors: bool = False, *, e=None, v=None ) -> Tuple[Tensor, Tensor]: raise RuntimeError( "This function was deprecated since version 1.9 and is now removed. Please use the `torch.linalg.eig` function instead.", )