r"""Importing this file must **not** initialize CUDA context. test_distributed relies on this assumption to properly run. This means that when this is imported no CUDA calls shall be made, including torch.cuda.device_count(), etc. torch.testing._internal.common_cuda.py can freely initialize CUDA context when imported. """ import sys import os import platform import re import gc import types import math from functools import partial import inspect import io import copy import operator import argparse import unittest import warnings import random import contextlib import shutil import datetime import pathlib import socket import subprocess import time from collections import OrderedDict from collections.abc import Sequence from contextlib import contextmanager, closing from functools import wraps from itertools import product from copy import deepcopy from numbers import Number import tempfile import json from urllib.request import urlopen import __main__ # type: ignore[import] import errno from typing import cast, Any, Dict, Iterable, Iterator, Optional import numpy as np from torch.testing import floating_types_and, integral_types, complex_types from torch.testing._internal import expecttest from .._core import \ (_compare_tensors_internal, _compare_scalars_internal, _compare_return_type) import torch import torch.cuda from torch._utils_internal import get_writable_path from torch._six import string_classes import torch.backends.cudnn import torch.backends.mkl from enum import Enum torch.backends.disable_global_flags() FILE_SCHEMA = "file://" if sys.platform == 'win32': FILE_SCHEMA = "file:///" IS_IN_CI = os.getenv('IN_CI') == '1' IS_SANDCASTLE = os.getenv('SANDCASTLE') == '1' or os.getenv('TW_JOB_USER') == 'sandcastle' IS_FBCODE = os.getenv('PYTORCH_TEST_FBCODE') == '1' IS_REMOTE_GPU = os.getenv('PYTORCH_TEST_REMOTE_GPU') == '1' class ProfilingMode(Enum): LEGACY = 1 SIMPLE = 2 PROFILING = 3 def cppProfilingFlagsToProfilingMode(): old_prof_exec_state = torch._C._jit_set_profiling_executor(True) old_prof_mode_state = torch._C._jit_set_profiling_mode(True) torch._C._jit_set_profiling_executor(old_prof_exec_state) torch._C._jit_set_profiling_mode(old_prof_mode_state) if old_prof_exec_state: if old_prof_mode_state: return ProfilingMode.PROFILING else: return ProfilingMode.SIMPLE else: return ProfilingMode.LEGACY @contextmanager def enable_profiling_mode_for_profiling_tests(): if GRAPH_EXECUTOR == ProfilingMode.PROFILING: old_prof_exec_state = torch._C._jit_set_profiling_executor(True) old_prof_mode_state = torch._C._jit_set_profiling_mode(True) try: yield finally: if GRAPH_EXECUTOR == ProfilingMode.PROFILING: torch._C._jit_set_profiling_executor(old_prof_exec_state) torch._C._jit_set_profiling_mode(old_prof_mode_state) @contextmanager def enable_profiling_mode(): old_prof_exec_state = torch._C._jit_set_profiling_executor(True) old_prof_mode_state = torch._C._jit_set_profiling_mode(True) try: yield finally: torch._C._jit_set_profiling_executor(old_prof_exec_state) torch._C._jit_set_profiling_mode(old_prof_mode_state) @contextmanager def num_profiled_runs(num_runs): old_num_runs = torch._C._jit_set_num_profiled_runs(num_runs) try: yield finally: torch._C._jit_set_num_profiled_runs(old_num_runs) func_call = torch._C.ScriptFunction.__call__ meth_call = torch._C.ScriptMethod.__call__ def prof_callable(callable, *args, **kwargs): if 'profile_and_replay' in kwargs: del kwargs['profile_and_replay'] if GRAPH_EXECUTOR == ProfilingMode.PROFILING: with enable_profiling_mode_for_profiling_tests(): callable(*args, **kwargs) return callable(*args, **kwargs) return callable(*args, **kwargs) def prof_func_call(*args, **kwargs): return prof_callable(func_call, *args, **kwargs) def prof_meth_call(*args, **kwargs): return prof_callable(meth_call, *args, **kwargs) # TODO fix when https://github.com/python/mypy/issues/2427 is address torch._C.ScriptFunction.__call__ = prof_func_call # type: ignore[assignment] torch._C.ScriptMethod.__call__ = prof_meth_call # type: ignore[assignment] def _get_test_report_path(): # allow users to override the test file location. We need this # because the distributed tests run the same test file multiple # times with different configurations. override = os.environ.get('TEST_REPORT_SOURCE_OVERRIDE') test_source = override if override is not None else 'python-unittest' return os.path.join('test-reports', test_source) parser = argparse.ArgumentParser(add_help=False) parser.add_argument('--subprocess', action='store_true', help='whether to run each test in a subprocess') parser.add_argument('--seed', type=int, default=1234) parser.add_argument('--accept', action='store_true') parser.add_argument('--jit_executor', type=str) parser.add_argument('--repeat', type=int, default=1) parser.add_argument('--test_bailouts', action='store_true') parser.add_argument('--save-xml', nargs='?', type=str, const=_get_test_report_path(), default=_get_test_report_path() if IS_IN_CI else None) parser.add_argument('--discover-tests', action='store_true') parser.add_argument('--log-suffix', type=str, default="") parser.add_argument('--run-parallel', type=int, default=1) args, remaining = parser.parse_known_args() if args.jit_executor == 'legacy': GRAPH_EXECUTOR = ProfilingMode.LEGACY elif args.jit_executor == 'profiling': GRAPH_EXECUTOR = ProfilingMode.PROFILING elif args.jit_executor == 'simple': GRAPH_EXECUTOR = ProfilingMode.SIMPLE else: # infer flags based on the default settings GRAPH_EXECUTOR = cppProfilingFlagsToProfilingMode() LOG_SUFFIX = args.log_suffix RUN_PARALLEL = args.run_parallel TEST_BAILOUTS = args.test_bailouts TEST_DISCOVER = args.discover_tests TEST_IN_SUBPROCESS = args.subprocess TEST_SAVE_XML = args.save_xml REPEAT_COUNT = args.repeat SEED = args.seed if not expecttest.ACCEPT: expecttest.ACCEPT = args.accept UNITTEST_ARGS = [sys.argv[0]] + remaining torch.manual_seed(SEED) def wait_for_process(p): try: return p.wait() except KeyboardInterrupt: # Give `p` a chance to handle KeyboardInterrupt. Without this, # `pytest` can't print errors it collected so far upon KeyboardInterrupt. exit_status = p.wait(timeout=5) if exit_status is not None: return exit_status else: p.kill() raise except: # noqa: B001,E722, copied from python core library p.kill() raise finally: # Always call p.wait() to ensure exit p.wait() def shell(command, cwd=None, env=None): sys.stdout.flush() sys.stderr.flush() # The following cool snippet is copied from Py3 core library subprocess.call # only the with # 1. `except KeyboardInterrupt` block added for SIGINT handling. # 2. In Py2, subprocess.Popen doesn't return a context manager, so we do # `p.wait()` in a `final` block for the code to be portable. # # https://github.com/python/cpython/blob/71b6c1af727fbe13525fb734568057d78cea33f3/Lib/subprocess.py#L309-L323 assert not isinstance(command, torch._six.string_classes), "Command to shell should be a list or tuple of tokens" p = subprocess.Popen(command, universal_newlines=True, cwd=cwd, env=env) return wait_for_process(p) # Used to run the same test with different tensor types def repeat_test_for_types(dtypes): def repeat_helper(f): @wraps(f) def call_helper(self, *args): for dtype in dtypes: with TestCase.subTest(self, dtype=dtype): f(self, *args, dtype=dtype) return call_helper return repeat_helper # Environment variable `IS_PYTORCH_CI` is set in `.jenkins/common.sh`. IS_PYTORCH_CI = bool(os.environ.get('IS_PYTORCH_CI')) def discover_test_cases_recursively(suite_or_case): if isinstance(suite_or_case, unittest.TestCase): return [suite_or_case] rc = [] for element in suite_or_case: rc.extend(discover_test_cases_recursively(element)) return rc def get_test_names(test_cases): return ['.'.join(case.id().split('.')[-2:]) for case in test_cases] def chunk_list(lst, nchunks): return [lst[i::nchunks] for i in range(nchunks)] # sanitize filename e.g., distributed/pipeline/sync/skip/test_api.py -> distributed.pipeline.sync.skip.test_api def sanitize_test_filename(filename): strip_py = re.sub(r'.py$', '', filename) return re.sub('/', r'.', strip_py) def run_tests(argv=UNITTEST_ARGS): if TEST_DISCOVER: suite = unittest.TestLoader().loadTestsFromModule(__main__) test_cases = discover_test_cases_recursively(suite) for name in get_test_names(test_cases): print(name) elif TEST_IN_SUBPROCESS: suite = unittest.TestLoader().loadTestsFromModule(__main__) test_cases = discover_test_cases_recursively(suite) failed_tests = [] for case in test_cases: test_case_full_name = case.id().split('.', 1)[1] exitcode = shell([sys.executable] + argv + [test_case_full_name]) if exitcode != 0: failed_tests.append(test_case_full_name) assert len(failed_tests) == 0, "{} unit test(s) failed:\n\t{}".format( len(failed_tests), '\n\t'.join(failed_tests)) elif RUN_PARALLEL > 1: suite = unittest.TestLoader().loadTestsFromModule(__main__) test_cases = discover_test_cases_recursively(suite) test_batches = chunk_list(get_test_names(test_cases), RUN_PARALLEL) processes = [] for i in range(RUN_PARALLEL): command = [sys.executable] + argv + ['--log-suffix=-shard-{}'.format(i + 1)] + test_batches[i] processes.append(subprocess.Popen(command, universal_newlines=True)) failed = False for p in processes: failed |= wait_for_process(p) != 0 assert not failed, "Some test shards have failed" elif TEST_SAVE_XML is not None: # import here so that non-CI doesn't need xmlrunner installed import xmlrunner # type: ignore[import] test_filename = sanitize_test_filename(inspect.getfile(sys._getframe(1))) test_report_path = TEST_SAVE_XML + LOG_SUFFIX test_report_path = os.path.join(test_report_path, test_filename) os.makedirs(test_report_path, exist_ok=True) verbose = '--verbose' in argv or '-v' in argv if verbose: print('Test results will be stored in {}'.format(test_report_path)) unittest.main(argv=argv, testRunner=xmlrunner.XMLTestRunner(output=test_report_path, verbosity=2 if verbose else 1)) elif REPEAT_COUNT > 1: for _ in range(REPEAT_COUNT): if not unittest.main(exit=False, argv=argv).result.wasSuccessful(): sys.exit(-1) else: unittest.main(argv=argv) IS_WINDOWS = sys.platform == "win32" IS_MACOS = sys.platform == "darwin" IS_PPC = platform.machine() == "ppc64le" if IS_WINDOWS: @contextmanager def TemporaryFileName(*args, **kwargs): # Ideally we would like to not have to manually delete the file, but NamedTemporaryFile # opens the file, and it cannot be opened multiple times in Windows. To support Windows, # close the file after creation and try to remove it manually if 'delete' in kwargs: if kwargs['delete'] is not False: raise UserWarning("only TemporaryFileName with delete=False is supported on Windows.") else: kwargs['delete'] = False f = tempfile.NamedTemporaryFile(*args, **kwargs) try: f.close() yield f.name finally: os.unlink(f.name) else: @contextmanager # noqa: T484 def TemporaryFileName(*args, **kwargs): with tempfile.NamedTemporaryFile(*args, **kwargs) as f: yield f.name if IS_WINDOWS: @contextmanager def TemporaryDirectoryName(suffix=None): # On Windows the directory created by TemporaryDirectory is likely to be removed prematurely, # so we first create the directory using mkdtemp and then remove it manually try: dir_name = tempfile.mkdtemp(suffix=suffix) yield dir_name finally: shutil.rmtree(dir_name) else: @contextmanager # noqa: T484 def TemporaryDirectoryName(suffix=None): with tempfile.TemporaryDirectory(suffix=suffix) as d: yield d IS_FILESYSTEM_UTF8_ENCODING = sys.getfilesystemencoding() == 'utf-8' def _check_module_exists(name): r"""Returns if a top-level module with :attr:`name` exists *without** importing it. This is generally safer than try-catch block around a `import X`. It avoids third party libraries breaking assumptions of some of our tests, e.g., setting multiprocessing start method when imported (see librosa/#747, torchvision/#544). """ import importlib.util spec = importlib.util.find_spec(name) return spec is not None TEST_NUMPY = _check_module_exists('numpy') TEST_SCIPY = _check_module_exists('scipy') TEST_MKL = torch.backends.mkl.is_available() TEST_NUMBA = _check_module_exists('numba') TEST_DILL = _check_module_exists('dill') TEST_LIBROSA = _check_module_exists('librosa') # Python 2.7 doesn't have spawn NO_MULTIPROCESSING_SPAWN = os.environ.get('NO_MULTIPROCESSING_SPAWN', '0') == '1' TEST_WITH_ASAN = os.getenv('PYTORCH_TEST_WITH_ASAN', '0') == '1' TEST_WITH_TSAN = os.getenv('PYTORCH_TEST_WITH_TSAN', '0') == '1' TEST_WITH_UBSAN = os.getenv('PYTORCH_TEST_WITH_UBSAN', '0') == '1' TEST_WITH_ROCM = os.getenv('PYTORCH_TEST_WITH_ROCM', '0') == '1' # Enables tests that are slow to run (disabled by default) TEST_WITH_SLOW = os.getenv('PYTORCH_TEST_WITH_SLOW', '0') == '1' # Disables non-slow tests (these tests enabled by default) # This is usually used in conjunction with TEST_WITH_SLOW to # run *only* slow tests. (I could have done an enum, but # it felt a little awkward. TEST_SKIP_FAST = os.getenv('PYTORCH_TEST_SKIP_FAST', '0') == '1' # Disables noarch tests; all but one CI configuration disables these. We don't # disable them for local runs because you still want to run them # (unlike slow tests!) TEST_SKIP_NOARCH = os.getenv('PYTORCH_TEST_SKIP_NOARCH', '0') == '1' # Determine whether to enable cuda memory leak check. # CUDA mem leak check is expensive and thus we don't want to execute it on every # test case / configuration. # See: https://github.com/pytorch/pytorch/pull/59402#issuecomment-858811135 TEST_SKIP_CUDA_MEM_LEAK_CHECK = os.getenv('PYTORCH_TEST_SKIP_CUDA_MEM_LEAK_CHECK', '0') == '1' # Disables tests for when on Github Actions ON_GHA = os.getenv('GITHUB_ACTIONS', '0') == '1' # Dict of NumPy dtype -> torch dtype (when the correspondence exists) numpy_to_torch_dtype_dict = { np.bool_ : torch.bool, np.uint8 : torch.uint8, np.int8 : torch.int8, np.int16 : torch.int16, np.int32 : torch.int32, np.int64 : torch.int64, np.float16 : torch.float16, np.float32 : torch.float32, np.float64 : torch.float64, np.complex64 : torch.complex64, np.complex128 : torch.complex128 } if IS_WINDOWS: # Size of `np.intc` is platform defined. # It is returned by functions like `bitwise_not`. # On Windows `int` is 32-bit # https://docs.microsoft.com/en-us/cpp/cpp/data-type-ranges?view=msvc-160 numpy_to_torch_dtype_dict[np.intc] = torch.int # Dict of torch dtype -> NumPy dtype torch_to_numpy_dtype_dict = {value : key for (key, value) in numpy_to_torch_dtype_dict.items()} ALL_TENSORTYPES = [torch.float, torch.double, torch.half] # bfloat16 bringup is currently only available on ROCm # ALL_TENSORTYPES2 will eventually be unified with ALL_TENSORTYPES # when bfloat16 bringup is complete on all platforms if TEST_WITH_ROCM: ALL_TENSORTYPES2 = [torch.float, torch.double, torch.half, torch.bfloat16] else: ALL_TENSORTYPES2 = ALL_TENSORTYPES def skipIfRocm(fn): @wraps(fn) def wrapper(*args, **kwargs): if TEST_WITH_ROCM: raise unittest.SkipTest("test doesn't currently work on the ROCm stack") else: fn(*args, **kwargs) return wrapper # Context manager for setting deterministic flag and automatically # resetting it to its original value class DeterministicGuard: def __init__(self, deterministic): self.deterministic = deterministic def __enter__(self): self.deterministic_restore = torch.are_deterministic_algorithms_enabled() torch.use_deterministic_algorithms(self.deterministic) def __exit__(self, exception_type, exception_value, traceback): torch.use_deterministic_algorithms(self.deterministic_restore) # This decorator can be used for API tests that call # torch.use_deterministic_algorithms(). When the test is finished, it will # restore the previous deterministic flag setting. # # If CUDA >= 10.2, this will set the environment variable # CUBLAS_WORKSPACE_CONFIG=:4096:8 so that the error associated with that # setting is not thrown during the test unless the test changes that variable # on purpose. The previous CUBLAS_WORKSPACE_CONFIG setting will also be # restored once the test is finished. # # Note that if a test requires CUDA to actually register the changed # CUBLAS_WORKSPACE_CONFIG variable, a new subprocess must be created, because # CUDA only checks the variable when the runtime initializes. Tests can be # run inside a subprocess like so: # # import subprocess, sys, os # script = ''' # # Test code should go here # ''' # try: # subprocess.check_output( # [sys.executable, '-c', script], # stderr=subprocess.STDOUT, # cwd=os.path.dirname(os.path.realpath(__file__)), # env=os.environ.copy()) # except subprocess.CalledProcessError as e: # error_message = e.output.decode('utf-8') # # Handle exceptions raised by the subprocess here # def wrapDeterministicFlagAPITest(fn): @wraps(fn) def wrapper(*args, **kwargs): with DeterministicGuard(torch.are_deterministic_algorithms_enabled()): class CuBLASConfigGuard: cublas_var_name = 'CUBLAS_WORKSPACE_CONFIG' def __enter__(self): self.is_cuda10_2_or_higher = ( (torch.version.cuda is not None) and ([int(x) for x in torch.version.cuda.split(".")] >= [10, 2])) if self.is_cuda10_2_or_higher: self.cublas_config_restore = os.environ.get(self.cublas_var_name) os.environ[self.cublas_var_name] = ':4096:8' def __exit__(self, exception_type, exception_value, traceback): if self.is_cuda10_2_or_higher: cur_cublas_config = os.environ.get(self.cublas_var_name) if self.cublas_config_restore is None: if cur_cublas_config is not None: del os.environ[self.cublas_var_name] else: os.environ[self.cublas_var_name] = self.cublas_config_restore with CuBLASConfigGuard(): fn(*args, **kwargs) return wrapper def skipIfCompiledWithoutNumpy(fn): # Even if the numpy module is present, if `USE_NUMPY=0` is used during the # build, numpy tests will fail numpy_support = TEST_NUMPY if numpy_support: try: # The numpy module is present, verify that PyTorch is compiled with # numpy support torch.from_numpy(np.array([2, 2])) except RuntimeError: numpy_support = False @wraps(fn) def wrapper(*args, **kwargs): if not numpy_support: raise unittest.SkipTest("PyTorch was compiled without numpy support") else: fn(*args, **kwargs) return wrapper def _test_function(fn, device): def run_test_function(self): return fn(self, device) return run_test_function def skipIfNoLapack(fn): @wraps(fn) def wrapper(*args, **kwargs): if not torch._C.has_lapack: raise unittest.SkipTest('PyTorch compiled without Lapack') else: fn(*args, **kwargs) return wrapper def skipIfNotRegistered(op_name, message): """Wraps the decorator to hide the import of the `core`. Args: op_name: Check if this op is registered in `core._REGISTERED_OPERATORS`. message: message to fail with. Usage: @skipIfNotRegistered('MyOp', 'MyOp is not linked!') This will check if 'MyOp' is in the caffe2.python.core """ try: from caffe2.python import core skipper = unittest.skipIf(op_name not in core._REGISTERED_OPERATORS, message) except ImportError: skipper = unittest.skip("Cannot import `caffe2.python.core`") return skipper def skipIfNoSciPy(fn): @wraps(fn) def wrapper(*args, **kwargs): if not TEST_SCIPY: raise unittest.SkipTest("test require SciPy, but SciPy not found") else: fn(*args, **kwargs) return wrapper def skipIfOnGHA(fn): @wraps(fn) def wrapper(*args, **kwargs): if ON_GHA: raise unittest.SkipTest("Test disabled for GHA") else: fn(*args, **kwargs) return wrapper def slowTest(fn): @wraps(fn) def wrapper(*args, **kwargs): if not TEST_WITH_SLOW: raise unittest.SkipTest("test is slow; run with PYTORCH_TEST_WITH_SLOW to enable test") else: fn(*args, **kwargs) wrapper.__dict__['slow_test'] = True return wrapper # noarch tests are tests that should be only run on one CI configuration, # because they don't exercise any interesting platform specific code # and so if run once, indicate the test should pass everywhere. # See https://github.com/pytorch/pytorch/issues/53743 def noarchTest(fn): @wraps(fn) def wrapper(*args, **kwargs): if TEST_SKIP_NOARCH: raise unittest.SkipTest("test is noarch: we are skipping noarch tests due to TEST_SKIP_NOARCH") else: fn(*args, **kwargs) return wrapper def slowAwareTest(fn): fn.__dict__['slow_test'] = True return fn def skipCUDAMemoryLeakCheckIf(condition): def dec(fn): if getattr(fn, '_do_cuda_memory_leak_check', True): # if current True fn._do_cuda_memory_leak_check = not condition return fn return dec def skipCUDANonDefaultStreamIf(condition): def dec(fn): if getattr(fn, '_do_cuda_non_default_stream', True): # if current True fn._do_cuda_non_default_stream = not condition return fn return dec def suppress_warnings(fn): @wraps(fn) def wrapper(*args, **kwargs): with warnings.catch_warnings(): warnings.simplefilter("ignore") fn(*args, **kwargs) return wrapper def to_gpu(obj, type_map=None): if type_map is None: type_map = {} if isinstance(obj, torch.Tensor): assert obj.is_leaf t = type_map.get(obj.dtype, obj.dtype) with torch.no_grad(): res = obj.clone().to(dtype=t, device="cuda") res.requires_grad = obj.requires_grad return res elif torch.is_storage(obj): return obj.new().resize_(obj.size()).copy_(obj) elif isinstance(obj, list): return [to_gpu(o, type_map) for o in obj] elif isinstance(obj, tuple): return tuple(to_gpu(o, type_map) for o in obj) else: return deepcopy(obj) def get_function_arglist(func): return inspect.getfullargspec(func).args def set_rng_seed(seed): torch.manual_seed(seed) random.seed(seed) if TEST_NUMPY: np.random.seed(seed) @contextlib.contextmanager def freeze_rng_state(): rng_state = torch.get_rng_state() if torch.cuda.is_available(): cuda_rng_state = torch.cuda.get_rng_state() yield if torch.cuda.is_available(): torch.cuda.set_rng_state(cuda_rng_state) torch.set_rng_state(rng_state) @contextlib.contextmanager def set_default_dtype(dtype): saved_dtype = torch.get_default_dtype() torch.set_default_dtype(dtype) try: yield finally: torch.set_default_dtype(saved_dtype) def iter_indices(tensor): if tensor.dim() == 0: return range(0) if tensor.dim() == 1: return range(tensor.size(0)) return product(*(range(s) for s in tensor.size())) def is_iterable(obj): try: iter(obj) return True except TypeError: return False def is_iterable_of_tensors(iterable, include_empty=False): """ Returns True if iterable is an iterable of tensors and False o.w. If the iterable is empty, the return value is :attr:`include_empty` """ # Tensor itself is iterable so we check this first if isinstance(iterable, torch.Tensor): return False try: if len(iterable) == 0: return include_empty for t in iter(iterable): if not isinstance(t, torch.Tensor): return False except TypeError as te: return False return True class CudaNonDefaultStream(): def __enter__(self): # Before starting CUDA test save currently active streams on all # CUDA devices and set new non default streams to all CUDA devices # to ensure CUDA tests do not use default stream by mistake. beforeDevice = torch.cuda.current_device() self.beforeStreams = [] for d in range(torch.cuda.device_count()): self.beforeStreams.append(torch.cuda.current_stream(d)) deviceStream = torch.cuda.Stream(device=d) torch._C._cuda_setStream(deviceStream._cdata) torch._C._cuda_setDevice(beforeDevice) def __exit__(self, exec_type, exec_value, traceback): # After completing CUDA test load previously active streams on all # CUDA devices. beforeDevice = torch.cuda.current_device() for d in range(torch.cuda.device_count()): torch._C._cuda_setStream(self.beforeStreams[d]._cdata) torch._C._cuda_setDevice(beforeDevice) class CudaMemoryLeakCheck(): def __init__(self, testcase, name=None): self.name = testcase.id() if name is None else name self.testcase = testcase # initialize context & RNG to prevent false positive detections # when the test is the first to initialize those from torch.testing._internal.common_cuda import initialize_cuda_context_rng initialize_cuda_context_rng() @staticmethod def get_cuda_memory_usage(): # we don't need CUDA synchronize because the statistics are not tracked at # actual freeing, but at when marking the block as free. num_devices = torch.cuda.device_count() gc.collect() return tuple(torch.cuda.memory_allocated(i) for i in range(num_devices)) def __enter__(self): self.befores = self.get_cuda_memory_usage() def __exit__(self, exec_type, exec_value, traceback): # Don't check for leaks if an exception was thrown if exec_type is not None: return afters = self.get_cuda_memory_usage() for i, (before, after) in enumerate(zip(self.befores, afters)): self.testcase.assertEqual( before, after, msg='{} leaked {} bytes CUDA memory on device {}'.format( self.name, after - before, i)) @contextmanager def skip_exception_type(exc_type): try: yield except exc_type as e: raise unittest.SkipTest(f"not implemented: {e}") from e # "min_satisfying_examples" setting has been deprecated in hypythesis # 3.56.0 and removed in hypothesis 4.x try: import hypothesis def settings(*args, **kwargs): if 'min_satisfying_examples' in kwargs and hypothesis.version.__version_info__ >= (3, 56, 0): kwargs.pop('min_satisfying_examples') return hypothesis.settings(*args, **kwargs) hypothesis.settings.register_profile( "pytorch_ci", settings( derandomize=True, suppress_health_check=[hypothesis.HealthCheck.too_slow], database=None, max_examples=50, verbosity=hypothesis.Verbosity.normal)) hypothesis.settings.register_profile( "dev", settings( suppress_health_check=[hypothesis.HealthCheck.too_slow], database=None, max_examples=10, verbosity=hypothesis.Verbosity.normal)) hypothesis.settings.register_profile( "debug", settings( suppress_health_check=[hypothesis.HealthCheck.too_slow], database=None, max_examples=1000, verbosity=hypothesis.Verbosity.verbose)) hypothesis.settings.load_profile( "pytorch_ci" if IS_PYTORCH_CI else os.getenv('PYTORCH_HYPOTHESIS_PROFILE', 'dev') ) except ImportError: print('Fail to import hypothesis in common_utils, tests are not derandomized') FILE_CACHE_LIFESPAN_SECONDS = datetime.timedelta(hours=3).seconds def fetch_and_cache(name: str, url: str): """ Some tests run in a different process so globals like `slow_test_dict` won't always be filled even though the test file was already downloaded on this machine, so cache it on disk """ path = os.path.join(tempfile.gettempdir(), name) def is_cached_file_valid(): # Check if the file is new enough (say 1 hour for now). A real check # could make a HEAD request and check/store the file's ETag fname = pathlib.Path(path) now = datetime.datetime.now() mtime = datetime.datetime.fromtimestamp(fname.stat().st_mtime) diff = now - mtime return diff.total_seconds() < FILE_CACHE_LIFESPAN_SECONDS if os.path.exists(path) and is_cached_file_valid(): # Another test process already downloaded the file, so don't re-do it with open(path, "r") as f: return json.load(f) try: contents = urlopen(url, timeout=1).read().decode('utf-8') with open(path, "w") as f: f.write(contents) return json.loads(contents) except Exception as e: print(f'Could not download {url} because of error {e}.') return {} slow_tests_dict: Optional[Dict[str, float]] = None def check_slow_test_from_stats(test): global slow_tests_dict if slow_tests_dict is None: if not IS_SANDCASTLE and os.getenv("PYTORCH_RUN_DISABLED_TESTS", "0") != "1": url = "https://raw.githubusercontent.com/pytorch/test-infra/master/stats/slow-tests.json" slow_tests_dict = fetch_and_cache(".pytorch-slow-tests.json", url) else: slow_tests_dict = {} test_suite = str(test.__class__).split('\'')[1] test_name = f'{test._testMethodName} ({test_suite})' if test_name in slow_tests_dict: getattr(test, test._testMethodName).__dict__['slow_test'] = True if not TEST_WITH_SLOW: raise unittest.SkipTest("test is slow; run with PYTORCH_TEST_WITH_SLOW to enable test") disabled_test_from_issues: Optional[Dict[str, Any]] = None def check_disabled(test_name): global disabled_test_from_issues if disabled_test_from_issues is None: _disabled_test_from_issues: Dict = {} def read_and_process(): url = 'https://raw.githubusercontent.com/pytorch/test-infra/master/stats/disabled-tests.json' contents = urlopen(url, timeout=1).read().decode('utf-8') the_response = fetch_and_cache(".pytorch-disabled-tests", url) for item in the_response['items']: title = item['title'] key = 'DISABLED ' if title.startswith(key): test_name = title[len(key):].strip() _disabled_test_from_issues[test_name] = item['html_url'] if not IS_SANDCASTLE and os.getenv("PYTORCH_RUN_DISABLED_TESTS", "0") != "1": try: read_and_process() disabled_test_from_issues = _disabled_test_from_issues except Exception: print("Couldn't download test skip set, leaving all tests enabled...") disabled_test_from_issues = {} if disabled_test_from_issues is not None: if test_name in disabled_test_from_issues: raise unittest.SkipTest( "Test is disabled because an issue exists disabling it: {}".format(disabled_test_from_issues[test_name]) + " To enable set the environment variable PYTORCH_RUN_DISABLED_TESTS=1") # Acquires the comparison dtype, required since isclose # requires both inputs have the same dtype, and isclose is not supported # for some device x dtype combinations. # NOTE: Remaps bfloat16 to float32 since neither the CPU or CUDA device types # support needed bfloat16 comparison methods. # NOTE: Remaps float16 to float32 on CPU since the CPU device type doesn't # support needed float16 comparison methods. # TODO: Update this once bfloat16 and float16 are better supported. def get_comparison_dtype(a, b): # TODO: update this when promote_types supports bfloat16 and/or # isclose supports bfloat16. a_dtype = torch.float32 if a.dtype is torch.bfloat16 else a.dtype b_dtype = torch.float32 if b.dtype is torch.bfloat16 else b.dtype compare_dtype = torch.promote_types(a_dtype, b_dtype) # non-CUDA (CPU, for example) float16 -> float32 # TODO: update this when isclose is implemented for CPU float16 if (compare_dtype is torch.float16 and (a.device != b.device or a.device.type != 'cuda' or b.device.type != 'cuda')): compare_dtype = torch.float32 return compare_dtype # This implements a variant of assertRaises/assertRaisesRegex where we first test # if the exception is NotImplementedError, and if so just skip the test instead # of failing it. # # This is implemented by inheriting from the (private) implementation of # assertRaises from unittest.case, and slightly tweaking it for this new # behavior. The year is 2021: this private class hierarchy hasn't changed since # 2010, seems low risk to inherit from. class AssertRaisesContextIgnoreNotImplementedError(unittest.case._AssertRaisesContext): def __exit__(self, exc_type, exc_value, tb): if exc_type is not None and issubclass(exc_type, NotImplementedError): self.test_case.skipTest(f"not_implemented: {exc_value}") # type: ignore[attr-defined] return super().__exit__(exc_type, exc_value, tb) class TestCase(expecttest.TestCase): # NOTE: "precision" lets classes and generated tests set minimum # atol values when comparing tensors. Used by @precisionOverride, for # example. # TODO: provide a better mechanism for generated tests to set rtol/atol. _precision: float = 0 # checker to early terminate test suite if unrecoverable failure occurs. def _should_stop_test_suite(self): if torch.cuda.is_initialized(): # CUDA device side error will cause subsequence test cases to fail. # stop entire test suite if catches RuntimeError during torch.cuda.synchronize(). try: torch.cuda.synchronize() except RuntimeError as rte: return True return False else: return False @property def precision(self) -> float: return self._precision @precision.setter def precision(self, prec: float) -> None: self._precision = prec _do_cuda_memory_leak_check = False _do_cuda_non_default_stream = False # When True, if a test case raises a NotImplementedError, instead of failing # the test, skip it instead. _ignore_not_implemented_error = False def __init__(self, method_name='runTest'): super().__init__(method_name) test_method = getattr(self, method_name, None) if test_method is not None: # Wraps the tested method if we should do CUDA memory check. if not TEST_SKIP_CUDA_MEM_LEAK_CHECK: self._do_cuda_memory_leak_check &= getattr(test_method, '_do_cuda_memory_leak_check', True) # FIXME: figure out the flaky -1024 anti-leaks on windows. See #8044 if self._do_cuda_memory_leak_check and not IS_WINDOWS: self.wrap_with_cuda_policy(method_name, self.assertLeaksNoCudaTensors) # Wraps the tested method if we should enforce non default CUDA stream. self._do_cuda_non_default_stream &= getattr(test_method, '_do_cuda_non_default_stream', True) if self._do_cuda_non_default_stream and not IS_WINDOWS: self.wrap_with_cuda_policy(method_name, self.enforceNonDefaultStream) if self._ignore_not_implemented_error: self.wrap_with_policy(method_name, lambda: skip_exception_type(NotImplementedError)) def assertLeaksNoCudaTensors(self, name=None): name = self.id() if name is None else name return CudaMemoryLeakCheck(self, name) def enforceNonDefaultStream(self): return CudaNonDefaultStream() def wrap_with_cuda_policy(self, method_name, policy): test_method = getattr(self, method_name) # the import below may initialize CUDA context, so we do it only if # self._do_cuda_memory_leak_check or self._do_cuda_non_default_stream # is True. # TODO: sure looks like we unconditionally initialize the context here # -- ezyang from torch.testing._internal.common_cuda import TEST_CUDA fullname = self.id().lower() # class_name.method_name if TEST_CUDA and ('gpu' in fullname or 'cuda' in fullname): setattr(self, method_name, self.wrap_method_with_policy(test_method, policy)) def wrap_with_policy(self, method_name, policy): test_method = getattr(self, method_name) setattr(self, method_name, self.wrap_method_with_policy(test_method, policy)) # A policy is a zero-argument function that returns a context manager. # We don't take the context manager directly as it may be necessary to # construct it once per test method def wrap_method_with_policy(self, method, policy): # Assumes that `method` is the tested function in `self`. # NOTE: Python Exceptions (e.g., unittest.Skip) keeps objects in scope # alive, so this cannot be done in setUp and tearDown because # tearDown is run unconditionally no matter whether the test # passes or not. For the same reason, we can't wrap the `method` # call in try-finally and always do the check. @wraps(method) def wrapper(self, *args, **kwargs): with policy(): method(*args, **kwargs) return types.MethodType(wrapper, self) def wrap_with_cuda_memory_check(self, method): return self.wrap_method_with_policy(method, self.assertLeaksNoCudaTensors) def run(self, result=None): super().run(result=result) # Early terminate test if necessary. if self._should_stop_test_suite(): result.stop() def setUp(self): check_slow_test_from_stats(self) if TEST_SKIP_FAST: if not getattr(self, self._testMethodName).__dict__.get('slow_test', False): raise unittest.SkipTest("test is fast; we disabled it with PYTORCH_TEST_SKIP_FAST") check_disabled(str(self)) set_rng_seed(SEED) def genSparseCSRTensor(self, size, nnz, *, device, dtype, index_dtype): sparse_dim = 2 assert all(size[d] > 0 for d in range(sparse_dim)) or nnz == 0, 'invalid arguments' assert len(size) == sparse_dim def random_sparse_csr(n_rows, n_cols, nnz): nnz_per_row = nnz // n_rows if nnz_per_row > 0: crow_indices = torch.zeros(n_rows + 1, dtype=index_dtype) crow_indices[1:] = nnz_per_row crow_indices.cumsum_(dim=0) col_indices = torch.randint(0, n_cols, size=[nnz_per_row * n_rows], dtype=index_dtype, device=device) else: crow_indices = torch.zeros(n_rows + 1, dtype=index_dtype) crow_indices[1:nnz + 1] = 1 crow_indices.cumsum_(dim=0) col_indices = torch.randint(0, n_cols, size=[nnz], dtype=index_dtype, device=device) nnz = col_indices.shape[0] values = make_tensor([nnz], device=device, dtype=dtype, low=-1, high=1) return values, crow_indices, col_indices values, crow_indices, col_indices = random_sparse_csr(size[0], size[1], nnz) return torch.sparse_csr_tensor(crow_indices, col_indices, values, size=size, dtype=dtype, device=device) def genSparseTensor(self, size, sparse_dim, nnz, is_uncoalesced, device, dtype): # Assert not given impossible combination, where the sparse dims have # empty numel, but nnz > 0 makes the indices containing values. assert all(size[d] > 0 for d in range(sparse_dim)) or nnz == 0, 'invalid arguments' v_size = [nnz] + list(size[sparse_dim:]) v = make_tensor(v_size, device=device, dtype=dtype, low=-1, high=1) i = torch.rand(sparse_dim, nnz, device=device) i.mul_(torch.tensor(size[:sparse_dim]).unsqueeze(1).to(i)) i = i.to(torch.long) if is_uncoalesced: v = torch.cat([v, torch.randn_like(v)], 0) i = torch.cat([i, i], 1) x = torch.sparse_coo_tensor(i, v, torch.Size(size), dtype=dtype, device=device) if not is_uncoalesced: x = x.coalesce() else: # FIXME: `x` is a sparse view of `v`. Currently rebase_history for # sparse views is not implemented, so this workaround is # needed for inplace operations done on `x`, e.g., copy_(). # Remove after implementing something equivalent to CopySlice # for sparse views. # NOTE: We do clone() after detach() here because we need to be able to change size/storage of x afterwards x = x.detach().clone() return x, x._indices().clone(), x._values().clone() def safeToDense(self, t): return t.coalesce().to_dense() # Compares the given Torch and NumPy functions on the given tensor-like object. # NOTE: both torch_fn and np_fn should be functions that take a single # tensor (array). If the torch and/or NumPy function require additional # arguments then wrap the function in a lambda or pass a partial function. # TODO: add args/kwargs for passing to assertEqual (e.g. rtol, atol) def compare_with_numpy(self, torch_fn, np_fn, tensor_like, device=None, dtype=None, **kwargs): assert TEST_NUMPY if isinstance(tensor_like, torch.Tensor): assert device is None assert dtype is None t_cpu = tensor_like.detach().cpu() if t_cpu.dtype is torch.bfloat16: t_cpu = t_cpu.float() a = t_cpu.numpy() t = tensor_like else: d = copy.copy(torch_to_numpy_dtype_dict) d[torch.bfloat16] = np.float32 a = np.array(tensor_like, dtype=d[dtype]) t = torch.tensor(tensor_like, device=device, dtype=dtype) np_result = np_fn(a) torch_result = torch_fn(t).cpu() # Converts arrays to tensors if isinstance(np_result, np.ndarray): try: np_result = torch.from_numpy(np_result) except Exception: # NOTE: copying an array before conversion is necessary when, # for example, the array has negative strides. np_result = torch.from_numpy(np_result.copy()) if t.dtype is torch.bfloat16 and torch_result.dtype is torch.bfloat16 and np_result.dtype is torch.float: torch_result = torch_result.to(torch.float) self.assertEqual(np_result, torch_result, **kwargs) # Some analysis of tolerance by logging tests from test_torch.py can be found # in https://github.com/pytorch/pytorch/pull/32538. # dtype name : (rtol, atol) dtype_precisions = { torch.float16 : (0.001, 1e-5), torch.bfloat16 : (0.016, 1e-5), torch.float32 : (1.3e-6, 1e-5), torch.float64 : (1e-7, 1e-7), torch.complex32 : (0.001, 1e-5), torch.complex64 : (1.3e-6, 1e-5), torch.complex128 : (1e-7, 1e-7), } # Returns the "default" rtol and atol for comparing scalars or # tensors of the given dtypes. def _getDefaultRtolAndAtol(self, dtype0, dtype1): rtol = max(self.dtype_precisions.get(dtype0, (0, 0))[0], self.dtype_precisions.get(dtype1, (0, 0))[0]) atol = max(self.dtype_precisions.get(dtype0, (0, 0))[1], self.dtype_precisions.get(dtype1, (0, 0))[1]) return rtol, atol # Checks if two dense tensors are equal(-ish), returning (True, None) # when they are and (False, debug_msg) when they are not. # If exact_dtype is true both tensors must have the same dtype. # If exact_device is true both tensors must be on the same device. # See the "Test Framework Tensor 'Equality'" note for more details. # NOTE: tensors on different devices are moved to the CPU to be compared when # exact_device is False. # NOTE: this function checks the tensors' devices, sizes, and dtypes # and acquires the appropriate device, dtype, rtol and atol to compare # them with. It then calls _compare_tensors_internal. def _compareTensors(self, a, b, *, rtol: Optional[float] = None, atol=None, equal_nan=True, exact_dtype=True, exact_device=False) -> _compare_return_type: assert (atol is None) == (rtol is None) if not isinstance(a, torch.Tensor): return (False, "argument a, {0}, to _compareTensors is not a tensor!".format(a)) if not isinstance(b, torch.Tensor): return (False, "argument b, {0}, to _compareTensors is not a tensor!".format(b)) # Validates tensors are on the same device if exact_device and a.device != b.device: return (False, ("Attempted to compare equality of tensors on " "different devices! Got devices {0} and " "{1}.".format(a.device, b.device))) # Compares tensors of different devices on the CPU if a.device != b.device: a = a.cpu() b = b.cpu() # Checks size matches if a.size() != b.size(): return (False, ("Attempted to compare equality of tensors with " "different sizes. Got sizes {0} and {1}.").format(a.size(), b.size())) # Checks dtype (if exact_dtype) if exact_dtype and a.dtype is not b.dtype: return (False, ("Attempted to compare equality of tensors with " "different dtypes. Got dtypes {0} and {1}.").format(a.dtype, b.dtype)) # Acquires rtol and atol if rtol is None: rtol, atol = self._getDefaultRtolAndAtol(a.dtype, b.dtype) atol = max(atol, self.precision) # Converts to comparison dtype dtype = get_comparison_dtype(a, b) a = a.to(dtype) b = b.to(dtype) return _compare_tensors_internal(a, b, rtol=rtol, atol=atol, equal_nan=equal_nan) # Checks if two scalars are equal(-ish), returning (True, None) # when they are and (False, debug_msg) when they are not. # NOTE: this function just acquires rtol and atol # before calling _compare_scalars_internal. def _compareScalars(self, a, b, *, rtol: Optional[float] = None, atol: Optional[float] = None, equal_nan=True) -> _compare_return_type: # Acquires rtol and atol assert (atol is None) == (rtol is None) if rtol is None: if isinstance(a, complex) or isinstance(b, complex): rtol, atol = self._getDefaultRtolAndAtol(torch.complex64, torch.complex64) elif isinstance(a, float) or isinstance(b, float): rtol, atol = self._getDefaultRtolAndAtol(torch.float32, torch.float32) else: rtol, atol = 0, 0 rtol = cast(float, rtol) atol = cast(float, atol) assert atol is not None atol = max(atol, self.precision) return _compare_scalars_internal(a, b, rtol=rtol, atol=atol, equal_nan=equal_nan) # Construct assert messages basd on internal debug message and user provided message. def _get_assert_msg(self, msg, debug_msg=None): if msg is None: return debug_msg else: return f"\n{msg}" if debug_msg is None else f"{debug_msg}\n{msg}" def assertEqualIgnoreType(self, *args, **kwargs) -> None: # If you are seeing this function used, that means test is written wrongly # and deserves detailed investigation return self.assertEqual(*args, exact_dtype=False, **kwargs) def _is_dict(self, obj): return isinstance(obj, (dict, torch._C.ScriptDict)) # type: ignore[attr-defined] # Compares x and y # TODO: default exact_device to True def assertEqual(self, x, y, msg: Optional[str] = None, *, atol: Optional[float] = None, rtol: Optional[float] = None, equal_nan=True, exact_dtype=True, exact_device=False) -> None: assert (atol is None) == (rtol is None), "If one of atol or rtol is specified, then the other must be too" debug_msg: Optional[str] = None # Tensor x Number and Number x Tensor comparisons if isinstance(x, torch.Tensor) and isinstance(y, Number): self.assertEqual(x.item(), y, atol=atol, rtol=rtol, msg=msg, exact_dtype=exact_dtype, exact_device=exact_device) elif isinstance(y, torch.Tensor) and isinstance(x, Number): self.assertEqual(x, y.item(), atol=atol, rtol=rtol, msg=msg, exact_dtype=exact_dtype, exact_device=exact_device) # Tensor x np.bool elif isinstance(x, torch.Tensor) and isinstance(y, np.bool_): self.assertEqual(x.item(), y, atol=atol, rtol=rtol, msg=msg, exact_dtype=exact_dtype, exact_device=exact_device) elif isinstance(y, torch.Tensor) and isinstance(x, np.bool_): self.assertEqual(x, y.item(), atol=atol, rtol=rtol, msg=msg, exact_dtype=exact_dtype, exact_device=exact_device) # Tensor x Tensor elif isinstance(x, torch.Tensor) and isinstance(y, torch.Tensor): debug_msg = ("Attempted to compare with different is_sparse settings: " f"Expected: {x.is_sparse}; Actual: {y.is_sparse}.") super().assertEqual(x.is_sparse, y.is_sparse, msg=self._get_assert_msg(msg=msg, debug_msg=debug_msg)) debug_msg = ("Attempted to compare with different is_quantized settings: " f"Expected: {x.is_quantized}; Actual: {y.is_quantized}.") super().assertEqual(x.is_quantized, y.is_quantized, msg=self._get_assert_msg(msg=msg, debug_msg=debug_msg)) if x.is_sparse: if x.size() != y.size(): debug_msg_sparse = ("Attempted to compare equality of tensors with different sizes: " f"Expected: {x.size()}; Actual: {y.size()}.") super().assertTrue(False, msg=self._get_assert_msg(msg=msg, debug_msg=debug_msg_sparse)) x = x.coalesce() y = y.coalesce() indices_result, debug_msg_indices = self._compareTensors(x._indices(), y._indices(), rtol=rtol, atol=atol, equal_nan=equal_nan, exact_dtype=exact_dtype, exact_device=exact_device) if not indices_result: assert debug_msg_indices is not None debug_msg = "Sparse tensor indices failed to compare as equal! " + debug_msg_indices super().assertTrue(indices_result, msg=self._get_assert_msg(msg, debug_msg=debug_msg)) values_result, debug_msg_values = self._compareTensors(x._values(), y._values(), rtol=rtol, atol=atol, equal_nan=equal_nan, exact_dtype=exact_dtype, exact_device=exact_device) if not values_result: assert debug_msg_values is not None debug_msg = "Sparse tensor values failed to compare as equal! " + debug_msg_values super().assertTrue(values_result, msg=self._get_assert_msg(msg, debug_msg=debug_msg)) elif x.is_quantized and y.is_quantized: self.assertEqual(x.qscheme(), y.qscheme(), atol=atol, rtol=rtol, msg=msg, exact_dtype=exact_dtype, exact_device=exact_device) if x.qscheme() == torch.per_tensor_affine: self.assertEqual(x.q_scale(), y.q_scale(), atol=atol, rtol=rtol, msg=msg, exact_dtype=exact_dtype, exact_device=exact_device) self.assertEqual(x.q_zero_point(), y.q_zero_point(), atol=atol, rtol=rtol, msg=msg, exact_dtype=exact_dtype, exact_device=exact_device) elif x.qscheme() == torch.per_channel_affine: self.assertEqual(x.q_per_channel_scales(), y.q_per_channel_scales(), atol=atol, rtol=rtol, msg=msg, exact_dtype=exact_dtype, exact_device=exact_device) self.assertEqual(x.q_per_channel_zero_points(), y.q_per_channel_zero_points(), atol=atol, rtol=rtol, msg=msg, exact_dtype=exact_dtype, exact_device=exact_device) self.assertEqual(x.q_per_channel_axis(), y.q_per_channel_axis(), atol=atol, rtol=rtol, msg=msg, exact_dtype=exact_dtype, exact_device=exact_device) result, debug_msg_compare = self._compareTensors(x.int_repr().to(torch.int32), y.int_repr().to(torch.int32), atol=atol, rtol=rtol, exact_dtype=exact_dtype, exact_device=exact_device) if not result: assert debug_msg_compare is not None debug_msg = "Quantized representations failed to compare as equal! " + debug_msg_compare super().assertTrue(result, msg=self._get_assert_msg(msg, debug_msg=debug_msg)) else: result, debug_msg_generic = self._compareTensors(x, y, rtol=rtol, atol=atol, equal_nan=equal_nan, exact_dtype=exact_dtype, exact_device=exact_device) if not result: assert debug_msg_generic is not None debug_msg = "Tensors failed to compare as equal!" + debug_msg_generic super().assertTrue(result, msg=self._get_assert_msg(msg, debug_msg=debug_msg)) elif isinstance(x, string_classes) and isinstance(y, string_classes): debug_msg = ("Attempted to compare [string] types: " f"Expected: {repr(x)}; Actual: {repr(y)}.") super().assertEqual(x, y, msg=self._get_assert_msg(msg, debug_msg=debug_msg)) elif type(x) == set and type(y) == set: debug_msg = ("Attempted to compare [set] types: " f"Expected: {x}; Actual: {y}.") super().assertEqual(x, y, msg=self._get_assert_msg(msg, debug_msg=debug_msg)) elif self._is_dict(x) and self._is_dict(y): if isinstance(x, OrderedDict) and isinstance(y, OrderedDict): self.assertEqual(x.items(), y.items(), atol=atol, rtol=rtol, msg=msg, exact_dtype=exact_dtype, exact_device=exact_device) else: self.assertEqual(set(x.keys()), set(y.keys()), atol=atol, rtol=rtol, msg=msg, exact_dtype=exact_dtype, exact_device=exact_device) key_list = list(x.keys()) self.assertEqual([x[k] for k in key_list], [y[k] for k in key_list], atol=atol, rtol=rtol, msg=msg, exact_dtype=exact_dtype, exact_device=exact_device) elif isinstance(x, type) and isinstance(y, type): # See TestTorch.test_assert_equal_generic_meta debug_msg = ("Attempted to compare [type] types: " f"Expected: {x}; Actual: {y}.") super().assertEqual(x, y, msg=self._get_assert_msg(msg, debug_msg=debug_msg)) elif is_iterable(x) and is_iterable(y): debug_msg = ("Attempted to compare the lengths of [iterable] types: " f"Expected: {len(x)}; Actual: {len(y)}.") super().assertEqual(len(x), len(y), msg=self._get_assert_msg(msg, debug_msg=debug_msg)) for x_, y_ in zip(x, y): self.assertEqual(x_, y_, atol=atol, rtol=rtol, msg=msg, exact_dtype=exact_dtype, exact_device=exact_device) elif isinstance(x, bool) and isinstance(y, bool): super().assertTrue(x == y, msg=msg) # Scalar x Scalar elif isinstance(x, Number) and isinstance(y, Number): result, debug_msg_scalars = self._compareScalars(x, y, rtol=rtol, atol=atol, equal_nan=equal_nan) if not result: assert debug_msg_scalars is not None debug_msg = "Scalars failed to compare as equal! " + debug_msg_scalars super().assertTrue(result, msg=self._get_assert_msg(msg, debug_msg=debug_msg)) # Tensor x Numpy array elif isinstance(x, torch.Tensor) and isinstance(y, np.ndarray): self.assertEqual(x, torch.from_numpy(y), atol=atol, rtol=rtol, msg=msg, exact_dtype=exact_dtype, exact_device=exact_device) # Numpy array x Tensor elif isinstance(x, np.ndarray) and isinstance(y, torch.Tensor): self.assertEqual(torch.from_numpy(x), y, atol=atol, rtol=rtol, msg=msg, exact_dtype=exact_dtype, exact_device=exact_device) # Numpy array x Numpy array elif isinstance(x, np.ndarray) and isinstance(y, np.ndarray): self.assertEqual(torch.from_numpy(x), torch.from_numpy(y), atol=atol, rtol=rtol, msg=msg, exact_dtype=exact_dtype, exact_device=exact_device) else: super().assertEqual(x, y, msg=msg) def assertNotEqual(self, x, y, msg: Optional[str] = None, *, # type: ignore[override] atol: Optional[float] = None, rtol: Optional[float] = None, **kwargs) -> None: with self.assertRaises(AssertionError, msg=msg): self.assertEqual(x, y, msg, atol=atol, rtol=rtol, **kwargs) def assertEqualTypeString(self, x, y) -> None: # This API is used simulate deprecated x.type() == y.type() self.assertEqual(x.device, y.device) self.assertEqual(x.dtype, y.dtype) self.assertEqual(x.is_sparse, y.is_sparse) def assertObjectIn(self, obj: Any, iterable: Iterable[Any]) -> None: for elem in iterable: if id(obj) == id(elem): return raise AssertionError("object not found in iterable") # Reimplemented to provide special behavior when # _ignore_not_implemented_error is True def assertRaises(self, expected_exception, *args, **kwargs): if self._ignore_not_implemented_error: context: Optional[AssertRaisesContextIgnoreNotImplementedError] = \ AssertRaisesContextIgnoreNotImplementedError(expected_exception, self) # type: ignore[call-arg] try: return context.handle('assertRaises', args, kwargs) # type: ignore[union-attr] finally: # see https://bugs.python.org/issue23890 context = None else: return super().assertRaises(expected_exception, *args, **kwargs) # Reimplemented to provide special behavior when # _ignore_not_implemented_error is True def assertRaisesRegex(self, expected_exception, expected_regex, *args, **kwargs): if self._ignore_not_implemented_error: context = AssertRaisesContextIgnoreNotImplementedError( # type: ignore[call-arg] expected_exception, self, expected_regex) return context.handle('assertRaisesRegex', args, kwargs) # type: ignore[attr-defined] else: return super().assertRaisesRegex(expected_exception, expected_regex, *args, **kwargs) # TODO: Support context manager interface # NB: The kwargs forwarding to callable robs the 'subname' parameter. # If you need it, manually apply your callable in a lambda instead. def assertExpectedRaises(self, exc_type, callable, *args, **kwargs): subname = None if 'subname' in kwargs: subname = kwargs['subname'] del kwargs['subname'] try: callable(*args, **kwargs) except exc_type as e: self.assertExpected(str(e), subname) return # Don't put this in the try block; the AssertionError will catch it self.fail(msg="Did not raise when expected to") def assertNotWarn(self, callable, msg=''): r""" Test if :attr:`callable` does not raise a warning. """ with warnings.catch_warnings(record=True) as ws: warnings.simplefilter("always") # allow any warning to be raised callable() self.assertTrue(len(ws) == 0, msg) @contextmanager def assertWarnsOnceRegex(self, category, regex=''): """Context manager for code that *must always* warn This filters expected warnings from the test and fails if the expected warning is not caught. It uses set_warn_always() to force TORCH_WARN_ONCE to behave like TORCH_WARN """ pattern = re.compile(regex) with warnings.catch_warnings(record=True) as ws: warnings.simplefilter("always") # allow any warning to be raised prev = torch.is_warn_always_enabled() torch.set_warn_always(True) try: yield finally: torch.set_warn_always(prev) if len(ws) == 0: self.fail('no warning caught') self.assertTrue(any([type(w.message) is category for w in ws])) self.assertTrue( any([re.match(pattern, str(w.message)) for w in ws]), f'{pattern}, {[w.message for w in ws if type(w.message) is category]}') def assertExpected(self, s, subname=None): r""" Test that a string matches the recorded contents of a file derived from the name of this test and subname. This file is placed in the 'expect' directory in the same directory as the test script. You can automatically update the recorded test output using --accept. If you call this multiple times in a single function, you must give a unique subname each time. """ if not isinstance(s, str): raise TypeError("assertExpected is strings only") def remove_prefix(text, prefix): if text.startswith(prefix): return text[len(prefix):] return text # NB: we take __file__ from the module that defined the test # class, so we place the expect directory where the test script # lives, NOT where test/common_utils.py lives. This doesn't matter in # PyTorch where all test scripts are in the same directory as # test/common_utils.py, but it matters in onnx-pytorch module_id = self.__class__.__module__ munged_id = remove_prefix(self.id(), module_id + ".") test_file = os.path.realpath(sys.modules[module_id].__file__) expected_file = os.path.join(os.path.dirname(test_file), "expect", munged_id) subname_output = "" if subname: expected_file += "-" + subname subname_output = " ({})".format(subname) expected_file += ".expect" expected = None def accept_output(update_type): print("Accepting {} for {}{}:\n\n{}".format(update_type, munged_id, subname_output, s)) with open(expected_file, 'w') as f: # Adjust for producer_version, leave s unmodified s_tag = re.sub(r'(producer_version): "[0-9.]*"', r'\1producer_version: "CURRENT_VERSION"', s) f.write(s_tag) try: with open(expected_file) as f: expected = f.read() except IOError as e: if e.errno != errno.ENOENT: raise elif expecttest.ACCEPT: return accept_output("output") else: raise RuntimeError( ("I got this output for {}{}:\n\n{}\n\n" "No expect file exists; to accept the current output, run:\n" "python {} {} --accept").format(munged_id, subname_output, s, __main__.__file__, munged_id)) from None # a hack for JIT tests if IS_WINDOWS: expected = re.sub(r'CppOp\[(.+?)\]', 'CppOp[]', expected) s = re.sub(r'CppOp\[(.+?)\]', 'CppOp[]', s) # Adjust for producer_version expected = expected.replace( 'producer_version: "CURRENT_VERSION"', 'producer_version: "{}"'.format(torch.onnx.producer_version) ) if expecttest.ACCEPT: if expected != s: return accept_output("updated output") else: if hasattr(self, "assertMultiLineEqual"): # Python 2.7 only # NB: Python considers lhs "old" and rhs "new". self.assertMultiLineEqual(expected, s) else: self.assertEqual(s, expected) def assertExpectedStripMangled(self, s, subname=None): s = re.sub(r'__torch__[^ ]+', '', s) self.assertExpected(s, subname) def assertGreaterAlmostEqual(self, first, second, places=None, msg=None, delta=None): """Assert that ``first`` is greater than or almost equal to ``second``. The equality of ``first`` and ``second`` is determined in a similar way to the ``assertAlmostEqual`` function of the standard library. """ if delta is not None and places is not None: raise TypeError("specify delta or places not both") if first >= second: return diff = second - first if delta is not None: if diff <= delta: return standardMsg = f"{first} not greater than or equal to {second} within {delta} delta" else: if places is None: places = 7 if round(diff, places) == 0: return standardMsg = f"{first} not greater than or equal to {second} within {places} places" msg = self._formatMessage(msg, standardMsg) raise self.failureException(msg) # run code in subprocess and capture exceptions. @staticmethod def run_process_no_exception(code, env=None): import subprocess popen = subprocess.Popen( [sys.executable, '-c', code], stdout=subprocess.PIPE, stderr=subprocess.PIPE, env=env) (stdout, stderr) = popen.communicate() return (stdout, stderr) # returns captured stderr @staticmethod def runWithPytorchAPIUsageStderr(code): env = os.environ.copy() env["PYTORCH_API_USAGE_STDERR"] = "1" # remove IN_CI flag since this is a wrapped test process. # IN_CI flag should be set in the parent process only. if "IN_CI" in env.keys(): del env["IN_CI"] (stdout, stderr) = TestCase.run_process_no_exception(code, env=env) return stderr.decode('ascii') def download_file(url, binary=True): from urllib.parse import urlsplit from urllib import request, error filename = os.path.basename(urlsplit(url)[2]) data_dir = get_writable_path(os.path.join(os.path.dirname(__file__), 'data')) path = os.path.join(data_dir, filename) if os.path.exists(path): return path try: data = request.urlopen(url, timeout=15).read() with open(path, 'wb' if binary else 'w') as f: f.write(data) return path except error.URLError as e: msg = "could not download test file '{}'".format(url) warnings.warn(msg, RuntimeWarning) raise unittest.SkipTest(msg) from e def find_free_port(): with closing(socket.socket(socket.AF_INET, socket.SOCK_STREAM)) as sock: sock.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1) sock.bind(('localhost', 0)) _, port = sock.getsockname() return port # Errors that we can get in c10d initialization for which we should retry tests for. ADDRESS_IN_USE = "Address already in use" CONNECT_TIMEOUT = "connect() timed out." def retry_on_connect_failures(func=None, connect_errors=(ADDRESS_IN_USE)): """Reruns a test if the test returns a RuntimeError and the exception matches exactly with one of the strings in connect_errors.""" # This if block is executed when using this function as a decorator with arguments. if func is None: return partial(retry_on_connect_failures, connect_errors=connect_errors) @wraps(func) def wrapper(*args, **kwargs): tries_remaining = 10 while True: try: return func(*args, **kwargs) except RuntimeError as error: if str(error) in connect_errors: tries_remaining -= 1 if tries_remaining == 0: raise time.sleep(random.random()) continue raise return wrapper # Decorator to retry upon certain Exceptions. def retry(ExceptionToCheck, tries=3, delay=3, skip_after_retries=False): def deco_retry(f): @wraps(f) def f_retry(*args, **kwargs): mtries, mdelay = tries, delay while mtries > 1: try: return f(*args, **kwargs) except ExceptionToCheck as e: msg = "%s, Retrying in %d seconds..." % (str(e), mdelay) print(msg) time.sleep(mdelay) mtries -= 1 try: return f(*args, **kwargs) except ExceptionToCheck as e: raise unittest.SkipTest(f"Skipping after {tries} consecutive {str(e)}") from e if skip_after_retries else e return f_retry # true decorator return deco_retry # Methods for matrix and tensor generation def make_tensor(size, device: torch.device, dtype: torch.dtype, *, low=None, high=None, requires_grad: bool = False, noncontiguous: bool = False, exclude_zero: bool = False) -> torch.Tensor: """ Creates a random tensor with the given size, device and dtype. By default, the tensor's values are in the range [-9, 9] for most dtypes. If low and/or high are specified then the values will be in the range [max(-9, low), min(9, high)]. For unsigned types the values are in the range[0, 9] and for complex types the real and imaginary parts are each in the range [-9, 9]. If noncontiguous=True, a noncontiguous tensor with the given size will be returned unless the size specifies a tensor with a 1 or 0 elements in which case the noncontiguous parameter is ignored because it is not possible to create a noncontiguous Tensor with a single element. If exclude_zero is passed with True (default is False), all the matching values (with zero) in created tensor are replaced with an epsilon value if floating type, [`eps + `eps`.j] if complex type and 1 if integer/boolean type. """ assert low is None or low < 9, "low value too high!" assert high is None or high > -9, "high value too low!" if dtype is torch.bool: result = torch.randint(0, 2, size, device=device, dtype=dtype) elif dtype is torch.uint8: low = math.floor(0 if low is None else max(low, 0)) high = math.ceil(10 if high is None else min(high, 10)) result = torch.randint(low, high, size, device=device, dtype=dtype) elif dtype in integral_types(): low = math.floor(-9 if low is None else max(low, -9)) high = math.ceil(10 if high is None else min(high, 10)) result = torch.randint(low, high, size, device=device, dtype=dtype) elif dtype in floating_types_and(torch.half, torch.bfloat16): low = -9 if low is None else max(low, -9) high = 9 if high is None else min(high, 10) span = high - low # Windows doesn't support torch.rand(bfloat16) on CUDA if IS_WINDOWS and torch.device(device).type == 'cuda' and dtype is torch.bfloat16: result = (torch.rand(size, device=device, dtype=torch.float32) * span + low).to(torch.bfloat16) else: result = torch.rand(size, device=device, dtype=dtype) * span + low else: assert dtype in complex_types() low = -9 if low is None else max(low, -9) high = 9 if high is None else min(high, 10) span = high - low float_dtype = torch.float if dtype is torch.cfloat else torch.double real = torch.rand(size, device=device, dtype=float_dtype) * span + low imag = torch.rand(size, device=device, dtype=float_dtype) * span + low result = torch.complex(real, imag) if noncontiguous and result.numel() > 1: result = torch.repeat_interleave(result, 2, dim=-1) result = result[..., ::2] if exclude_zero: if dtype in integral_types() or dtype is torch.bool: replace_with = torch.tensor(1, device=device, dtype=dtype) elif dtype in floating_types_and(torch.half, torch.bfloat16): replace_with = torch.tensor(torch.finfo(dtype).eps, device=device, dtype=dtype) else: assert dtype in complex_types() float_dtype = torch.float if dtype is torch.cfloat else torch.double float_eps = torch.tensor(torch.finfo(float_dtype).eps, device=device, dtype=float_dtype) replace_with = torch.complex(float_eps, float_eps) result[result == 0] = replace_with if dtype in floating_types_and(torch.half, torch.bfloat16) or\ dtype in complex_types(): result.requires_grad = requires_grad return result def random_square_matrix_of_rank(l, rank, dtype=torch.double, device='cpu'): assert rank <= l A = torch.randn(l, l, dtype=dtype, device=device) u, s, vh = torch.linalg.svd(A, full_matrices=False) for i in range(l): if i >= rank: s[i] = 0 elif s[i] == 0: s[i] = 1 return (u * s.to(dtype).unsqueeze(-2)) @ vh def random_well_conditioned_matrix(*shape, dtype, device, mean=1.0, sigma=0.001): """ Returns a random rectangular matrix (batch of matrices) with singular values sampled from a Gaussian with mean `mean` and standard deviation `sigma`. The smaller the `sigma`, the better conditioned the output matrix is. """ primitive_dtype = { torch.float: torch.float, torch.double: torch.double, torch.cfloat: torch.float, torch.cdouble: torch.double } x = torch.rand(shape, dtype=dtype, device=device) m = x.size(-2) n = x.size(-1) u, _, vh = torch.linalg.svd(x, full_matrices=False) s = (torch.randn(*(shape[:-2] + (min(m, n),)), dtype=primitive_dtype[dtype], device=device) * sigma + mean) \ .sort(-1, descending=True).values.to(dtype) return (u * s.unsqueeze(-2)) @ vh # TODO: remove this (prefer make_symmetric_matrices below) def random_symmetric_matrix(l, *batches, **kwargs): dtype = kwargs.get('dtype', torch.double) device = kwargs.get('device', 'cpu') A = torch.randn(*(batches + (l, l)), dtype=dtype, device=device) A = (A + A.transpose(-2, -1)).div_(2) return A # Creates a symmetric matrix or batch of symmetric matrices # Shape must be a square matrix or batch of square matrices def make_symmetric_matrices(*shape, device, dtype): assert shape[-1] == shape[-2] t = make_tensor(shape, device=device, dtype=dtype) t = t + t.transpose(-2, -1).div_(2) return t def random_hermitian_matrix(l, *batches, **kwargs): dtype = kwargs.get('dtype', torch.double) device = kwargs.get('device', 'cpu') A = torch.randn(*(batches + (l, l)), dtype=dtype, device=device) A = (A + A.transpose(-2, -1).conj()).div_(2) return A def random_symmetric_psd_matrix(l, *batches, **kwargs): dtype = kwargs.get('dtype', torch.double) device = kwargs.get('device', 'cpu') A = torch.randn(*(batches + (l, l)), dtype=dtype, device=device) return torch.matmul(A, A.transpose(-2, -1)) def random_hermitian_psd_matrix(matrix_size, *batch_dims, dtype=torch.double, device='cpu'): """ Returns a batch of random Hermitian semi-positive-definite matrices. The shape of the result is batch_dims + (matrix_size, matrix_size) The following example creates a tensor of size 2 x 4 x 3 x 3 >>> matrices = random_hermitian_psd_matrix(3, 2, 4, dtype=dtype, device=device) """ A = torch.randn(*(batch_dims + (matrix_size, matrix_size)), dtype=dtype, device=device) return torch.matmul(A, A.conj().transpose(-2, -1)) # TODO: remove this (prefer make_symmetric_pd_matrices below) def random_symmetric_pd_matrix(matrix_size, *batch_dims, **kwargs): dtype = kwargs.get('dtype', torch.double) device = kwargs.get('device', 'cpu') A = torch.randn(*(batch_dims + (matrix_size, matrix_size)), dtype=dtype, device=device) return torch.matmul(A, A.transpose(-2, -1)) \ + torch.eye(matrix_size, dtype=dtype, device=device) * 1e-5 # Creates a symmetric positive-definite matrix or batch of # such matrices def make_symmetric_pd_matrices(*shape, device, dtype): assert shape[-1] == shape[-2] t = make_tensor(shape, device=device, dtype=dtype) t = torch.matmul(t, t.transpose(-2, -1)) i = torch.eye(shape[-1], device=device, dtype=dtype) * 1e-5 return t + i def random_hermitian_pd_matrix(matrix_size, *batch_dims, dtype, device): """ Returns a batch of random Hermitian positive-definite matrices. The shape of the result is batch_dims + (matrix_size, matrix_size) The following example creates a tensor of size 2 x 4 x 3 x 3 >>> matrices = random_hermitian_pd_matrix(3, 2, 4, dtype=dtype, device=device) """ A = torch.randn(*(batch_dims + (matrix_size, matrix_size)), dtype=dtype, device=device) return torch.matmul(A, A.transpose(-2, -1).conj()) \ + torch.eye(matrix_size, dtype=dtype, device=device) # TODO: remove this (prefer make_fullrank_matrices_with_distinct_singular_values below) def random_fullrank_matrix_distinct_singular_value(matrix_size, *batch_dims, **kwargs): dtype = kwargs.get('dtype', torch.double) device = kwargs.get('device', 'cpu') silent = kwargs.get("silent", False) if silent and not torch._C.has_lapack: return torch.ones(matrix_size, matrix_size, dtype=dtype, device=device) A = torch.randn(batch_dims + (matrix_size, matrix_size), dtype=dtype, device=device) u, _, vh = torch.linalg.svd(A, full_matrices=False) real_dtype = A.real.dtype if A.dtype.is_complex else A.dtype s = torch.arange(1., matrix_size + 1, dtype=real_dtype, device=device).mul_(1.0 / (matrix_size + 1)) return (u * s.to(A.dtype)) @ vh # Creates a full rank matrix with distinct signular values or # a batch of such matrices # Shape must be a square matrix or batch of square matrices def make_fullrank_matrices_with_distinct_singular_values(*shape, device, dtype): assert shape[-1] == shape[-2] t = make_tensor(shape, device=device, dtype=dtype) u, _, vh = torch.linalg.svd(t, full_matrices=False) # TODO: improve the handling of complex tensors here real_dtype = t.real.dtype if t.dtype.is_complex else t.dtype s = torch.arange(1., shape[-1] + 1, dtype=real_dtype, device=device).mul_(1.0 / (shape[-1] + 1)) return (u * s.to(dtype)) @ vh def random_matrix(rows, columns, *batch_dims, **kwargs): """Return rectangular matrix or batches of rectangular matrices. Parameters: dtype - the data type device - the device kind singular - when True, the output will be singular """ dtype = kwargs.get('dtype', torch.double) device = kwargs.get('device', 'cpu') silent = kwargs.get("silent", False) singular = kwargs.get("singular", False) if silent and not torch._C.has_lapack: return torch.ones(rows, columns, dtype=dtype, device=device) A = torch.randn(batch_dims + (rows, columns), dtype=dtype, device=device) u, _, vh = torch.linalg.svd(A, full_matrices=False) k = min(rows, columns) s = torch.linspace(1 / (k + 1), 1, k, dtype=dtype, device=device) if singular: # make matrix singular s[k - 1] = 0 if k > 2: # increase the order of singularity so that the pivoting # in LU factorization will be non-trivial s[0] = 0 return (u * s.unsqueeze(-2)) @ vh def random_lowrank_matrix(rank, rows, columns, *batch_dims, **kwargs): """Return rectangular matrix or batches of rectangular matrices with given rank. """ B = random_matrix(rows, rank, *batch_dims, **kwargs) C = random_matrix(rank, columns, *batch_dims, **kwargs) return B.matmul(C) def random_sparse_matrix(rows, columns, density=0.01, **kwargs): """Return rectangular random sparse matrix within given density. The density of the result approaches to given density as the size of the matrix is increased and a relatively small value of density is specified but higher than min(rows, columns)/(rows * columns) for non-singular matrices. """ dtype = kwargs.get('dtype', torch.double) device = kwargs.get('device', 'cpu') singular = kwargs.get("singular", False) k = min(rows, columns) nonzero_elements = max(min(rows, columns), int(rows * columns * density)) row_indices = [i % rows for i in range(nonzero_elements)] column_indices = [i % columns for i in range(nonzero_elements)] random.shuffle(column_indices) indices = [row_indices, column_indices] values = torch.randn(nonzero_elements, dtype=dtype, device=device) # ensure that the diagonal dominates values *= torch.tensor([-float(i - j)**2 for i, j in zip(*indices)], dtype=dtype, device=device).exp() indices_tensor = torch.tensor(indices) A = torch.sparse_coo_tensor(indices_tensor, values, (rows, columns), device=device) return A.coalesce() def random_sparse_pd_matrix(matrix_size, density=0.01, **kwargs): """Return random sparse positive-definite matrix with given density. The eigenvalues of the matrix are defined as:: arange(1, matrix_size+1)/matrix_size Algorithm: A = diag(arange(1, matrix_size+1)/matrix_size) while : R = A = R^T A R """ import math torch = kwargs.get('torch', globals()['torch']) dtype = kwargs.get('dtype', torch.double) device = kwargs.get('device', 'cpu') data = dict([((i, i), float(i + 1) / matrix_size) for i in range(matrix_size)]) def multiply(data, N, i, j, cs, sn, left=True): for k in range(N): if left: ik, jk = (k, i), (k, j) else: ik, jk = (i, k), (j, k) aik, ajk = data.get(ik, 0), data.get(jk, 0) aik, ajk = cs * aik + sn * ajk, -sn * aik + cs * ajk if aik: data[ik] = aik else: data.pop(ik, None) if ajk: data[jk] = ajk else: data.pop(jk, None) target_nnz = density * matrix_size * matrix_size while len(data) < target_nnz: i = random.randint(0, matrix_size - 1) j = random.randint(0, matrix_size - 1) if i != j: theta = random.uniform(0, 2 * math.pi) cs = math.cos(theta) sn = math.sin(theta) multiply(data, matrix_size, i, j, cs, sn, left=True) multiply(data, matrix_size, i, j, cs, sn, left=False) icoords, jcoords, values = [], [], [] for (i, j), v in sorted(data.items()): icoords.append(i) jcoords.append(j) values.append(v) indices_tensor = torch.tensor([icoords, jcoords]) return torch.sparse_coo_tensor(indices_tensor, values, (matrix_size, matrix_size), dtype=dtype, device=device) def do_test_dtypes(self, dtypes, layout, device): for dtype in dtypes: if dtype != torch.float16: out = torch.zeros((2, 3), dtype=dtype, layout=layout, device=device) self.assertIs(dtype, out.dtype) self.assertIs(layout, out.layout) self.assertEqual(device, out.device) def do_test_empty_full(self, dtypes, layout, device): shape = torch.Size([2, 3]) def check_value(tensor, dtype, layout, device, value, requires_grad): self.assertEqual(shape, tensor.shape) self.assertIs(dtype, tensor.dtype) self.assertIs(layout, tensor.layout) self.assertEqual(tensor.requires_grad, requires_grad) if tensor.is_cuda and device is not None: self.assertEqual(device, tensor.device) if value is not None: fill = tensor.new(shape).fill_(value) self.assertEqual(tensor, fill) def get_int64_dtype(dtype): module = '.'.join(str(dtype).split('.')[1:-1]) if not module: return torch.int64 return operator.attrgetter(module)(torch).int64 default_dtype = torch.get_default_dtype() check_value(torch.empty(shape), default_dtype, torch.strided, -1, None, False) check_value(torch.full(shape, -5.), default_dtype, torch.strided, -1, None, False) for dtype in dtypes: for rg in {dtype.is_floating_point, False}: int64_dtype = get_int64_dtype(dtype) v = torch.empty(shape, dtype=dtype, device=device, layout=layout, requires_grad=rg) check_value(v, dtype, layout, device, None, rg) out = v.new() check_value(torch.empty(shape, out=out, device=device, layout=layout, requires_grad=rg), dtype, layout, device, None, rg) check_value(v.new_empty(shape), dtype, layout, device, None, False) check_value(v.new_empty(shape, dtype=int64_dtype, device=device, requires_grad=False), int64_dtype, layout, device, None, False) check_value(torch.empty_like(v), dtype, layout, device, None, False) check_value(torch.empty_like(v, dtype=int64_dtype, layout=layout, device=device, requires_grad=False), int64_dtype, layout, device, None, False) if dtype is not torch.float16 and layout != torch.sparse_coo: fv = 3 v = torch.full(shape, fv, dtype=dtype, layout=layout, device=device, requires_grad=rg) check_value(v, dtype, layout, device, fv, rg) check_value(v.new_full(shape, fv + 1), dtype, layout, device, fv + 1, False) out = v.new() check_value(torch.full(shape, fv + 2, out=out, device=device, layout=layout, requires_grad=rg), dtype, layout, device, fv + 2, rg) check_value(v.new_full(shape, fv + 3, dtype=int64_dtype, device=device, requires_grad=False), int64_dtype, layout, device, fv + 3, False) check_value(torch.full_like(v, fv + 4), dtype, layout, device, fv + 4, False) check_value(torch.full_like(v, fv + 5, dtype=int64_dtype, layout=layout, device=device, requires_grad=False), int64_dtype, layout, device, fv + 5, False) # this helper method is to recursively # clone the tensor-type input of operators tested by OpInfo def clone_input_helper(input): if isinstance(input, torch.Tensor): return torch.clone(input) if isinstance(input, Sequence): return tuple(map(clone_input_helper, input)) return input THESE_TAKE_WAY_TOO_LONG = { 'test_Conv3d_groups', 'test_conv_double_backward', 'test_conv_double_backward_groups', 'test_Conv3d_dilated', 'test_Conv3d_stride_padding', 'test_Conv3d_dilated_strided', 'test_Conv3d', 'test_Conv2d_dilated', 'test_ConvTranspose3d_dilated', 'test_ConvTranspose2d_dilated', 'test_snli', 'test_Conv2d', 'test_Conv2d_padding', 'test_ConvTranspose2d_no_bias', 'test_ConvTranspose2d', 'test_ConvTranspose3d', 'test_Conv2d_no_bias', 'test_matmul_4d_4d', 'test_multinomial_invalid_probs', } running_script_path = None def set_running_script_path(): global running_script_path try: running_file = os.path.abspath(os.path.realpath(sys.argv[0])) if running_file.endswith('.py'): # skip if the running file is not a script running_script_path = running_file except Exception: pass def check_test_defined_in_running_script(test_case): if running_script_path is None: return test_case_class_file = os.path.abspath(os.path.realpath(inspect.getfile(test_case.__class__))) assert test_case_class_file == running_script_path, "Class of loaded TestCase \"{}\" " \ "is not defined in the running script \"{}\", but in \"{}\". Did you " \ "accidentally import a unittest.TestCase from another file?".format( test_case.id(), running_script_path, test_case_class_file) def load_tests(loader, tests, pattern): set_running_script_path() test_suite = unittest.TestSuite() for test_group in tests: for test in test_group: check_test_defined_in_running_script(test) test_suite.addTest(test) return test_suite class BytesIOContext(io.BytesIO): def __enter__(self): return self def __exit__(self, *args): pass # Tentative value for nondet_tol for gradcheck when backward implementation # relies on nondeterministic operations, i.e., those listed here: # https://pytorch.org/docs/stable/generated/torch.use_deterministic_algorithms.html # # For more information see https://github.com/pytorch/pytorch/issues/56202 GRADCHECK_NONDET_TOL = 1e-12 def gradcheck(fn, inputs, **kwargs): # Wrapper around gradcheck that enables certain keys by default. # Use this testing-internal gradcheck instead of autograd.gradcheck so that new features like vmap and # forward-mode AD are tested by default. We create this wrapper because we'd like to keep new checks # to be disabled to default for the public-facing api to avoid breaking user code. # # All PyTorch devs doing testing should use this wrapper instead of autograd.gradcheck. default_values = { "check_batched_grad": True, "fast_mode": True, } if os.environ.get('PYTORCH_TEST_WITH_SLOW_GRADCHECK', "0FF") == "ON": default_values["fast_mode"] = False for key, value in default_values.items(): # default value override values explicitly set to None k = kwargs.get(key, None) kwargs[key] = k if k is not None else value return torch.autograd.gradcheck(fn, inputs, **kwargs) def gradgradcheck(fn, inputs, grad_outputs=None, **kwargs): # Wrapper around gradgradcheck that enables certain keys by default # See gradcheck above for an explanation of why we need something like this. # # All PyTorch devs doing testing should use this wrapper instead of autograd.gradgradcheck default_values = { "check_batched_grad": True, "fast_mode": True, } if os.environ.get('PYTORCH_TEST_WITH_SLOW_GRADCHECK', "0FF") == "ON": default_values["fast_mode"] = False for key, value in default_values.items(): # default value override values explicitly set to None k = kwargs.get(key, None) kwargs[key] = k if k is not None else value return torch.autograd.gradgradcheck(fn, inputs, grad_outputs, **kwargs) def _assertGradAndGradgradChecks(test_case, apply_fn, inputs, **kwargs): # call assert function rather than returning a bool since it's nicer # if we get whether this failed on the gradcheck or the gradgradcheck. test_case.assertTrue(gradcheck(apply_fn, inputs, **kwargs)) test_case.assertTrue(gradgradcheck(apply_fn, inputs, **kwargs)) @contextmanager def set_cwd(path: str) -> Iterator[None]: old_cwd = os.getcwd() try: os.chdir(path) yield finally: os.chdir(old_cwd) # Using @precisionOverride specific to your test is the recommended way # of doing this. These are just some values that worked for test_nn. dtype2prec_DONTUSE = {torch.float: 1e-5, torch.double: 1e-5, torch.half: 1e-2, torch.bfloat16: 1e-1} def _wrap_warn_once(regex): def decorator(fn): def inner(self, *args, **kwargs): with self.assertWarnsOnceRegex(UserWarning, regex): fn(self, *args, **kwargs) return inner return decorator # This is a wrapper that wraps a test to run this test twice, one with # coalesced=True, another with coalesced=False for coalesced/uncoalesced sparse tensors. def coalescedonoff(f): @wraps(f) def wrapped(self, *args, **kwargs): f(self, *args, **kwargs, coalesced=True) f(self, *args, **kwargs, coalesced=False) return wrapped @contextlib.contextmanager def disable_gc(): if gc.isenabled(): try: gc.disable() yield finally: gc.enable() else: yield