""" This module provides the infrastructure for creating and managing compile package for torch.compile. We mainly have two abstractions here: - CompilePackage: Overarching data structure for store and lookup a list of compiled codes. - CodeCacheEntry: Data structure for a single code being compiled by torch.compile. The caching behavior is always under user control explicitly so that a stronger guarantee can be provided about cache hit for a specific compiled model. Users can load the compile package from a different process or host. """ import abc import ast import contextlib import dataclasses import functools import hashlib import importlib import inspect import json import logging import os import pickle import platform import shutil import sys import types from collections.abc import Generator, Iterator from contextlib import nullcontext from typing import Any, Callable, NewType, Optional, TYPE_CHECKING from typing_extensions import Never import torch from torch._dynamo.exc import PackageError from torch._dynamo.graph_utils import _graph_device_type from .bytecode_transformation import get_code_keys from .utils import dynamo_timed, increment_frame logger = logging.getLogger(__name__) if TYPE_CHECKING: from .guards import GuardManagerWrapper, GuardsState @dataclasses.dataclass(frozen=True) class SerializedCode: co_argcount: int co_posonlyargcount: int co_kwonlyargcount: int co_nlocals: int co_stacksize: int co_flags: int co_code: bytes co_consts: tuple[Any, ...] co_names: tuple[str, ...] co_varnames: tuple[str, ...] co_filename: str co_name: str co_firstlineno: int co_cellvars: tuple[str, ...] co_freevars: tuple[str, ...] co_linetable: Optional[bytes] = None co_qualname: Optional[str] = None co_exceptiontable: Optional[bytes] = None co_lnotab: Optional[str] = None @classmethod @functools.cache def from_code_object(cls, code: types.CodeType) -> "SerializedCode": kwargs = {key: getattr(code, key) for key in get_code_keys()} kwargs["co_consts"] = tuple( cls.from_code_object(c) if isinstance(c, types.CodeType) else c for c in kwargs["co_consts"] ) return cls(**kwargs) @classmethod @functools.cache def to_code_object(cls, serialized_code: "SerializedCode") -> types.CodeType: kwargs = {key: getattr(serialized_code, key) for key in get_code_keys()} kwargs["co_consts"] = tuple( cls.to_code_object(c) if isinstance(c, SerializedCode) else c for c in kwargs["co_consts"] ) return types.CodeType( *kwargs.values(), ) @dataclasses.dataclass class _GuardedCodeCacheEntry: """ Contains the serializable information associated with a single compilation in dynamo. To restore an execution of compiled code, we will need to serialize the following data: - Dynamo bytecode for mapping Python inputs/outputs. - Dynamo guards. """ guards_state: bytes dynamo_code: SerializedCode def load_guards_state(guards_state: bytes) -> Any: try: import torch.distributed.fsdp._fully_shard._fully_shard as _fully_shard ctx = _fully_shard.disable_fsdp_module_new_init() except ImportError: ctx = nullcontext() # type: ignore[assignment] with ctx: return pickle.loads(guards_state) def load_guard_manager( guards_state: "GuardsState", target_code: types.CodeType, runtime_global_scope: Any, ) -> "GuardManagerWrapper": from .output_graph import OutputGraphCommon return torch._dynamo.guards.CheckFunctionManager( target_code, OutputGraphCommon(guards_state.output_graph), shape_code_parts=guards_state.shape_code_parts, runtime_global_scope=runtime_global_scope, source_get_cache=guards_state.source_get_cache, ).guard_manager _BackendId = NewType("_BackendId", str) # __compiled_fn _FunctionId = NewType("_FunctionId", str) # __resume_at @dataclasses.dataclass(frozen=True) class InlinedSource: module: str firstlineno: int lastlineno: int checksum: str content: str @functools.cache def _get_module_content(module: types.ModuleType) -> str: return inspect.getsource(module) @dataclasses.dataclass class SourceInfo: inlined_sources: set[InlinedSource] def add_code(self, code: types.CodeType) -> None: module = inspect.getmodule(code) if module is None: return sourcelines, firstlineno = inspect.getsourcelines(code) lastlineno = firstlineno + len(sourcelines) source = "".join(sourcelines) assert source == "".join(_get_sourcelines(module, firstlineno, lastlineno)) self.inlined_sources.add( InlinedSource( module=module.__name__, firstlineno=firstlineno, lastlineno=lastlineno, checksum=_hash_source(source), content=_get_module_content(module), ) ) @dataclasses.dataclass class _DynamoCodeCacheEntry: """ Contains the serializable information associated with a single code object in dynamo. To restore an execution of compiled code, we will need the following ingredients: 1. The "original" code object, which serves as the entry point for eager execution, i.e. the code only executed when there's no cache entry hit. 2. The python module name this code object belongs to, for identifying the enclosing global scope to inject compiled and resume functions. 3. A list of function names that pointing to this code object. There could be multiple function objects pointing to the same code such as recursive functions. 4. A list of guarded code that eval frame dispatches to. 5. A list of imported module objects unioned from all compiled branches. 6. A list of "backends" (compiled fx graph) unioned from all compield branches. 7. A string path used to access the original code object users defined. A code object can be accessed by "{python_module}.{function_name}.{code_source}" . 8. A boolean flag indicating whether the function is installed to global scope. 9. A boolean flag indicating whether the function has a compile id. 10. Whether or not this code entry was bypassed """ python_code: SerializedCode python_module: str function_names: list[_FunctionId] guarded_codes: list[_GuardedCodeCacheEntry] import_sources: dict[str, str] backend_ids: list[_BackendId] code_source: Optional[str] install_to_global: bool has_compile_id: bool = False bypassed: bool = False def _lookup_code(entry: _DynamoCodeCacheEntry) -> types.CodeType: assert len(entry.function_names) == 1 fn: Any = sys.modules[entry.python_module] parts = entry.function_names[0].split(".") for part in parts: fn = getattr(fn, part) if entry.code_source: parts = entry.code_source.split(".") for part in parts: if part.endswith("]"): index_begin = part.rfind("[") assert isinstance(index_begin, int) and index_begin >= 0 attr = getattr(fn, part[:index_begin], None) if attr is None: raise PackageError(f"Cannot find source for code entry {entry}") fn = attr[ast.literal_eval(part[index_begin + 1 : -1])] else: fn = getattr(fn, part) else: raise PackageError(f"Cannot find source for code entry {entry}") assert isinstance(fn, types.CodeType) return fn def _raise_resolution_error(code: types.CodeType, scope: Any) -> Never: raise PackageError( f"Cannot resolve a fully qualified name for {code}. Lookup scope: {scope}" ) def _get_code_source(code: types.CodeType) -> tuple[str, str]: """ Given a code object, return a fully qualified name which will be used as a serialized handle to access the code object from the new process. This is normally a straightforward process, but there are some corner cases: 1. When a function is defined with decorator, then this function will be captured inside a closure with the wrapper object. 2. When a function is defined as a nested function, then the code object will be stored on the co_consts field of the parent code object by Python compiler. This function handles all of the corner cases above. """ module = inspect.getmodule(code) if module is None: raise PackageError(f"Cannot find module for code {code}") toplevel: Any = module if sys.version_info >= (3, 11): parts = code.co_qualname.split(".") for part in parts: if not hasattr(toplevel, part): _raise_resolution_error(code, toplevel) toplevel = getattr(toplevel, part) if inspect.isfunction(toplevel): break seen = set() def _find_code_source(obj: Any) -> Optional[str]: nonlocal toplevel nonlocal seen if obj in seen: return None seen.add(obj) if inspect.iscode(obj): if obj is code: return "" for i, const in enumerate(obj.co_consts): if (res := _find_code_source(const)) is not None: return f".co_consts[{i}]{res}" if inspect.isfunction(obj): if (res := _find_code_source(obj.__code__)) is not None: toplevel = obj return f".__code__{res}" if obj.__closure__ is not None: for i, cell in enumerate(obj.__closure__): try: cell_contents = cell.cell_contents except ValueError: continue if not ( inspect.isfunction(cell_contents) or inspect.iscode(cell_contents) ): continue if (res := _find_code_source(cell_contents)) is not None: toplevel = obj return f".__closure__[{i}].cell_contents{res}" if sys.version_info < (3, 11): if inspect.ismodule(obj): for value in obj.__dict__.values(): if not (inspect.isfunction(value) or inspect.isclass(value)): continue if (res := _find_code_source(value)) is not None: return res if inspect.isclass(obj): for name, value in obj.__dict__.items(): value = getattr(obj, name) if not (inspect.isfunction(value) or inspect.isclass(value)): continue if (res := _find_code_source(value)) is not None: if value.__name__ != name: _raise_resolution_error(code, toplevel) return res return None code_source = _find_code_source(toplevel) if code_source is None: _raise_resolution_error(code, toplevel) # pyrefly: ignore # missing-attribute return toplevel.__qualname__, code_source.strip(".") @dataclasses.dataclass(frozen=True) class SystemInfo: """ System information including Python, PyTorch, and GPU details. This information is used to ensure compiled artifacts can only be loaded with compatible system configurations. """ python_version: str torch_version: str toolkit_version: Optional[str] triton_version: Optional[tuple[int, int]] gpu_name: Optional[str] CHECK_GPUS = ("cuda", "xpu") @classmethod def current(cls) -> "SystemInfo": """Create a SystemInfo instance with current system information.""" # Get GPU name if CUDA or XPU is available gpu_name = None from torch.utils._triton import get_triton_version gpu_name, toolkit_version = None, None for device_type in cls.CHECK_GPUS: if getattr(torch, device_type).is_available(): try: gpu_name = getattr(torch, device_type).get_device_name() toolkit_version = getattr(torch.version, device_type) break except Exception: pass return cls( python_version=platform.python_version(), torch_version=torch.__version__, toolkit_version=toolkit_version, triton_version=get_triton_version((0, 0)), gpu_name=gpu_name, ) def check_compatibility( self, other: "SystemInfo", device_type: str = "cpu" ) -> None: """ Check if this SystemInfo is compatible with another SystemInfo. Raises RuntimeError if incompatible. """ if self.python_version != other.python_version: raise RuntimeError( f"Compile package was created with a different Python version: {self.python_version}" ) if self.torch_version != other.torch_version: raise RuntimeError( f"Compile package was created with a different PyTorch version: {self.torch_version}" ) if device_type in self.CHECK_GPUS: if not getattr(torch, device_type).is_available(): raise RuntimeError(f"{device_type} is not available") if self.toolkit_version != other.toolkit_version: raise RuntimeError( f"Compile package was created with a different toolkit version: {self.toolkit_version}" ) if ( other.triton_version != (0, 0) and self.triton_version != other.triton_version ): raise RuntimeError( f"Compile package was created with a different Triton version: {self.triton_version}" ) # Check GPU name if CUDA/XPU was used if other.gpu_name is not None and self.gpu_name != other.gpu_name: raise RuntimeError( f"Compile package was created with different GPU: " f"cached={self.gpu_name}, current={other.gpu_name}" ) @dataclasses.dataclass class _DynamoCacheEntry: codes: list[_DynamoCodeCacheEntry] source_info: SourceInfo device_type: str system_info: SystemInfo = dataclasses.field(default_factory=SystemInfo.current) fn_name: Optional[str] = None fn_first_lineno: Optional[str] = None @property def backend_ids(self) -> set[_BackendId]: return {backend_id for code in self.codes for backend_id in code.backend_ids} def check_versions(self) -> None: """Check if the current system is compatible with the system used to create this cache entry.""" current_system_info = SystemInfo.current() self.system_info.check_compatibility(current_system_info, self.device_type) def debug_info(self) -> dict[str, Any]: assert len(self.codes) > 0 return { "num_codes": str(len(self.codes)), "fn_name": self.fn_name, "fn_first_lineno": self.fn_first_lineno, "device_type": self.device_type, "backend_ids": list(self.backend_ids), } @dataclasses.dataclass class PrecompileCacheEntry: """ A full cache entry for caching precompile, for a toplevel torch.compile. Consists of a _DynamoCacheEntry, which contains all the dynamo related contents, and a set of backends content. In general, the backend content here will always be of type precompile_context.BackendCacheArtifact """ dynamo: _DynamoCacheEntry backends: dict[_BackendId, Any] @staticmethod def from_cache_entry( cache_entry: _DynamoCacheEntry, backends: dict[_BackendId, Any] ) -> Optional["PrecompileCacheEntry"]: backend_content: dict[_BackendId, Any] = {} for code in cache_entry.codes: for backend_id in code.backend_ids: if backend_id not in backends: logger.warning("Backend not found") debug_str = json.dumps( { "entry": cache_entry.debug_info(), "missing_backend": backend_id, } ) torch._logging.trace_structured( "artifact", metadata_fn=lambda: { "name": "dynamo_cache_bypass", "encoding": "json", }, payload_fn=lambda: debug_str, expect_trace_id=False, ) code.bypassed = True break else: backend_content[backend_id] = backends[backend_id] return PrecompileCacheEntry(dynamo=cache_entry, backends=backend_content) def _hash_source(source: str) -> str: sha256_hash = hashlib.sha256() sha256_hash.update(source.encode()) return sha256_hash.hexdigest() def _get_sourcelines( m: types.ModuleType, firstlineno: int, lastlineno: int ) -> list[str]: return inspect.getsourcelines(m)[0][firstlineno - 1 : lastlineno - 1] def _hash_sourcelines(m: types.ModuleType, firstlineno: int, lastlineno: int) -> str: return _hash_source("".join(_get_sourcelines(m, firstlineno, lastlineno))) def _compile_frame_context( code: types.CodeType, ) -> contextlib.AbstractContextManager[None]: from torch._dynamo.convert_frame import get_compile_id, log_dynamo_start from torch._guards import compile_context, CompileContext # Each code represents a new compile frame # recompiles on the same frame are all saved # under the same cache entry, so we don't have recompile ids # i.e. If cold start had 0/0, 0/1, 1/0, 1/1, these would be # collapsed into 0/0, 1/0 on warm. @contextlib.contextmanager def _ctx() -> Iterator[None]: increment_frame() compile_id = get_compile_id(frame_state={}) with ( compile_context(CompileContext(compile_id)), dynamo_timed( "_compile.compile_inner", phase_name="entire_frame_compile", dynamo_compile_column_us="dynamo_cumulative_compile_time_us", # TODO: save all relevant compilation metrics metadata={ "frame_key": str(torch._dynamo.utils.curr_frame), "co_name": code.co_name, "co_filename": code.co_filename, "co_firstlineno": code.co_firstlineno, }, ), ): log_dynamo_start(code) yield return _ctx() class CompilePackage: """ CompilePackage is considered a low level component and should not be directly exposed to end users. It has the following interface: 1. `CompilePackage.__init__()` which optionally takes previously serialized dynamo states. a. when `dynamo` argument is None, it will construct a brand new CompilePackage object. b. when `dynamo` argument is not None, it will load a pre-compiled dynamo state. 2. `package.save()` which dumps the dynamo and backend states to a DynamoCacheEntry object. 3. `package.install(backends) which will handle all the side-effectful global scope updates with compiled functions and resume functions. """ def __init__( self, fn: Optional[Callable[..., Any]], dynamo: Optional[_DynamoCacheEntry] = None, ignore_inlined_sources: bool = False, ) -> None: self._innermost_fn = None self._codes: dict[types.CodeType, _DynamoCodeCacheEntry] = {} self._current_entry: Optional[_DynamoCodeCacheEntry] = None self._installed_globals: dict[types.ModuleType, list[str]] = {} # device_type that model compiled with. self._device_type = "cpu" # For debugging/testing purpose only. self._cached_backends: dict[_BackendId, Any] = {} self._source_info: SourceInfo = SourceInfo(inlined_sources=set()) self._resume_codes: set[types.CodeType] = set() self._initialized = False if fn is not None: self.initialize(fn, dynamo, ignore_inlined_sources) self.uninstall() self.validate() def is_initialized(self) -> bool: return self._initialized def initialize( self, fn: Any, dynamo: Optional[_DynamoCacheEntry] = None, ignore_inlined_sources: bool = False, ) -> None: from .eval_frame import innermost_fn assert not self._initialized self._source_info = SourceInfo(inlined_sources=set()) self._innermost_fn = innermost_fn(fn) # type: ignore[assignment] assert self._innermost_fn is not None if dynamo is not None: assert isinstance(dynamo, _DynamoCacheEntry) dynamo.check_versions() if not ignore_inlined_sources: for code in dynamo.source_info.inlined_sources: m = importlib.import_module(code.module) checksum = _hash_sourcelines(m, code.firstlineno, code.lastlineno) if checksum != code.checksum: raise RuntimeError( f"Source code changes detected for {code.module} (line {code.firstlineno} - line {code.lastlineno})" ) # pyrefly: ignore # bad-assignment self._source_info = dynamo.source_info main, *codes = dynamo.codes # pyrefly: ignore # bad-assignment self._codes = {self._innermost_fn.__code__: main} for code in codes: self._codes[SerializedCode.to_code_object(code.python_code)] = code else: self._add_function( self._innermost_fn.__code__, self._innermost_fn.__module__ ) # pyrefly: ignore # bad-assignment self._initialized = True def _add_function( self, python_code: types.CodeType, python_module: str, function_name: Optional[_FunctionId] = None, code_source: Optional[str] = None, install_to_global: bool = False, ) -> None: if python_code not in self._codes: code = _DynamoCodeCacheEntry( python_code=SerializedCode.from_code_object(python_code), python_module=python_module, function_names=[], guarded_codes=[], import_sources={}, backend_ids=[], code_source=code_source, install_to_global=install_to_global, ) self._codes[python_code] = code else: code = self._codes[python_code] assert code.python_module == python_module assert code.install_to_global == install_to_global assert code.code_source == code_source if function_name is not None: code.function_names.append(function_name) @property def cached_backends(self) -> dict[_BackendId, Any]: return self._cached_backends @functools.cached_property def source_id(self) -> str: assert self._innermost_fn is not None return CompilePackage.source_id_from_fn(self._innermost_fn) def _add_user_function(self, code: types.CodeType) -> None: function_name, code_source = _get_code_source(code) module = inspect.getmodule(code) if module is None: raise PackageError(f"Cannot find module for code {code}") self._add_function( code, module.__name__, function_name=_FunctionId(function_name), code_source=code_source, ) @contextlib.contextmanager def code_context(self, code: types.CodeType) -> Generator[None, None, None]: assert self._current_entry is None # Sometimes user code cannot be inlined in dynamo resulting in extra user code # being compiled. We should record these as when they are actually invoked. if code not in self._codes: self._add_user_function(code) entry = self._codes[code] self._current_entry = entry try: yield finally: entry.has_compile_id = True self._current_entry = None def add_guarded_code( self, guards_state: bytes, dynamo_code: types.CodeType, ) -> None: assert self._current_entry is not None if self._current_entry.bypassed: return guarded_code_entry = _GuardedCodeCacheEntry( guards_state=guards_state, dynamo_code=SerializedCode.from_code_object(dynamo_code), ) self._current_entry.guarded_codes.append(guarded_code_entry) def add_inlined_source(self, sources: list[types.CodeType]) -> None: assert self._current_entry is not None if self._current_entry.bypassed: return for code in sources: if code in self._resume_codes: continue self._source_info.add_code(code) def update_device_type(self, graph: Optional[torch.fx.Graph]) -> None: self._device_type = _graph_device_type(graph) def bypass_current_entry(self) -> None: assert self._current_entry is not None self._current_entry.bypassed = True def add_resume_function( self, python_code: types.CodeType, python_module: str, function_name: Optional[str], ) -> None: self._add_function( python_code, python_module, function_name=_FunctionId(function_name) if function_name else None, install_to_global=True, ) self._resume_codes.add(python_code) def add_import_source(self, alias: str, module_name: str) -> None: assert self._current_entry is not None self._current_entry.import_sources[alias] = module_name def add_backend_id(self, backend_id: str, backend: Optional[Any] = None) -> None: assert self._current_entry is not None assert backend_id.startswith("__compiled_fn_") # sanity check backend_id = _BackendId(backend_id) self._current_entry.backend_ids.append(backend_id) if backend is not None: self._cached_backends[backend_id] = backend def validate(self) -> None: assert self._current_entry is None assert self._innermost_fn is not None assert self._initialized assert next(iter(self._codes)) is self._innermost_fn.__code__ def _install_global(self, module: types.ModuleType, name: str, value: Any) -> None: module.__dict__[name] = value self._installed_globals.setdefault(module, []).append(name) def uninstall(self) -> None: from torch._C._dynamo.eval_frame import _reset_precompile_entries assert self._innermost_fn is not None for module, names in self._installed_globals.items(): for name in names: module.__dict__.pop(name) # pyrefly: ignore # bad-assignment self._installed_globals = {} _reset_precompile_entries(self._innermost_fn.__code__) def install(self, backends: dict[_BackendId, Any]) -> None: """ Sync the package states to the compiled function. This includes the following actions: 1. Clean up the previously installed states. 2. Install the compiled functions to global scopes. 3. Install the precompiled cache entries to ExtraStates on the code object. """ from torch._C._dynamo.eval_frame import _load_precompile_entry from .output_graph import get_builtins_dict self.uninstall() for code, entry in self._codes.items(): context = ( _compile_frame_context(code) if entry.has_compile_id else contextlib.nullcontext() ) with context: module = sys.modules[entry.python_module] for alias, module_name in entry.import_sources.items(): self._install_global( module, alias, importlib.import_module(module_name) ) target_code = code if entry.install_to_global: for function_name in entry.function_names: fn = types.FunctionType(code, module.__dict__, function_name) self._install_global(module, function_name, fn) if entry.code_source: target_code = _lookup_code(entry) if entry.bypassed: # If the entry is bypassed, do not install backends # or guarded codes. continue for backend_id in entry.backend_ids: if backend_id not in backends: raise RuntimeError( f"Backend {backend_id} is not found in the given backends" ) with dynamo_timed( "after_deserialization", phase_name="backend_compile" ): backend = backends[backend_id].after_deserialization() self._install_global( module, backend_id, torch._dynamo.disable(backend), ) if len(entry.guarded_codes) == 0: # Dynamo generates empty graph for trivial functions, should just skip them # in these cases. torch._dynamo.eval_frame.skip_code(target_code) for guarded_code in entry.guarded_codes: with dynamo_timed("precompile_load_guards"): guards_state = load_guards_state(guarded_code.guards_state) runtime_global_scope = sys.modules[entry.python_module].__dict__ # The installed builtins dict might be absent from the runtime # while loading guards. Populate it if it's missing. if ( builtin_dict_name := guards_state.output_graph.name_of_builtins_dict_key_in_fglobals ): builtins_dict = get_builtins_dict(runtime_global_scope) if builtin_dict_name in runtime_global_scope: assert ( runtime_global_scope[builtin_dict_name] is builtins_dict ) else: runtime_global_scope[builtin_dict_name] = builtins_dict assert isinstance(guards_state, torch._dynamo.guards.GuardsState) with dynamo_timed("precompile_build_guards"): guard_manager = load_guard_manager( guards_state, target_code, runtime_global_scope ) _load_precompile_entry( target_code, guard_manager, SerializedCode.to_code_object(guarded_code.dynamo_code), ) def cache_entry(self) -> _DynamoCacheEntry: self.validate() assert self._innermost_fn is not None return _DynamoCacheEntry( codes=list(self._codes.values()), source_info=self._source_info, device_type=self._device_type, fn_name=self._innermost_fn.__qualname__, fn_first_lineno=self._innermost_fn.__code__.co_firstlineno, ) @staticmethod def source_id_from_fn(fn: Callable[..., Any]) -> str: from .eval_frame import innermost_fn innermost_fn_ = innermost_fn(fn) sha256_hash = hashlib.sha256() sha256_hash.update(innermost_fn_.__qualname__.encode()) sha256_hash.update(str(innermost_fn_.__code__.co_firstlineno).encode()) return sha256_hash.hexdigest() _Backends = dict[_BackendId, Any] class DynamoStore(abc.ABC): """ A DynamoStore tracks active CompilePackages, and provides methods to store and retrieve them. This is an abstract base class for different storage implementations. """ def record_package(self, package: CompilePackage) -> None: """ Records a package to PrecompileContext, so that it can be serialized later. """ from torch._dynamo.precompile_context import PrecompileContext cache_entry = package.cache_entry() PrecompileContext.record_dynamo_cache_entry( cache_entry=cache_entry, key=package.source_id ) def record_eager_backend(self, backend_id: _BackendId, backend: Any) -> None: """ Records eager fx graphs to PrecompileContext for testing purposes. """ from torch._dynamo.precompile_context import ( EagerCacheArtifact, PrecompileContext, ) result = EagerCacheArtifact(key=backend_id, content=backend) PrecompileContext.record_artifact(result) @abc.abstractmethod def clear(self) -> None: ... @abc.abstractmethod def write( self, cache_entry: PrecompileCacheEntry, path: str, ) -> None: """ Abstract method to write dynamo cache entry and backends to storage. Args: dynamo: The dynamo cache entry to write backends: Dictionary of backend content to write path: Path or key to identify where to write the data """ ... def save_cache_entry(self, cache_entry: _DynamoCacheEntry, key: str) -> None: """ Saves a package to a given path. Grabs backends from PrecompileContext. """ from torch._dynamo.precompile_context import ( BackendCacheArtifact, PrecompileContext, ) backend_content: _Backends = {} for backend_id in cache_entry.backend_ids: serialized_backend = PrecompileContext.serialize_artifact_by_key(backend_id) if serialized_backend is None: raise RuntimeError( f"Backend {backend_id} is not found in the given backends" ) assert isinstance(serialized_backend, BackendCacheArtifact) backend_content[backend_id] = serialized_backend entry = PrecompileCacheEntry(cache_entry, backend_content) self.write(entry, key) def save_package(self, package: CompilePackage, key: str) -> None: """ Saves a package to a given path. Grabs backends from PrecompileContext. """ self.record_package(package) cache_entry = package.cache_entry() self.save_cache_entry(cache_entry, key) @abc.abstractmethod def read(self, path: str) -> PrecompileCacheEntry: """ Abstract method to read dynamo cache entry and backends from storage. Args: path: Path or key to identify where to read the data from Returns: A tuple containing (dynamo_cache_entry, backend_content) """ ... def load_cache_entry(self, key: str) -> PrecompileCacheEntry: from torch._dynamo.precompile_context import ( BackendCacheArtifact, PrecompileContext, ) precompile_entry = self.read(key) for backend in precompile_entry.backends.values(): assert isinstance(backend, BackendCacheArtifact) PrecompileContext.record_artifact(backend) return precompile_entry def load_package( self, fn: Any, key: str ) -> tuple[CompilePackage, dict[_BackendId, Any]]: """ Loads a package from a given path and returns it plus a list of deserialized backends """ entry = self.load_cache_entry(key) package = CompilePackage(fn, entry.dynamo) return package, entry.backends class InMemoryDynamoStore(DynamoStore): """ A DynamoStore implementation that keeps state about CompilePackages in memory. """ def __init__(self) -> None: self.packages: dict[str, PrecompileCacheEntry] = {} def clear(self) -> None: self.packages.clear() def write( self, entry: PrecompileCacheEntry, path: str, ) -> None: """ Store the dynamo cache entry and backends in memory instead of writing to disk. """ self.packages[path] = entry def read(self, path: str) -> PrecompileCacheEntry: """ Read dynamo cache entry and backends from memory. """ if path not in self.packages: raise RuntimeError(f"No package found with key {path}") return self.packages[path] class DiskDynamoStore(DynamoStore): """ A DynamoStore implementation that keeps state about CompilePackages on disk. """ def __init__(self, path_prefix: str = ""): """ Initialize a DiskDynamoStore with a path prefix. Args: path_prefix: Prefix directory for where to put CompilePackages on disk """ self.path_prefix = path_prefix def clear(self) -> None: """ Clear all CompilePackages from disk. """ if self.path_prefix: shutil.rmtree(self.path_prefix, ignore_errors=True) def write( self, entry: PrecompileCacheEntry, path: str, ) -> None: """ Write dynamo cache entry and backends to disk. """ from torch._inductor.codecache import write_atomic path = os.path.join(self.path_prefix, path) if self.path_prefix else path try: os.makedirs(path, exist_ok=True) pickled_content: bytes = pickle.dumps(entry) write_atomic(os.path.join(path, "entry"), pickled_content) except Exception as e: raise RuntimeError(f"Failed to save package to {path}: {e}") from e def read(self, path: str) -> PrecompileCacheEntry: """ Read dynamo cache entry and backends from disk. """ path = os.path.join(self.path_prefix, path) if self.path_prefix else path try: with open(os.path.join(path, "entry"), "rb") as f: pickled_content = f.read() entry = pickle.loads(pickled_content) return entry except Exception as e: raise RuntimeError(f"Failed to load package from path {path}: {e}") from e class DiskDynamoCache(DiskDynamoStore): """ Special DiskDynamoStore which adds some helper functions for automatically tracking paths of packages """ def save(self, package: CompilePackage) -> None: """ Saves a package to a given path. Grabs backends from PrecompileContext. """ key = package.source_id logger.info("Saving CompilePackage for %s", package.source_id) super().save_package(package, key) def load(self, fn: Callable[..., Any]) -> Optional[PrecompileCacheEntry]: """ Loads a package from a given path and returns it plus a list of deserialized backends """ key = CompilePackage.source_id_from_fn(fn) logger.info("Loading CompilePackage for %s", key) path = os.path.join(self.path_prefix, key) if os.path.exists(path): try: result = super().load_cache_entry(key) return result except Exception as e: logger.warning("Failed to load package from path %s: %s", path, str(e)) return None logger.info("No package found for %s", key) return None def load_and_install_package( self, fn: Callable[..., Any] ) -> Optional[CompilePackage]: """ Load directly into a package and install backends """ results = self.load(fn) if results is None: return None else: package = CompilePackage(fn, results.dynamo) package.install(results.backends) return package def cache_dir() -> str: from torch._inductor.runtime.cache_dir_utils import cache_dir return cache_dir() DynamoCache = DiskDynamoCache(os.path.join(cache_dir(), "dynamo"))