""" This module provides utilities for analyzing, transforming and manipulating Python bytecode. It includes functionality for: - Converting between different bytecode formats and versions - Virtualizing jumps and managing jump targets - Handling exception tables and their entries - Managing instruction offsets and extended arguments - Providing a clean API for bytecode modification and transformation - Supporting Python version-specific bytecode features - Generating bytecode from template functions The module is designed to work across different Python versions (3.7+) and handles version-specific bytecode differences transparently. """ import copy import dataclasses import dis import functools import itertools import sys import types import uuid from collections.abc import Iterable, Iterator, Mapping, Sequence from typing import Any, Callable, cast, Optional, TYPE_CHECKING, Union from . import config from .bytecode_analysis import ( get_indexof, propagate_line_nums, remove_extra_line_nums, stacksize_analysis, ) from .utils import is_safe_constant if TYPE_CHECKING: from .output_graph import DynamoTracerOutput @dataclasses.dataclass(slots=True) class InstructionExnTabEntry: start: "Instruction" end: "Instruction" target: "Instruction" depth: int lasti: bool def __repr__(self) -> str: return ( f"InstructionExnTabEntry(start={self.start.short_inst_repr()}, " f"end={self.end.short_inst_repr()}, " f"target={self.target.short_inst_repr()}, " f"depth={self.depth}, lasti={self.lasti})" ) def __eq__(self, o: object) -> bool: if not isinstance(o, InstructionExnTabEntry): return False return ( self.start is o.start and self.end is o.end and self.target is o.target and self.depth == o.depth and self.lasti == o.lasti ) @dataclasses.dataclass(slots=True) class Instruction: """A mutable version of dis.Instruction""" opcode: int opname: str arg: Optional[int] argval: Any offset: Optional[int] = None starts_line: Optional[int] = None is_jump_target: bool = False positions: Optional["dis.Positions"] = None # extra fields to make modification easier: target: Optional["Instruction"] = None exn_tab_entry: Optional[InstructionExnTabEntry] = None argrepr: Optional[str] = None def __hash__(self) -> int: return id(self) def __eq__(self, other: object) -> bool: return id(self) == id(other) def short_inst_repr(self) -> str: return f"Instruction(opname={self.opname}, offset={self.offset})" def copy_positions(self, other: "Instruction") -> None: self.starts_line = other.starts_line self.positions = other.positions if sys.version_info >= (3, 13): def convert_instruction(i: dis.Instruction) -> Instruction: return Instruction( i.opcode, i.opname, i.arg, i.argval, i.offset, i.line_number, i.is_jump_target, i.positions, ) elif sys.version_info >= (3, 11): def convert_instruction(i: dis.Instruction) -> Instruction: return Instruction( i.opcode, i.opname, i.arg, i.argval, i.offset, i.starts_line, i.is_jump_target, i.positions, ) else: def convert_instruction(i: dis.Instruction) -> Instruction: return Instruction( i.opcode, i.opname, i.arg, i.argval, i.offset, i.starts_line, i.is_jump_target, None, ) class _NotProvided: def __repr__(self) -> str: return "_NotProvided" if sys.version_info >= (3, 12): def inst_has_op_bits(name: str) -> bool: return name in ("LOAD_ATTR", "LOAD_GLOBAL", "LOAD_SUPER_ATTR") elif sys.version_info >= (3, 11): def inst_has_op_bits(name: str) -> bool: return name == "LOAD_GLOBAL" else: def inst_has_op_bits(name: str): return False def create_instruction( name: str, *, arg: Optional[int] = None, argval: Optional[Any] = _NotProvided, target: Optional[Instruction] = None, ) -> Instruction: """ At most one of `arg`, `argval`, and `target` can be not None/_NotProvided. This is to prevent ambiguity, e.g. does create_instruction("LOAD_CONST", 5) mean load the constant at co_consts[5], or load the constant 5? If `arg` is not provided, it will be computed during assembly from `argval` or `target`. Bits in the args of instructions LOAD_GLOBAL, LOAD_ATTR (3.12+), and LOAD_SUPER_ATTR modify the behavior of the instruction. In this case, we allow both `arg` and `argval` to be set. The value of `arg` here is expected to be the value of the op bits and the true value of `arg` will be computed during assembly. If `arg` is not set, the bits are assumed to be 0. """ # allow for instructions with op bits to have both arg and argval specified if inst_has_op_bits(name): if target is not None: raise RuntimeError("target cannot be specified for instruction") if arg is None: arg = 0 else: cnt = (arg is not None) + (argval is not _NotProvided) + (target is not None) if cnt > 1: raise RuntimeError( "only one of arg, argval, and target can be not None/_NotProvided" ) if arg is not None and not isinstance(arg, int): raise RuntimeError("instruction arg must be int or None") return Instruction( opcode=dis.opmap[name], opname=name, arg=arg, argval=argval, target=target ) # Python 3.11 remaps def create_jump_absolute(target: Instruction) -> Instruction: inst = "JUMP_FORWARD" if sys.version_info >= (3, 11) else "JUMP_ABSOLUTE" return create_instruction(inst, target=target) def is_jump_absolute(target: Instruction) -> bool: return target.opname in ("JUMP_FORWARD", "JUMP_ABSOLUTE") def create_load_const(val: Any, checked: bool = True) -> Instruction: """ In general we should only create `LOAD_CONST` for immutable objects, but sometimes it's convenient _and safe_ for Dynamo create `LOAD_CONST` for mutable objects. In such cases, use `checked=False`. """ if checked: assert is_safe_constant(val), f"unsafe constant {val}" return create_instruction("LOAD_CONST", argval=val) def create_dup_top() -> Instruction: if sys.version_info >= (3, 11): return create_instruction("COPY", arg=1) return create_instruction("DUP_TOP") def create_rot_n(n: int) -> list[Instruction]: """ Returns a "simple" sequence of instructions that rotates TOS to the n-th position in the stack. For Python < 3.11, returns a single ROT_* instruction. If no such instruction exists, an error is raised and the caller is expected to generate an equivalent sequence of instructions. For Python >= 3.11, any rotation can be expressed as a simple sequence of swaps. """ if n <= 1: # don't rotate return [] if sys.version_info >= (3, 11): # rotate can be expressed as a sequence of swap operations # e.g. rotate 3 is equivalent to swap 3, swap 2 return [create_instruction("SWAP", arg=i) for i in range(n, 1, -1)] if n <= 4: return [create_instruction("ROT_" + ["TWO", "THREE", "FOUR"][n - 2])] return [create_instruction("ROT_N", arg=n)] def add_push_null( inst_or_insts: Union[Instruction, list[Instruction]], ) -> list[Instruction]: """ Appends or prepends a PUSH_NULL instruction to `inst_or_insts`, depending on Python version. Used when you know that `inst_or_insts` generates a callable that will be called. NOTE: Assumes `inst_or_insts` is a single instruction or sequence of instructions that pushes exactly 1 object to the stack that is to be called. It is important that you include ALL instructions that construct the callable - not just the first instruction/a prefix. Will attempt to use the NULL push bit for instructions with such bits (LOAD_GLOBAL 3.11+, LOAD_ATTR 3.12+, LOAD_SUPER_ATTR). In this case, instructions WILL be modified. """ if isinstance(inst_or_insts, Instruction): insts: list[Instruction] = [inst_or_insts] else: assert isinstance(inst_or_insts, list) insts = inst_or_insts def inst_has_bit_set(idx: int) -> bool: assert insts[idx].arg is not None return insts[idx].arg & 1 == 1 # type: ignore[operator] def set_inst_bit(idx: int) -> None: assert insts[idx].arg is not None insts[idx].arg |= 1 # type: ignore[operator] if sys.version_info >= (3, 13): # In 3.13, NULL follows the callable if inst_has_op_bits(insts[-1].opname) and not inst_has_bit_set(-1): # All insts with op bits have the push_null bit as the last one. # Only set the bit if it hasn't been set - otherwise, we need # to add another PUSH_NULL. set_inst_bit(-1) else: insts = insts + [create_instruction("PUSH_NULL")] elif sys.version_info >= (3, 12): # LOAD_ATTR/LOAD_SUPER_ATTR at the end # We assume that `insts` will only load 1 object, so # LOAD_GLOBAL at the end doesn't need to be checked if inst_has_op_bits(insts[-1].opname) and not inst_has_bit_set(-1): set_inst_bit(-1) elif insts[0].opname == "LOAD_GLOBAL" and not inst_has_bit_set(0): set_inst_bit(0) else: insts = [create_instruction("PUSH_NULL")] + insts elif sys.version_info >= (3, 11): # 3.11 introduced NULL preceding callable if inst_has_op_bits(insts[0].opname) and not inst_has_bit_set(0): set_inst_bit(0) else: insts = [create_instruction("PUSH_NULL")] + insts return insts def add_push_null_call_function_ex( inst_or_insts: Union[Instruction, list[Instruction]], ) -> list[Instruction]: """Like add_push_null, but the low bit of LOAD_ATTR/LOAD_SUPER_ATTR is not set, due to an expected CALL_FUNCTION_EX instruction. """ if isinstance(inst_or_insts, Instruction): insts: list[Instruction] = [inst_or_insts] else: assert isinstance(inst_or_insts, list) insts = inst_or_insts if sys.version_info < (3, 11): return insts idx = -1 if sys.version_info >= (3, 13) else 0 if insts[idx].opname == "LOAD_GLOBAL": assert insts[idx].arg is not None if insts[idx].arg & 1 == 0: # type: ignore[operator] insts[idx].arg |= 1 # type: ignore[operator] return insts if sys.version_info >= (3, 13): insts = insts + [create_instruction("PUSH_NULL")] else: insts = [create_instruction("PUSH_NULL")] + insts return insts def create_call_function(nargs: int, push_null: bool) -> list[Instruction]: """ Creates a sequence of instructions that makes a function call. `push_null` is used in Python 3.11+ only. It is used in codegen when a function call is intended to be made with the NULL + fn convention, and we know that the NULL has not been pushed yet. We will push a NULL and rotate it to the correct position immediately before making the function call. `push_null` should be True if no NULL is pushed for the callable. Conversely, `push_null` should be False if a NULL was pushed for the callable. Prefer using `push_null=False` when possible since we will not need to rotate NULL to the right place, which is less efficient. Generally, you should codegen a function by using `add_push_null` then `create_call_function` with `push_null=False`. Example of when to set push_null False: insts = [ create_instruction("LOAD_GLOBAL", argval="torch"), create_instruction("LOAD_ATTR", argval="nn"), create_instruction("LOAD_ATTR", argval="functional"), create_instruction("LOAD_ATTR", argval="relu"), ] insts = add_push_null(insts) insts.append(create_instruction("LOAD_FAST", argval="x")) insts.extend(create_call_function(1, False)) Example of when to set push_null True: insts = [create_instruction("LOAD_FAST", x)] for should_wrap, wrapper_name in wrappers: if should_wrap: insts.extend([ create_instruction("LOAD_GLOBAL", argval="wrapper1"), create_instruction("SWAP", arg=2), *create_call_function(1, True), ) """ if sys.version_info >= (3, 11): output = [] if push_null: output.append(create_instruction("PUSH_NULL")) # 3.13 swapped NULL and callable rots = nargs + 1 if sys.version_info >= (3, 13) else nargs + 2 output.extend(create_rot_n(rots)) if sys.version_info < (3, 12): output.append(create_instruction("PRECALL", arg=nargs)) output.append(create_instruction("CALL", arg=nargs)) return output return [create_instruction("CALL_FUNCTION", arg=nargs)] def create_call_function_ex(has_kwargs: bool) -> list[Instruction]: """ Assumes that in 3.14+, if has_kwargs=False, there is NOT a NULL on the TOS for the kwargs. This utility function will add a PUSH_NULL. If the caller has already pushed a NULL, then do not call this function - just use create_instruction("CALL_FUNCTION_EX", arg=...). """ insts = [] if sys.version_info >= (3, 14) and not has_kwargs: insts.append(create_instruction("PUSH_NULL")) insts.append(create_instruction("CALL_FUNCTION_EX", arg=int(has_kwargs))) return insts def create_call_method(nargs: int) -> list[Instruction]: if sys.version_info >= (3, 12): return [create_instruction("CALL", arg=nargs)] if sys.version_info >= (3, 11): return [ create_instruction("PRECALL", arg=nargs), create_instruction("CALL", arg=nargs), ] return [create_instruction("CALL_METHOD", arg=nargs)] def create_load_method(name: str) -> Instruction: if sys.version_info >= (3, 12): # in 3.12, create a LOAD_ATTR instruction with the low bit set return create_instruction("LOAD_ATTR", arg=1, argval=name) return create_instruction("LOAD_METHOD", argval=name) def create_setup_with(target: Instruction) -> Instruction: opname = "BEFORE_WITH" if sys.version_info >= (3, 11) else "SETUP_WITH" return create_instruction(opname, target=target) def create_swap(n: int) -> list[Instruction]: if sys.version_info >= (3, 11): return [create_instruction("SWAP", arg=n)] # in Python < 3.11, SWAP is a macro that expands to multiple instructions if n == 1: return [] elif n == 2: return [create_instruction("ROT_TWO")] elif n == 3: return [create_instruction("ROT_THREE"), create_instruction("ROT_TWO")] """ e.g. swap "a" and "b" in this stack: 0 a 1 2 3 b 0 a [1 2 3 b] 0 a [1 2 3 b] [1 2 3 b] 0 a [1 2 3 b] [1 2 3 b] -1 0 a [1 2 3 b] b 0 b a [1 2 3 b] 0 b a [1 2 3 b] [1 2 3 b] 0 b [1 2 3 b] a [1 2 3 b] 0 b [1 2 3 b] a [1 2 3 b] -1 0 b [1 2 3 a] 0 b [1 2 3 a] [1 2 3 a] 0 b [1 2 3 a] [1 2 3 a] reverse 0 b [a 3 2 1] None 0 b [a 3 2 1] 0 b 1 2 3 a """ return [ create_instruction("BUILD_LIST", arg=n - 1), create_instruction("DUP_TOP"), create_instruction("LOAD_CONST", argval=-1), create_binary_subscr(), create_instruction("ROT_THREE"), create_instruction("DUP_TOP"), create_instruction("ROT_THREE"), create_instruction("LOAD_CONST", argval=-1), create_instruction("STORE_SUBSCR"), create_instruction("DUP_TOP"), create_load_method("reverse"), *create_call_method(0), create_instruction("POP_TOP"), create_instruction("UNPACK_SEQUENCE", arg=n - 1), ] def create_binary_slice( start: Optional[int], end: Optional[int], store: bool = False ) -> list[Instruction]: """ BINARY_SLICE and STORE_SLICE (if `set` is True) for all Python versions """ if sys.version_info >= (3, 14): subscr_inst = ( create_instruction("STORE_SUBSCR") if store else create_binary_subscr() ) return [ create_load_const(slice(start, end)), subscr_inst, ] elif sys.version_info >= (3, 12): inst_name = "STORE_SLICE" if store else "BINARY_SLICE" return [ create_load_const(start), create_load_const(end), create_instruction(inst_name), ] else: inst_name = "STORE_SUBSCR" if store else "BINARY_SUBSCR" return [ create_load_const(start), create_load_const(end), create_instruction("BUILD_SLICE", arg=2), create_instruction(inst_name), ] def create_copy(i: int) -> list[Instruction]: if sys.version_info >= (3, 11): return [create_instruction("COPY", arg=i)] # COPY 4 # 0 1 2 3 # 3 1 2 0 # 3 1 2 0 0 # 0 1 2 0 3 # 0 1 2 3 0 return [ *create_swap(i), create_dup_top(), *create_swap(i + 1), *create_swap(2), ] # mainly for debugging generated bytecode def create_print_on_stack(depth: int) -> list[Instruction]: return [ *add_push_null(create_instruction("LOAD_CONST", argval=print)), *create_copy(depth + (2 if sys.version_info >= (3, 11) else 1)), *create_call_function(1, False), create_instruction("POP_TOP"), ] # mainly for debugging generated bytecode def create_print_value(value: Any) -> list[Instruction]: return [ *add_push_null(create_instruction("LOAD_CONST", argval=print)), create_instruction("LOAD_CONST", argval=value), *create_call_function(1, False), create_instruction("POP_TOP"), ] def create_binary_subscr() -> Instruction: if sys.version_info < (3, 14): return create_instruction("BINARY_SUBSCR") # https://github.com/python/cpython/blob/0e46c0499413bc5f9f8336fe76e2e67cf93f64d8/Include/opcode.h#L36 return create_instruction("BINARY_OP", arg=26) def create_build_tuple(n: int) -> Instruction: if sys.version_info >= (3, 14) and n == 0: return create_load_const(()) return create_instruction("BUILD_TUPLE", arg=n) def linetable_writer( first_lineno: int, ) -> tuple[list[int], Callable[[int, int], None], Callable[[int], None]]: """ Used to create typing.CodeType.co_linetable See https://github.com/python/cpython/blob/main/Objects/lnotab_notes.txt This is the internal format of the line number table for Python 3.10 """ assert sys.version_info[:2] == (3, 10) linetable: list[int] = [] lineno = first_lineno lineno_delta = 0 byteno = 0 def _update(byteno_delta: int, lineno_delta: int) -> None: while byteno_delta != 0 or lineno_delta != 0: byte_offset = max(0, min(byteno_delta, 254)) line_offset = max(-127, min(lineno_delta, 127)) assert byte_offset != 0 or line_offset != 0 byteno_delta -= byte_offset lineno_delta -= line_offset linetable.extend((byte_offset, line_offset & 0xFF)) def update(lineno_new: int, byteno_new: int) -> None: nonlocal lineno, lineno_delta, byteno byteno_delta = byteno_new - byteno byteno = byteno_new _update(byteno_delta, lineno_delta) lineno_delta = lineno_new - lineno lineno = lineno_new def end(total_bytes: int) -> None: _update(total_bytes - byteno, lineno_delta) return linetable, update, end def encode_varint(n: int) -> list[int]: """ 6-bit chunk encoding of an unsigned integer See https://github.com/python/cpython/blob/3.11/Objects/locations.md """ assert n >= 0 b = [n & 63] n >>= 6 while n > 0: b[-1] |= 64 b.append(n & 63) n >>= 6 return b def linetable_311_writer( first_lineno: int, ) -> tuple[list[int], Callable[[Optional["dis.Positions"], int], None]]: """ Used to create typing.CodeType.co_linetable See https://github.com/python/cpython/blob/3.11/Objects/locations.md This is the internal format of the line number table for Python 3.11 """ assert sys.version_info >= (3, 11) linetable = [] lineno = first_lineno def update(positions: Optional["dis.Positions"], inst_size: int) -> None: nonlocal lineno lineno_new = positions.lineno if positions else None def _update(delta: int, size: int) -> None: assert 0 < size <= 8 # first byte - use 13 (no column info) is positions is # malformed, otherwise use 14 (long form) other_varints: tuple[int, ...] = () if ( positions and positions.lineno is not None and positions.end_lineno is not None and positions.col_offset is not None and positions.end_col_offset is not None ): linetable.append(0b1_1110_000 + size - 1) # for whatever reason, column offset needs `+ 1` # https://github.com/python/cpython/blob/1931c2a438c50e6250725c84dff94fc760b9b951/Python/compile.c#L7603 other_varints = ( positions.end_lineno - positions.lineno, positions.col_offset + 1, positions.end_col_offset + 1, ) else: linetable.append(0b1_1101_000 + size - 1) # encode signed int if delta < 0: delta = ((-delta) << 1) | 1 else: delta <<= 1 # encode unsigned int linetable.extend(encode_varint(delta)) for n in other_varints: linetable.extend(encode_varint(n)) if lineno_new is None: lineno_delta = 0 else: lineno_delta = lineno_new - lineno lineno = lineno_new while inst_size > 8: _update(lineno_delta, 8) inst_size -= 8 _update(lineno_delta, inst_size) return linetable, update @dataclasses.dataclass(slots=True) class ExceptionTableEntry: start: int end: int target: int depth: int lasti: bool def encode_exception_table_varint(n: int) -> list[int]: """ Similar to `encode_varint`, but the 6-bit chunks are ordered in reverse. """ assert n >= 0 b = [n & 63] n >>= 6 while n > 0: b.append(n & 63) n >>= 6 b.reverse() for i in range(len(b) - 1): b[i] |= 64 return b def decode_exception_table_varint(bytes_iter: Iterator[int]) -> int: """ Inverse of `encode_exception_table_varint`. """ b = next(bytes_iter) val = b & 63 while b & 64: val <<= 6 b = next(bytes_iter) val |= b & 63 return val def check_exception_table(tab: list[ExceptionTableEntry]) -> None: """ Verifies that a list of ExceptionTableEntries will make a well-formed jump table: entries are non-empty, sorted, and do not overlap. """ for i in range(len(tab) - 1): assert ( tab[i].start <= tab[i].end and tab[i].end < tab[i + 1].start and tab[i + 1].start <= tab[i + 1].end ) def parse_exception_table(exntab: bytes) -> list[ExceptionTableEntry]: """ Parse the exception table according to https://github.com/python/cpython/blob/3.11/Objects/exception_handling_notes.txt """ exntab_iter = iter(exntab) tab = [] try: while True: start = decode_exception_table_varint(exntab_iter) * 2 length = decode_exception_table_varint(exntab_iter) * 2 end = start + length - 2 target = decode_exception_table_varint(exntab_iter) * 2 dl = decode_exception_table_varint(exntab_iter) depth = dl >> 1 lasti = bool(dl & 1) tab.append(ExceptionTableEntry(start, end, target, depth, lasti)) except StopIteration: check_exception_table(tab) return tab def assemble_exception_table(tab: list[ExceptionTableEntry]) -> bytes: """ Inverse of parse_exception_table - encodes list of exception table entries into bytes. """ b = [] for entry in tab: first_entry = encode_exception_table_varint(entry.start // 2) first_entry[0] |= 1 << 7 b.extend(first_entry) length = entry.end - entry.start + 2 b.extend(encode_exception_table_varint(length // 2)) b.extend(encode_exception_table_varint(entry.target // 2)) dl = (entry.depth << 1) + entry.lasti b.extend(encode_exception_table_varint(dl)) return bytes(b) def assemble(instructions: list[Instruction], firstlineno: int) -> tuple[bytes, bytes]: """Do the opposite of dis.get_instructions()""" code: list[int] = [] if sys.version_info >= (3, 11): lnotab, update_lineno = linetable_311_writer(firstlineno) num_ext = 0 for i, inst in enumerate(instructions): if inst.opname == "EXTENDED_ARG": inst_size = 1 num_ext += 1 # copy positions from the actual instruction for j in (1, 2, 3): if instructions[i + j].opname != "EXTENDED_ARG": inst.positions = instructions[i + j].positions break else: inst_size = instruction_size(inst) // 2 + num_ext num_ext = 0 update_lineno(inst.positions, inst_size) num_ext = 0 arg = inst.arg or 0 code.extend((inst.opcode, arg & 0xFF)) for _ in range(instruction_size(inst) // 2 - 1): code.extend((0, 0)) else: lnotab, update_lineno, end = linetable_writer(firstlineno) for inst in instructions: if inst.starts_line is not None: update_lineno(inst.starts_line, len(code)) arg = inst.arg or 0 code.extend((inst.opcode, arg & 0xFF)) end(len(code)) return bytes(code), bytes(lnotab) def _get_instruction_by_offset( offset_to_inst: dict[int, Instruction], offset: int ) -> Optional[Instruction]: """ Get the instruction located at a given offset, accounting for EXTENDED_ARGs """ for n in (0, 2, 4, 6): if offset_to_inst[offset + n].opcode != dis.EXTENDED_ARG: return offset_to_inst[offset + n] return None def virtualize_jumps(instructions: Iterable[Instruction]) -> None: """Replace jump targets with pointers to make editing easier""" jump_targets = { inst.offset: inst for inst in instructions if inst.offset is not None } for inst in instructions: if inst.opcode in dis.hasjabs or inst.opcode in dis.hasjrel: inst.target = _get_instruction_by_offset(jump_targets, inst.argval) _REL_JUMPS = set(dis.hasjrel) def flip_jump_direction(instruction: Instruction) -> None: if sys.version_info < (3, 11): raise RuntimeError("Cannot flip jump direction in Python < 3.11") if "FORWARD" in instruction.opname: instruction.opname = instruction.opname.replace("FORWARD", "BACKWARD") elif "BACKWARD" in instruction.opname: instruction.opname = instruction.opname.replace("BACKWARD", "FORWARD") else: raise AttributeError("Instruction is not a forward or backward jump") instruction.opcode = dis.opmap[instruction.opname] assert instruction.opcode in _REL_JUMPS def _get_instruction_front(instructions: list[Instruction], idx: int) -> Instruction: """ i.e. get the first EXTENDED_ARG instruction (if any) when targeting instructions[idx] with a jump. """ target = instructions[idx] for offset in (1, 2, 3): if idx >= offset and instructions[idx - offset].opcode == dis.EXTENDED_ARG: target = instructions[idx - offset] else: break return target def devirtualize_jumps(instructions: list[Instruction]) -> None: """Fill in args for virtualized jump target after instructions may have moved""" jumps = set(dis.hasjabs).union(set(dis.hasjrel)) # check for negative jump args and fix them for inst in instructions: if inst.opcode in jumps: if inst.opcode not in dis.hasjabs: assert ( inst.target is not None and inst.target.offset is not None and inst.offset is not None ) if inst.target.offset < inst.offset: if sys.version_info < (3, 11): raise RuntimeError("Got negative jump offset for Python < 3.11") # forward jumps become backward if "FORWARD" in inst.opname: flip_jump_direction(inst) else: # backward jumps become forward if sys.version_info >= (3, 11) and "BACKWARD" in inst.opname: flip_jump_direction(inst) # jump instruction size may have changed due to flips update_offsets(instructions) indexof = get_indexof(instructions) # compute jump instruction arg for inst in instructions: if inst.opcode in jumps: assert inst.target is not None target = _get_instruction_front(instructions, indexof[inst.target]) if inst.opcode in dis.hasjabs: if sys.version_info < (3, 11): # `arg` is expected to be bytecode offset, whereas `offset` is byte offset. # Divide since bytecode is 2 bytes large. inst.arg = int(target.offset / 2) else: raise RuntimeError("Python 3.11+ should not have absolute jumps") else: # relative jump # byte offset between target and next instruction assert target.offset is not None and inst.offset is not None inst.arg = abs( int(target.offset - inst.offset - instruction_size(inst)) ) # pyrefly: ignore # unsupported-operation inst.arg //= 2 inst.argval = target.offset inst.argrepr = f"to {target.offset}" def virtualize_exception_table( exn_tab_bytes: bytes, instructions: list[Instruction] ) -> None: """Replace exception table entries with pointers to make editing easier""" exn_tab = parse_exception_table(exn_tab_bytes) offset_to_inst = {cast(int, inst.offset): inst for inst in instructions} offsets = sorted(offset_to_inst.keys()) end_offset_idx = 0 exn_tab_iter = iter(exn_tab) try: def step() -> tuple[ExceptionTableEntry, InstructionExnTabEntry]: nonlocal end_offset_idx entry = next(exn_tab_iter) # find rightmost offset <= entry.end, since entry.end may not be # an actual instruction, e.g. if the end instruction is LOAD_GLOBAL, # which takes more than 2 bytes, then entry.end points to the end # of the LOAD_GLOBAL instruction, not the beginning. while ( end_offset_idx < len(offsets) and offsets[end_offset_idx] <= entry.end ): end_offset_idx += 1 assert end_offset_idx > 0 end_offset = offsets[end_offset_idx - 1] inst_entry = InstructionExnTabEntry( _get_instruction_by_offset(offset_to_inst, entry.start), # type: ignore[arg-type] _get_instruction_by_offset(offset_to_inst, end_offset), # type: ignore[arg-type] _get_instruction_by_offset(offset_to_inst, entry.target), # type: ignore[arg-type] entry.depth, entry.lasti, ) return entry, inst_entry entry, inst_entry = step() for inst in instructions: assert inst.offset is not None while inst.offset > entry.end: entry, inst_entry = step() if inst.offset >= entry.start: inst.exn_tab_entry = copy.copy(inst_entry) except StopIteration: pass def compute_exception_table( instructions: list[Instruction], ) -> list[ExceptionTableEntry]: """Compute exception table in list format from instructions with exn_tab_entries""" exn_dict: dict[tuple[int, int], tuple[int, int, bool]] = {} indexof = get_indexof(instructions) for inst in instructions: if inst.exn_tab_entry: # account for prefixed EXTENDED_ARGS start = _get_instruction_front( instructions, indexof[inst.exn_tab_entry.start] ).offset assert start is not None # point to the last 2 bytes of the end instruction end = ( cast(int, inst.exn_tab_entry.end.offset) + instruction_size(inst.exn_tab_entry.end) - 2 ) assert end is not None target = _get_instruction_front( instructions, indexof[inst.exn_tab_entry.target] ).offset assert target is not None key = (start, end) val = (target, inst.exn_tab_entry.depth, inst.exn_tab_entry.lasti) if key in exn_dict: assert exn_dict[key] == val exn_dict[key] = val # Dynamo may construct nested exception table entries for convenience, # but Python expects exception table entries to not overlap. # NOTE: below, "keys" refer to old instruction entries' starts and ends, # and "entries" refer to the generated exception table entries. # Sort keys by increasing start, then decreasing end keys_sorted = sorted(exn_dict.keys(), key=lambda t: (t[0], -t[1])) # smallest byte that the next exception table entry can start at nexti = 0 # stack of current nested keys key_stack: list[tuple[int, int]] = [] exn_tab: list[ExceptionTableEntry] = [] def pop() -> None: """ Pop the key_stack and append an exception table entry if possible. """ nonlocal nexti if key_stack: key = key_stack.pop() if nexti <= key[1]: exn_tab.append( ExceptionTableEntry(max(key[0], nexti), key[1], *exn_dict[key]) ) nexti = key[1] + 2 for key in keys_sorted: # pop keys that are no longer nested over the current key while key_stack and key_stack[-1][1] < key[0]: pop() if key_stack: # create an entry covering to the current key, if possible assert key_stack[-1][0] <= key[0] <= key[1] <= key_stack[-1][1] left = max(nexti, key_stack[-1][0]) if left < key[0]: exn_tab.append( ExceptionTableEntry(left, key[0] - 2, *exn_dict[key_stack[-1]]) ) nexti = key[0] key_stack.append(key) while key_stack: pop() check_exception_table(exn_tab) return exn_tab def check_inst_exn_tab_entries_nested( tab: list[InstructionExnTabEntry], indexof: dict[Instruction, int] ) -> None: """ Checks `tab` is a properly sorted list of nested InstructionExnTabEntry's, i.e. no entries partially overlap. "Properly sorted" means entries are sorted by increasing starts, then decreasing ends. """ entry_stack: list[tuple[int, int]] = [] for entry in tab: key = (indexof[entry.start], indexof[entry.end]) while entry_stack and entry_stack[-1][1] < key[0]: entry_stack.pop() if entry_stack: assert entry_stack[-1][0] <= key[0] <= key[1] <= entry_stack[-1][1] entry_stack.append(key) def propagate_inst_exn_table_entries(instructions: list[Instruction]) -> None: """ Copies exception table entries to all instructions in an entry's range. Supports nested exception table entries. """ indexof = get_indexof(instructions) entries: dict[tuple[int, int], InstructionExnTabEntry] = {} for inst in instructions: if inst.exn_tab_entry: key = ( indexof[inst.exn_tab_entry.start], indexof[inst.exn_tab_entry.end], ) if key in entries: assert inst.exn_tab_entry == entries[key] entries[key] = inst.exn_tab_entry sorted_entries = [ entries[key] for key in sorted(entries.keys(), key=lambda t: (t[0], -t[1])) ] check_inst_exn_tab_entries_nested(sorted_entries, indexof) # Propagation of nested entries works since nested entries come later # in sorted order. for entry in sorted_entries: for i in range(indexof[entry.start], indexof[entry.end] + 1): instructions[i].exn_tab_entry = copy.copy(entry) def check_inst_exn_tab_entries_valid(instructions: list[Instruction]) -> None: """ Checks that exn_tab_entries of instructions are valid. An entry's start, end, and target must be in instructions. Instructions with an exn_tab_entry are located within the entry's start and end instructions. Instructions do not share exn_tab_entries. Implicitly checks for no duplicate instructions. """ indexof = get_indexof(instructions) exn_tab_entry_set = set() for i, inst in enumerate(instructions): if inst.exn_tab_entry: assert sys.version_info >= (3, 11) assert id(inst.exn_tab_entry) not in exn_tab_entry_set exn_tab_entry_set.add(id(inst.exn_tab_entry)) entry = inst.exn_tab_entry assert entry.start in indexof assert entry.end in indexof assert entry.target in indexof assert indexof[entry.start] <= i <= indexof[entry.end] def strip_extended_args(instructions: list[Instruction]) -> None: instructions[:] = [i for i in instructions if i.opcode != dis.EXTENDED_ARG] # Overwrites old_inst with a sequence of new instructions. # This is necessary in order to preserve jump targets to the old # instruction, exception table entries, and positions. # Returns the modified sequence of instructions (including the modified # old instruction!) that can be manipulated elsewhere. def overwrite_instruction( old_inst: Instruction, new_insts: list[Instruction] ) -> list[Instruction]: # update old_inst.exnt_tab_entry.end if necessary if ( old_inst.exn_tab_entry and old_inst.exn_tab_entry.end is old_inst and len(new_insts) > 1 ): old_inst.exn_tab_entry.end = new_insts[-1] # preserve exception table entries and positions for inst in new_insts[1:]: inst.exn_tab_entry = copy.copy(old_inst.exn_tab_entry) inst.positions = old_inst.positions # modify old_inst in-place to preserve jump target old_inst.opcode = new_insts[0].opcode old_inst.opname = new_insts[0].opname old_inst.arg = new_insts[0].arg old_inst.argval = new_insts[0].argval old_inst.target = new_insts[0].target return [old_inst] + new_insts[1:] def remove_load_call_method(instructions: list[Instruction]) -> list[Instruction]: """LOAD_METHOD puts a NULL on the stack which causes issues, so remove it""" assert sys.version_info < (3, 11) rewrites = {"LOAD_METHOD": "LOAD_ATTR", "CALL_METHOD": "CALL_FUNCTION"} for inst in instructions: if inst.opname in rewrites: inst.opname = rewrites[inst.opname] inst.opcode = dis.opmap[inst.opname] return instructions def remove_jump_if_none(instructions: list[Instruction]) -> None: new_insts = [] for inst in instructions: if "_NONE" in inst.opname: is_op = create_instruction("IS_OP", arg=int("NOT" in inst.opname)) # need both argval and arg set correctly now (not later) is_op.argval = is_op.arg if sys.version_info < (3, 12): jump_op = create_instruction( ( "POP_JUMP_FORWARD_IF_TRUE" if "FORWARD" in inst.opname else "POP_JUMP_BACKWARD_IF_TRUE" ), target=inst.target, ) else: jump_op = create_instruction("POP_JUMP_IF_TRUE", target=inst.target) replace_insts = [ create_instruction("LOAD_CONST", argval=None), is_op, jump_op, ] new_insts.extend(overwrite_instruction(inst, replace_insts)) else: new_insts.append(inst) instructions[:] = new_insts def remove_binary_store_slice(instructions: list[Instruction]) -> None: new_insts = [] for inst in instructions: new_insts.append(inst) if inst.opname in ("BINARY_SLICE", "STORE_SLICE"): # new instruction if sys.version_info >= (3, 14) and inst.opname == "BINARY_SLICE": subscr_inst = create_binary_subscr() else: subscr_inst = create_instruction(inst.opname.replace("SLICE", "SUBSCR")) if inst.exn_tab_entry and inst.exn_tab_entry.end is inst: inst.exn_tab_entry.end = subscr_inst subscr_inst.exn_tab_entry = copy.copy(inst.exn_tab_entry) subscr_inst.positions = inst.positions # modify inst in-place to preserve jump target inst.opcode = dis.opmap["BUILD_SLICE"] inst.opname = "BUILD_SLICE" inst.arg = 2 inst.argval = 2 new_insts.append(subscr_inst) instructions[:] = new_insts FUSED_INSTS = { "LOAD_FAST_LOAD_FAST": ("LOAD_FAST", "LOAD_FAST"), "LOAD_FAST_BORROW_LOAD_FAST_BORROW": ("LOAD_FAST_BORROW", "LOAD_FAST_BORROW"), "STORE_FAST_STORE_FAST": ("STORE_FAST", "STORE_FAST"), "STORE_FAST_LOAD_FAST": ("STORE_FAST", "LOAD_FAST"), } def remove_fused_load_store(instructions: list[Instruction]) -> None: new_insts = [] for inst in instructions: if inst.opname in FUSED_INSTS: inst0, inst1 = FUSED_INSTS[inst.opname] argval0, argval1 = inst.argval replace_insts = [ create_instruction(inst0, argval=argval0), create_instruction(inst1, argval=argval1), ] new_insts.extend(overwrite_instruction(inst, replace_insts)) else: new_insts.append(inst) instructions[:] = new_insts # adds GRAPH_BREAK_IF_LEAF (not a real instruction) before RETURN_* instructions # for testing purposes def add_graph_break_if_leaf_instructions(instructions: list[Instruction]) -> None: new_insts = [] for inst in instructions: if "RETURN" in inst.opname: replace_insts = [ create_instruction("NOP", argval="GRAPH_BREAK_IF_LEAF"), create_instruction(inst.opname, argval=inst.argval), ] new_insts.extend(overwrite_instruction(inst, replace_insts)) else: new_insts.append(inst) instructions[:] = new_insts def remove_graph_break_if_leaf_instructions(instructions: list[Instruction]) -> None: new_insts = [] for inst, next_inst in itertools.pairwise(instructions): if ( inst.opname == "NOP" and inst.argval == "GRAPH_BREAK_IF_LEAF" and next_inst.opname.startswith("RETURN") ): # remove this instruction and update all other instructions' jump targets for i in range(len(instructions)): if instructions[i].target is inst: instructions[i].target = next_inst if instructions[i].exn_tab_entry: # linter is mistakenly complaining that None has no attribute "..." # but this codepath only runs if instructions[i] is not None if instructions[i].exn_tab_entry.start is inst: # type: ignore[union-attr] instructions[i].exn_tab_entry.start = next_inst # type: ignore[union-attr] if instructions[i].exn_tab_entry.end is inst: # type: ignore[union-attr] instructions[i].exn_tab_entry.end = next_inst # type: ignore[union-attr] if instructions[i].exn_tab_entry.target is inst: # type: ignore[union-attr] instructions[i].exn_tab_entry.target = next_inst # type: ignore[union-attr] else: new_insts.append(inst) new_insts.append(instructions[-1]) instructions[:] = new_insts def explicit_super(code: types.CodeType, instructions: list[Instruction]) -> None: """convert super() with no args into explicit arg form""" cell_and_free = (code.co_cellvars or ()) + (code.co_freevars or ()) if not len(code.co_varnames): # A function with no argument cannot contain a valid "super()" call return output = [] for idx, inst in enumerate(instructions): output.append(inst) if inst.opname == "LOAD_GLOBAL" and inst.argval == "super": nexti = instructions[idx + 1] if nexti.arg == 0 and ( (sys.version_info >= (3, 12) and nexti.opname == "CALL") or ( sys.version_info >= (3, 11) and sys.version_info < (3, 12) and nexti.opname == "PRECALL" ) or (sys.version_info < (3, 11) and nexti.opname == "CALL_FUNCTION") ): assert "__class__" in cell_and_free output.append(create_instruction("LOAD_DEREF", argval="__class__")) first_var = code.co_varnames[0] if first_var in cell_and_free: output.append(create_instruction("LOAD_DEREF", argval=first_var)) else: output.append(create_instruction("LOAD_FAST", argval=first_var)) nexti.arg = 2 nexti.argval = 2 if nexti.opname == "PRECALL": # also update the following CALL instruction call_inst = instructions[idx + 2] call_inst.arg = 2 call_inst.argval = 2 instructions[:] = output def fix_extended_args(instructions: list[Instruction]) -> int: """Fill in correct argvals for EXTENDED_ARG ops""" output: list[Instruction] = [] def maybe_pop_n(n: int) -> None: for _ in range(n): if output and output[-1].opcode == dis.EXTENDED_ARG: output.pop() for inst in instructions: if inst.opcode == dis.EXTENDED_ARG: # Leave this instruction alone for now so we never shrink code inst.arg = 0 elif inst.arg and inst.arg > 0xFFFFFF: maybe_pop_n(3) output.append(create_instruction("EXTENDED_ARG", arg=inst.arg >> 24)) output.append(create_instruction("EXTENDED_ARG", arg=inst.arg >> 16)) output.append(create_instruction("EXTENDED_ARG", arg=inst.arg >> 8)) elif inst.arg and inst.arg > 0xFFFF: maybe_pop_n(2) output.append(create_instruction("EXTENDED_ARG", arg=inst.arg >> 16)) output.append(create_instruction("EXTENDED_ARG", arg=inst.arg >> 8)) elif inst.arg and inst.arg > 0xFF: maybe_pop_n(1) output.append(create_instruction("EXTENDED_ARG", arg=inst.arg >> 8)) output.append(inst) added = len(output) - len(instructions) assert added >= 0 instructions[:] = output return added def instruction_size(inst: Instruction) -> int: import torch if sys.version_info >= (3, 11): return 2 * (torch._C._dynamo.eval_frame.py_opcode_caches[inst.opcode] + 1) return 2 def check_offsets(instructions: Sequence[Instruction]) -> None: offset = 0 for inst in instructions: assert inst.offset == offset offset += instruction_size(inst) def update_offsets(instructions: Sequence[Instruction]) -> None: offset = 0 for inst in instructions: inst.offset = offset # pyrefly: ignore # unsupported-operation offset += instruction_size(inst) def debug_bytes(*args: bytes) -> str: index = range(max(map(len, args))) result = [ " ".join(f"{x:03}" for x in arg) for arg in [index] + list(args) + [[int(a != b) for a, b in zip(args[-1], args[-2])]] ] return "bytes mismatch\n" + "\n".join(result) def debug_checks(code: types.CodeType) -> None: """Make sure our assembler produces same bytes as we start with""" dode, _ = transform_code_object(code, lambda x, y: None, safe=True) assert code.co_code == dode.co_code, debug_bytes(code.co_code, dode.co_code) assert code.co_lnotab == dode.co_lnotab, debug_bytes(code.co_lnotab, dode.co_lnotab) HAS_LOCAL = set(dis.haslocal) HAS_NAME = set(dis.hasname) HAS_FREE = set(dis.hasfree) HAS_CONST = set(dis.hasconst) def get_const_index(code_options: dict[str, Any], val: Any) -> int: for i, v in enumerate(code_options["co_consts"]): # NOTE: stronger comparison is required, since we have # examples where two values compare equal but have # different semantic meaning in some cases, e.g. # 0.0 == -0.0 but have different effects in torch.copysign. if val is v: return i code_options["co_consts"] += (val,) return len(code_options["co_consts"]) - 1 def fix_vars( instructions: list[Instruction], code_options: dict[str, Any], varname_from_oparg: Optional[Callable[..., Any]] = None, ) -> None: # compute instruction arg from argval if arg is not provided names = {name: idx for idx, name in enumerate(code_options["co_names"])} def get_name_index(name: str) -> int: try: idx = names[name] except KeyError: # Add a missing item to co_names idx = names[name] = len(names) code_options["co_names"] = (*code_options["co_names"], name) assert len(code_options["co_names"]) == len(names) return idx if sys.version_info < (3, 11): assert varname_from_oparg is None varnames = {name: idx for idx, name in enumerate(code_options["co_varnames"])} freenames = { name: idx for idx, name in enumerate( code_options["co_cellvars"] + code_options["co_freevars"] ) } else: assert callable(varname_from_oparg) allnames = {} for idx in itertools.count(): try: name = varname_from_oparg(idx) allnames[name] = idx except IndexError: break varnames = {name: allnames[name] for name in code_options["co_varnames"]} freenames = { name: allnames[name] for name in code_options["co_cellvars"] + code_options["co_freevars"] } for i in range(len(instructions)): def should_compute_arg() -> bool: # argval is prioritized over arg return instructions[i].argval is not _NotProvided if instructions[i].opname == "LOAD_GLOBAL": # 3.11 LOAD_GLOBAL requires both arg and argval - see create_instruction assert instructions[i].argval is not _NotProvided if sys.version_info >= (3, 11): assert instructions[i].arg is not None instructions[i].arg = (get_name_index(instructions[i].argval) << 1) + ( cast(int, instructions[i].arg) % 2 ) else: instructions[i].arg = get_name_index(instructions[i].argval) elif instructions[i].opname == "LOAD_ATTR": # 3.12 LOAD_ATTR requires both arg and argval, like LOAD_GLOBAL assert instructions[i].argval is not _NotProvided if sys.version_info >= (3, 12): assert instructions[i].arg is not None instructions[i].arg = (get_name_index(instructions[i].argval) << 1) + ( cast(int, instructions[i].arg) % 2 ) else: instructions[i].arg = get_name_index(instructions[i].argval) elif instructions[i].opname == "LOAD_SUPER_ATTR": assert instructions[i].arg is not None assert instructions[i].argval is not _NotProvided # Copy low bit, force second bit on for explicit super (the "+ 2") instructions[i].arg = ( (get_name_index(instructions[i].argval) << 2) + (cast(int, instructions[i].arg) % 2) + 2 ) elif instructions[i].opname in FUSED_INSTS: assert sys.version_info >= (3, 13) assert isinstance(instructions[i].argval, tuple) assert len(instructions[i].argval) == 2 arg_tuple = tuple( varnames[name] if name in varnames else freenames[name] for name in instructions[i].argval ) instructions[i].arg = (arg_tuple[0] << 4) + (arg_tuple[1] & 15) elif instructions[i].opcode in HAS_LOCAL: if should_compute_arg(): if ( sys.version_info >= (3, 13) and instructions[i].argval not in varnames ): # instructions like LOAD_FAST used for both local and free vars instructions[i].arg = freenames[instructions[i].argval] else: instructions[i].arg = varnames[instructions[i].argval] elif instructions[i].opcode in HAS_NAME: if should_compute_arg(): instructions[i].arg = get_name_index(instructions[i].argval) elif instructions[i].opcode in HAS_FREE: if should_compute_arg(): instructions[i].arg = freenames[instructions[i].argval] elif instructions[i].opcode in HAS_CONST: # NOTE: only update argval if arg is not provided. This assumes # that any additions to co_consts are appended. if instructions[i].arg is None: # cannot use a dictionary since consts may not be hashable idx = get_const_index(code_options, instructions[i].argval) assert idx >= 0 instructions[i].arg = idx def clear_instruction_args(instructions: list[Instruction]) -> None: # Clear the instruction arg for instructions that have argvals. # Useful for using dis'd bytecode within generated bytecode. for inst in instructions: if ( inst.argval is not _NotProvided and ( inst.opcode in HAS_LOCAL or inst.opcode in HAS_NAME or inst.opcode in HAS_FREE or inst.opcode in HAS_CONST ) and inst.opname not in ("LOAD_GLOBAL", "LOAD_ATTR", "LOAD_SUPER_ATTR") ): inst.arg = None @functools.lru_cache def get_code_keys() -> list[str]: # Python 3.11 changes to code keys are not fully documented. # See https://github.com/python/cpython/blob/3.11/Objects/clinic/codeobject.c.h#L24 # for new format. keys = ["co_argcount"] keys.append("co_posonlyargcount") keys.extend( [ "co_kwonlyargcount", "co_nlocals", "co_stacksize", "co_flags", "co_code", "co_consts", "co_names", "co_varnames", "co_filename", "co_name", ] ) if sys.version_info >= (3, 11): keys.append("co_qualname") keys.append("co_firstlineno") keys.append("co_linetable") if sys.version_info >= (3, 11): # not documented, but introduced in https://github.com/python/cpython/issues/84403 keys.append("co_exceptiontable") keys.extend( [ "co_freevars", "co_cellvars", ] ) return keys def transform_code_object( code: types.CodeType, transformations: Callable[ [list[Instruction], dict[str, Any]], Optional["DynamoTracerOutput"] ], safe: bool = False, ) -> tuple[types.CodeType, Optional["DynamoTracerOutput"]]: keys = get_code_keys() code_options = {k: getattr(code, k) for k in keys} assert len(code_options["co_varnames"]) == code_options["co_nlocals"] instructions = cleaned_instructions(code, safe) # propagate line nums again for added instructions propagate_line_nums(instructions) tracer_output = transformations(instructions, code_options) _, bytecode = clean_and_assemble_instructions(instructions, keys, code_options) return bytecode, tracer_output def clean_and_assemble_instructions( instructions: list[Instruction], keys: list[str], code_options: dict[str, Any] ) -> tuple[list[Instruction], types.CodeType]: remove_graph_break_if_leaf_instructions(instructions) # also implicitly checks for no duplicate instructions check_inst_exn_tab_entries_valid(instructions) code_options["co_nlocals"] = len(code_options["co_varnames"]) varname_from_oparg = None if sys.version_info >= (3, 11): # temporary code object with updated names tmp_code = types.CodeType(*[code_options[k] for k in keys]) varname_from_oparg = tmp_code._varname_from_oparg # type: ignore[attr-defined] fix_vars(instructions, code_options, varname_from_oparg=varname_from_oparg) dirty = True while dirty: update_offsets(instructions) devirtualize_jumps(instructions) # this pass might change offsets, if so we need to try again dirty = bool(fix_extended_args(instructions)) remove_extra_line_nums(instructions) bytecode, lnotab = assemble(instructions, code_options["co_firstlineno"]) code_options["co_linetable"] = lnotab code_options["co_code"] = bytecode code_options["co_stacksize"] = stacksize_analysis(instructions) assert set(keys) - {"co_posonlyargcount"} == set(code_options.keys()) - { "co_posonlyargcount" } if sys.version_info >= (3, 11): code_options["co_exceptiontable"] = assemble_exception_table( compute_exception_table(instructions) ) return instructions, types.CodeType(*[code_options[k] for k in keys]) def populate_kw_names_argval(instructions: Sequence[Instruction], consts: Any) -> None: for inst in instructions: if inst.opname == "KW_NAMES": inst.argval = consts[inst.arg] # If safe=True, we do not make any bytecode modifications. # Mainly used for debugging bytecode_transformation (see debug_checks) def cleaned_instructions(code: types.CodeType, safe: bool = False) -> list[Instruction]: instructions = _cached_cleaned_instructions(code, safe) # We have a lot of code that implicitly mutates the instruction array. We # could do better here by making the copies explicit when necessary. return _clone_instructions(instructions) # Copy an instructions array, making sure to remap the individual instruction targets. def _clone_instructions(instructions: Sequence[Instruction]) -> list[Instruction]: # This is super hot and this is the fastest way to do this (tried copy.copy # and dataclasses.replace). copied = [ Instruction( i.opcode, i.opname, i.arg, i.argval, i.offset, i.starts_line, i.is_jump_target, i.positions, i.target, i.exn_tab_entry, i.argrepr, ) for i in instructions ] remap = dict(zip(instructions, copied)) # Handle `None` in the remapper so we don't need an extra `if`. remap[None] = None # type: ignore[index, assignment] for i in copied: i.target = remap[i.target] # type: ignore[index] if entry := i.exn_tab_entry: i.exn_tab_entry = InstructionExnTabEntry( remap[entry.start], remap[entry.end], remap[entry.target], entry.depth, entry.lasti, ) return copied @functools.lru_cache def _cached_cleaned_instructions( code: types.CodeType, safe: bool = False ) -> Sequence[Instruction]: instructions = list(map(convert_instruction, dis.get_instructions(code))) # propagate now in case we remove some instructions propagate_line_nums(instructions) check_offsets(instructions) if sys.version_info >= (3, 11): populate_kw_names_argval(instructions, code.co_consts) virtualize_exception_table(code.co_exceptiontable, instructions) virtualize_jumps(instructions) strip_extended_args(instructions) if not safe: if sys.version_info < (3, 11): remove_load_call_method(instructions) if sys.version_info < (3, 12): explicit_super(code, instructions) if sys.version_info >= (3, 11): remove_jump_if_none(instructions) if sys.version_info >= (3, 12): remove_binary_store_slice(instructions) if sys.version_info >= (3, 13): remove_fused_load_store(instructions) if config.debug_force_graph_break_on_leaf_return: add_graph_break_if_leaf_instructions(instructions) if sys.version_info >= (3, 11): update_offsets(instructions) devirtualize_jumps(instructions) return instructions _unique_id_counter = itertools.count() def unique_id(name: str, with_uuid: bool = False) -> str: ret = f"{name}_{next(_unique_id_counter)}" if with_uuid: ret += f"_{uuid.uuid4()}".replace("-", "_") return ret def is_generator(code: types.CodeType) -> bool: co_generator = 0x20 return (code.co_flags & co_generator) > 0 def bytecode_from_template( fn: Callable[..., Any], varname_map: Optional[Mapping[Any, Any]] = None, noreturn: bool = True, noprefix: bool = True, ) -> list[Instruction]: """Generates bytecode from a template function `fn` for use in dynamo bytecode generation. For example, we can generate Python-version-independent bytecode for looping through a dictionary and copying the values to a new dictionary. def template(d1, d2): for k, v in d1.items(): d2[k] = v or a try block: def template(): try: dummy1 except: dummy2 raise dummy3 Args: fn: a function template to generate bytecode from varname_map: a mapping of `fn`'s varnames to new names. This map will be applied to the generated bytecode's varnames. For example, local variables in `fn` can be replaced with new names that are generated by `OutputGraph.new_var`. noreturn: remove all RETURN_* bytecodes and replace them with a jump to the end of the bytecode. NOTE: any items pushed to the stack for return WILL remain on the stack! Append a POP_TOP if you don't want that item to be present. noprefix: remove prefix bytecodes (all bytecode before the first RESUME, inclusive). """ insts = cleaned_instructions(fn.__code__) clear_instruction_args(insts) if noprefix: for i, inst in enumerate(insts): if inst.opname == "RESUME": insts = insts[i + 1 :] break for inst in insts: # If we don't reset starts_line, then the generated # bytecode's line number will be based on fn's. inst.starts_line = None inst.positions = None if varname_map and inst.argval in varname_map: inst.argval = varname_map[inst.argval] if noreturn: if sys.version_info >= (3, 12): # replace RETURN_CONST with LOAD_CONST RETURN_VALUE new_insts = [] for inst in insts: if inst.opname == "RETURN_CONST": inst.opcode = dis.opmap["LOAD_CONST"] inst.opname = "LOAD_CONST" new_insts.append(inst) # no need to propagate target/exn table new_insts.append(create_instruction("RETURN_VALUE")) else: new_insts.append(inst) insts = new_insts returns = [] for inst in insts: if inst.opname == "RETURN_VALUE": returns.append(inst) if len(returns) == 1 and returns[0] is insts[-1]: # only 1 return at the end - just pop it insts.pop(-1) elif len(returns) > 0: # create jump target - if the last inst is a return, # we can replace it with a NOP and make that the jump target. if insts[-1] is returns[-1]: insts[-1].opname = "NOP" insts[-1].opcode = dis.opmap["NOP"] insts[-1].arg = None insts[-1].argval = _NotProvided returns.pop(-1) else: insts.append(create_instruction("NOP")) # replace returns with jumps for inst in returns: # don't replace inst with new instruction # due to targeting/exn table/etc. jump_inst = create_jump_absolute(insts[-1]) inst.opname = jump_inst.opname inst.opcode = jump_inst.opcode inst.arg = jump_inst.arg inst.argval = jump_inst.argval inst.target = jump_inst.target return insts