#include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include namespace torch { namespace jit { // for debugging it is helpful to be able to force autodiff subgraphs // to be created, to check their correctness, even when the // size of the of the subgraph is too small to be profitable. thread_local bool autodiff_subgraph_inlining = true; void debugSetAutodiffSubgraphInlining(bool state) { autodiff_subgraph_inlining = state; } thread_local std::weak_ptr last_executed_optimized_graph; std::shared_ptr lastExecutedOptimizedGraph() { return last_executed_optimized_graph.lock(); } void ExecutionPlan::run(Stack& stack) const { InterpreterState(code).run(stack); last_executed_optimized_graph = graph; } namespace { using tensor_list = std::vector; using Variable = autograd::Variable; using autograd::variable_list; // Tunable parameters for deciding when to create/keep subgraphs of // differentiable code const size_t autodiffSubgraphNodeThreshold = 2; const size_t autodiffSubgraphInlineThreshold = 5; struct CaptureList { CaptureList(size_t capture_size) { capture_types_.reserve(capture_size); var_captures_.reserve(capture_size); // var_captures_.size() might be // greater than capture_size ivalue_captures_.reserve(capture_size); } void captureTensor(const at::Tensor& tensor, bool is_output) { var_captures_.emplace_back(Variable(tensor), is_output); } void capture(const IValue& val, bool is_output) { if (val.isTensor()) { capture_types_.emplace_back(CAPTURE_TENSOR); captureTensor(val.toTensor(), is_output); } else if (val.isTensorList()) { // For TensorList, we have to flatten it to Tensors during saving and // unflatten it back to TensorList when using it in backward apply(). // This is to avoid any implicit mutation to TensorList happened // between forward & backward. capture_types_.emplace_back(CAPTURE_LIST); const std::vector& tensors = val.toTensorListRef(); sizes_.push_back(tensors.size()); for (const at::Tensor& tensor : tensors) { captureTensor(tensor, is_output); } } else { capture_types_.emplace_back(CAPTURE_IVALUE); ivalue_captures_.push_back(val); } } size_t size() const { return capture_types_.size(); } void unpack( Stack& stack, const std::shared_ptr& saved_for) { auto var_capture_it = var_captures_.begin(); auto ivalue_capture_it = ivalue_captures_.begin(); auto size_it = sizes_.begin(); for (Capture capture_type : capture_types_) { switch (capture_type) { case CAPTURE_TENSOR: { stack.emplace_back(var_capture_it->unpack(saved_for)); ++var_capture_it; } break; case CAPTURE_LIST: { std::vector lst; auto size = *size_it++; for (size_t i = 0; i < size; i++) { lst.emplace_back(var_capture_it->unpack(saved_for)); var_capture_it++; } stack.emplace_back(TensorList::create(std::move(lst))); } break; case CAPTURE_IVALUE: { stack.push_back(*ivalue_capture_it++); } break; } } } private: enum Capture : uint8_t { CAPTURE_TENSOR, CAPTURE_LIST, CAPTURE_IVALUE, }; std::vector capture_types_; std::vector var_captures_; std::vector ivalue_captures_; std::vector sizes_; }; // how do we turn a flattened list of tensors back into the ivalues that // the DifferentiableGraphBackward expects struct UnpackInstructions { UnpackInstructions(size_t num_inputs) { insts_.reserve(num_inputs); } void pushTensor() { insts_.emplace_back(PUSH_TENSOR); } void pushTensorList(size_t size) { insts_.emplace_back(PUSH_LIST); sizes_.push_back(size); } void unpack(variable_list&& inputs, Stack& stack) { auto input_it = std::make_move_iterator(inputs.begin()); auto sizes_it = sizes_.begin(); for (Inst inst : insts_) { switch (inst) { case PUSH_TENSOR: { at::Tensor t = *input_it++; stack.emplace_back(std::move(t)); } break; case PUSH_LIST: { std::vector lst(input_it, input_it + *sizes_it++); stack.emplace_back(TensorList::create(std::move(lst))); } break; } } } private: enum Inst : uint8_t { PUSH_TENSOR, PUSH_LIST, // consumes one size }; std::vector insts_; std::vector sizes_; }; struct DifferentiableGraphBackward : public autograd::Function { DifferentiableGraphBackward( GraphExecutor executor, size_t input_size, size_t capture_size) : executor(std::move(executor)), captures_(capture_size), input_instructions_(input_size) {} variable_list apply(variable_list&& inputs) override { Stack stack; stack.reserve(captures_.size() + inputs.size()); input_instructions_.unpack(std::move(inputs), stack); captures_.unpack(stack, shared_from_this()); executor.run(stack); // NB: stack.size() == num_outputs() is not always true // after we added TensorList support. // Example: aten::stack(Tensor[] tensors, int) where // tensors = [x, x] // Here stack.size()[=1] with a TensorList IValue of // backward graph output. // num_outputs()[=2], however, is the number of outputs of // grad_fn (an autograd::Function). grad_fn's outputs are // grads with regard to Tensor/Variables `x`, but not // graph input TensorList [x, x]. These two grads will // be accumulated to x.grad later using autograd::InputBuffer. variable_list outputs; outputs.reserve(num_outputs()); size_t output_index = 0; for (IValue& v : stack) { if (v.isTensorList()) { for (at::Tensor tensor : v.toTensorListRef()) { produceOutput(output_index++, std::move(tensor), outputs); } } else if (v.isTensor()) { produceOutput(output_index++, std::move(v).toTensor(), outputs); } else { // Input grad can also be None even if it requires grad // Example: `other` in expand_as(self, other) outputs.emplace_back(); } } return outputs; } void capture(const IValue& val, bool is_output) { captures_.capture(val, is_output); } void addOutputForTensor(const at::Tensor& tensor) { auto v = Variable(tensor); add_next_edge(v.defined() ? v.gradient_edge() : autograd::Edge{}); } void addOutputForIValue(const IValue& value) { if (value.isTensorList()) { for (const at::Tensor& tensor : value.toTensorListRef()) { addOutputForTensor(tensor); } } else { addOutputForTensor(value.toTensor()); } } void addInputVariable(Variable output) { // NB: since our requires_grad setting is only a heuristic we might end // up wanting to differentiate through integral tensors, which is // generally a hard error in autograd. if (at::isFloatingType(output.type().scalarType())) { autograd::create_gradient_edge(output, shared_from_this()); output.set_requires_grad(true); } else { add_input_metadata(autograd::Function::undefined_input{}); } } void addInputIValue(const IValue& v) { if (v.isTensorList()) { const std::vector& tensors = v.toTensorListRef(); input_instructions_.pushTensorList(tensors.size()); for (const at::Tensor& tensor : tensors) { addInputVariable(tensor); } } else if (v.isTensor()) { input_instructions_.pushTensor(); addInputVariable(v.toTensor()); } } private: void produceOutput(size_t i, at::Tensor output, variable_list& outputs) { if (should_compute_output(i)) { const auto& edge = next_edge(i); if (output.defined()) { outputs.emplace_back(std::move(output)); } else if (edge.is_valid()) { outputs.emplace_back( edge.function->input_metadata(edge.input_nr).zeros_like()); } else { outputs.emplace_back(); } } else { outputs.emplace_back(); } } friend struct ExecutionPlan; GraphExecutor executor; CaptureList captures_; UnpackInstructions input_instructions_; }; // an optimized way of executing the subgraph computed directly on // tensors rather than Variables. // This will unwrap Variables, run the plan, and re-wrap them. // It can optionally also have a gradient which is hooked up // to the output Variables if present. struct DifferentiableGraphOp { DifferentiableGraphOp(Gradient grad) : f(grad.f), grad(std::move(grad)), grad_executor(this->grad.df), num_inputs(this->grad.f->inputs().size()), num_outputs(this->grad.f->outputs().size()) {} // XXX: keep in mind that stack can be larger than the inputs we need! int operator()(Stack& stack) const { auto grad_fn = std::make_shared( grad_executor, grad.df_input_vjps.size(), grad.df_input_captured_inputs.size() + grad.df_input_captured_outputs.size()); { auto inputs = last(stack, num_inputs); // hook up the outputs of df to the gradient functions of the inputs that // require gradients for (auto idx : grad.df_output_vjps) { grad_fn->addOutputForIValue(inputs[idx]); } captureInputs(*grad_fn, inputs); } detachVariables(stack); InterpreterState(f).run(stack); { auto outputs = last(stack, num_outputs); // hookup the gradients for the output tensors that require gradients // to the inputs to our gradient function df // TODO - XXX - if any output is the same tensor multiple times, views // have to be setup here. We need to refactor autograd until it is safe // for tensors to be constructed without all the viewing infrastructure. // this is currently intentionally not done here so we can get an idea of // our perf before introducing overhead for correctness for (auto idx : grad.df_input_vjps) { grad_fn->addInputIValue(outputs[idx]); } captureOutputs(*grad_fn, outputs); // drop the temporary outputs so that we return the same number of // outputs as if we were not also calculating gradient const size_t num_temporary_outputs = num_outputs - grad.f_real_outputs; stack.erase(stack.end() - num_temporary_outputs, stack.end()); } return 0; } private: friend GraphExecutor* detail::getGradExecutor(Operation& op); void detach(at::Tensor& t) const { if (t.defined()) { t = autograd::as_variable_ref(t).detach(); } } void detach(IValue& v) const { if (v.isTensor()) { auto t = std::move(v).toTensor(); detach(t); v = IValue{t}; } else if (v.isTensorList()) { std::vector lst = v.toTensorListRef(); for (at::Tensor& t : lst) { detach(t); } v = TensorList::create(std::move(lst)); } } void detachVariables(Stack& stack) const { // It would be nice to use an ArrayRef here, but unfortunately those can // only return const references, so we need to do a bunch of indexing // ourselves. const int64_t stack_size = stack.size(); const int64_t stack_offset = stack_size - num_inputs; for (int64_t i = stack_offset; i < stack_size; ++i) { detach(stack[i]); } } // Capture (save) inputs that would be required to subsequently run backwards void captureInputs( DifferentiableGraphBackward& grad_fn, at::ArrayRef inputs) const { for (size_t offset : grad.df_input_captured_inputs) { grad_fn.capture(inputs[offset], /*is_output*/ false); } } void captureOutputs( DifferentiableGraphBackward& grad_fn, at::ArrayRef outputs) const { for (size_t offset : grad.df_input_captured_outputs) { grad_fn.capture(outputs[offset], /*is_output*/ true); } } Code f; Gradient grad; GraphExecutor grad_executor; const size_t num_inputs; const size_t num_outputs; }; void packGradient(Gradient gradient, Node* dnode) { AT_ASSERT(dnode->kind() == prim::DifferentiableGraph); dnode->g_(attr::Subgraph, gradient.f) ->g_(attr::ReverseSubgraph, gradient.df) ->i_(attr::f_real_outputs, gradient.f_real_outputs) ->is_(attr::df_input_vjps, fmap(gradient.df_input_vjps)) ->is_( attr::df_input_captured_inputs, fmap(gradient.df_input_captured_inputs)) ->is_( attr::df_input_captured_outputs, fmap(gradient.df_input_captured_outputs)) ->is_(attr::df_output_vjps, fmap(gradient.df_output_vjps)); } Gradient getGradient(const Node* n) { AT_ASSERT(n->kind() == prim::DifferentiableGraph); Gradient grad; grad.f = n->g(attr::Subgraph); grad.df = n->g(attr::ReverseSubgraph); grad.f_real_outputs = n->i(attr::f_real_outputs); grad.df_input_vjps = fmap(n->is(attr::df_input_vjps)); grad.df_input_captured_inputs = fmap(n->is(attr::df_input_captured_inputs)); grad.df_input_captured_outputs = fmap(n->is(attr::df_input_captured_outputs)); grad.df_output_vjps = fmap(n->is(attr::df_output_vjps)); return grad; } } // anonymous namespace RegisterOperators reg_graph_executor_ops( {Operator(prim::DifferentiableGraph, [](const Node* n) -> Operation { return DifferentiableGraphOp(getGradient(n)); })}); namespace detail { GraphExecutor* getGradExecutor(Operation& op) { if (auto diff_op = op.target()) { return &diff_op->grad_executor; } return nullptr; } } // namespace detail // a Graph can be created via tracing, or via a language-based frontend // GraphExecutor runs it. It can run the same graph on many different sizes // and different requires_grad states, and handles specializations for each // situation. GraphExecutor is completely unaware of tracing or module // parameters to keep the tracing concerns separated. struct GraphExecutorImpl : public GraphExecutorImplBase { GraphExecutorImpl(const std::shared_ptr& graph, bool optimize) : GraphExecutorImplBase(graph, optimize), arg_spec_creator_(*graph) { logging::getLogger()->addStatValue( logging::runtime_counters::GRAPH_EXECUTORS_CONSTRUCTED, 1.0); } // entry point where execution begins void run(Stack& stack) override { TORCH_CHECK( stack.size() >= num_inputs, "expected ", num_inputs, " inputs, but got only ", stack.size()); C10_LOG_API_USAGE_ONCE("torch.graph_executor.run"); logging::getLogger()->addStatValue( logging::runtime_counters::GRAPH_EXECUTOR_INVOCATIONS, 1.0); if (tracer::isTracing()) { return runTraced(stack); } auto& execution_plan = optimize ? getOrCompile(stack) : getOrCompileFallback(); return execution_plan.run(stack); } GraphExecutorState getDebugState() override { GraphExecutorState state; state.graph = graph.get(); if (fallback) { state.fallback = fallback.getDebugState(); } for (auto& entry : plan_cache) { state.execution_plans.emplace(entry.first, entry.second.getDebugState()); } return state; } protected: friend struct GraphExecutor; const ExecutionPlan& getOrCompileFallback() { std::lock_guard lock(compile_mutex); if (!fallback) { auto graph_ = graph->copy(); runRequiredPasses(graph_); fallback = ExecutionPlan(graph_); } return fallback; } const ExecutionPlan& getOrCompile(const Stack& stack) { // outside lock guard, to minimize the time holding the lock on the fast // path ArgumentSpec even computes its hashCode here. ArgumentSpec spec = arg_spec_creator_.create(autograd::GradMode::is_enabled(), stack); { std::lock_guard lock(compile_mutex); auto it = plan_cache.find(spec); if (it != plan_cache.end()) { logging::getLogger()->addStatValue( logging::runtime_counters::EXECUTION_PLAN_CACHE_HIT, 1.0); return it->second; } auto plan = compileSpec(spec); auto r = plan_cache.emplace(std::move(spec), std::move(plan)); logging::getLogger()->addStatValue( logging::runtime_counters::EXECUTION_PLAN_CACHE_MISS, 1.0); return r.first->second; } } ExecutionPlan compileSpec(const ArgumentSpec& spec) { auto opt_graph = graph->copy(); arg_spec_creator_.specializeTypes(*opt_graph, spec); // Phase 1. Specialize to input definedness (this is very important for // gradient graphs), and run required passes to bring the graph // to an executable form. runRequiredPasses(opt_graph); // Phase 2. Propagate detailed information about the spec through the // graph (enabled more specializations in later passes). // Shape propagation sometimes depends on certain arguments being // constants, and constant propagation doesn't need shape // information anyway, so it's better to run it first. ConstantPropagation(opt_graph); PropagateInputShapes(opt_graph); PropagateRequiresGrad(opt_graph); // Phase 3. Run differentiable optimizations (i.e. simple graph rewrites // that we can still execute using autograd). runOptimization(opt_graph); // Phase 4. If this graph will be differentiated, we need to slice out the // symbolically differentiable subgraphs for further optimizations. // Phase 5. Apply non-differentiable optimizations to the graphs we've found // (or the whole grpah if we know we won't need its derivative). if (needsGradient(opt_graph)) { auto diff_nodes = CreateAutodiffSubgraphs( opt_graph, autodiff_subgraph_inlining ? autodiffSubgraphNodeThreshold : 1); for (Node* dnode : diff_nodes) { auto diff_graph = std::move(dnode->g(attr::Subgraph)); Gradient gradient = differentiate(diff_graph); // Run post differentiation optimizations, Autodiff will replace some // parts of graph with new graph, these new graphs usually consists of // control flows and miss shape information on nodes, so we run shape // prop and differentiable optimizations to ensure the graph is // optimized PropagateInputShapes(gradient.f); runOptimization(gradient.f); // run non diff optimization on the forward graph runNondiffOptimization(gradient.f); packGradient(gradient, dnode); } InlineAutodiffSubgraphs( opt_graph, autodiff_subgraph_inlining ? autodiffSubgraphInlineThreshold : 1); } else { runNondiffOptimization(opt_graph); } // Make sure there are no leftovers from any passes. EliminateDeadCode(opt_graph); return ExecutionPlan(opt_graph); } void runOptimization( std::shared_ptr& graph) { // Basic graph preprocessing to eliminate noise. EliminateDeadCode(graph); EliminateCommonSubexpression(graph); ConstantPooling(graph); PeepholeOptimize(graph); ConstantPropagation(graph); // Unroll small loops, and eliminate expressions that are the same at every // iteration. UnrollLoops(graph); EliminateCommonSubexpression(graph); CheckInplace(graph); } void runNondiffOptimization(std::shared_ptr& graph) { // run custom passes that different backends can register for (const auto& pass : getCustomPasses()) { pass(graph); } // decomposition pass, decompose certain ops that will be used in the following // passes (like batchmm and jit fusion) DecomposeOps(graph); // Rewrite subgraphs with many MMs into expressions that batch them. BatchMM(graph); FuseGraph(graph); } static bool needsGradient(const std::shared_ptr& graph) { if (!autograd::GradMode::is_enabled()) return false; if (mayIntroduceGradient(graph->block())) return true; for (const Value* input : graph->inputs()) { if (input->type()->requires_grad()) return true; } return false; } static bool mayIntroduceGradient(const Block* b) { for (const Node* n : b->nodes()) { if (n->kind() == prim::PythonOp) return true; for (const Block* bb : n->blocks()) { if (mayIntroduceGradient(bb)) return true; } } return false; } void runTraced(Stack& stack) { const auto& state = tracer::getTracingState(); auto inputs = last(stack, num_inputs); auto input_values = fmap( inputs, [](const IValue& v) { return tracer::getNestedValueTrace(v); }); ArgumentSpec spec = arg_spec_creator_.create(autograd::GradMode::is_enabled(), stack); // NB: we could just run the fallback in here and call it a day, but that // would loose all the control flow information we have in the graph. Thus, // we run the fallback to get the correct output values, but we will // override the tracing states later. { // No need to trace a script module. ResourceGuard guard(tracer::pauseTracing()); getOrCompileFallback().run(stack); } // Traces always have types propagated through them, so we make sure to // also propagate types through the graph we are inserting here. // However, this->graph itself may already have been generated with // tracing and so we only do the type propgation if no concrete types have // been set. auto local_graph = this->graph->copy(); arg_spec_creator_.specializeTypes(*local_graph, spec); PropagateInputShapes(local_graph); auto output_values = inlineCallTo(*state->graph, *local_graph, input_values); auto outputs = last(stack, num_outputs); for (size_t i = 0; i < outputs.size(); ++i) { tracer::setValueTrace(outputs[i], output_values[i]); } } ~GraphExecutorImpl() override = default; ArgumentSpecCreator arg_spec_creator_; // Populated only when optimize is false (and in that case plan_cache will be // unused). The compiled version of graph. ExecutionPlan fallback; // Mapping from argument configurations to optimized versions of the graph // that are specialized to the spec. std::unordered_map plan_cache; }; GraphExecutor::GraphExecutor(std::shared_ptr graph, bool optimize) : pImpl( getProfilingMode() ? dynamic_cast( new ProfilingGraphExecutorImpl(graph, optimize)) : dynamic_cast( new GraphExecutorImpl(graph, optimize))) {} void GraphExecutor::run(Stack& inputs) { return pImpl->run(inputs); } std::shared_ptr GraphExecutor::graph() const { return pImpl->graph; } GraphExecutorState GraphExecutor::getDebugState() { return pImpl->getDebugState(); } void runRequiredPasses(const std::shared_ptr& g) { specializeAutogradZero(*g); LowerGradOf(*g); // implicit inserted expand nodes are not necessarily always valid // when used inside script methods that might have unstable shapes // we remove the implicitly created ones, and have shape analysis // add valid expand nodes when the shapes are stable RemoveExpands(g); CanonicalizeOps(g); EliminateDeadCode(g); } } // namespace jit } // namespace torch