# mypy: allow-untyped-defs import builtins import contextlib import dataclasses import functools import inspect import itertools import json import logging import math import operator import os import re import sys import textwrap import time from concurrent.futures import as_completed, ThreadPoolExecutor from io import StringIO from typing import Any, Callable, Optional, TYPE_CHECKING, Union from typing_extensions import Self from unittest.mock import patch import sympy import torch import torch._inductor.async_compile # noqa: F401 required to warm up AsyncCompile pools from torch._dynamo.device_interface import get_interface_for_device from torch._dynamo.testing import rand_strided from torch._dynamo.utils import counters, dynamo_timed, identity, preserve_rng_state from torch.utils._filelock import FileLock from torch.utils._ordered_set import OrderedSet from . import config, ir from .autotune_process import ( TensorMeta, TritonBenchmarkRequest, TritonCPUBenchmarkRequest, TritonGPUBenchmarkRequest, ) from .codecache import code_hash, PersistentCache, PyCodeCache from .codegen.common import ( CSEVariable, IndentedBuffer, KernelTemplate, OpOverrides, WorkspaceArg, ) from .codegen.simd_kernel_features import SIMDKernelFeatures from .codegen.triton import ( gen_common_triton_imports, texpr, TritonKernel, TritonScheduling, ) from .codegen.triton_utils import config_of, signature_to_meta from .exc import CUDACompileError from .ir import ChoiceCaller, PrimitiveInfoType from .ops_handler import StoreMode from .runtime.benchmarking import benchmarker from .runtime.hints import DeviceProperties from .utils import ( FakeIndentedBuffer, get_dtype_size, is_gpu, Placeholder, restore_stdout_stderr, sympy_dot, sympy_index_symbol, sympy_product, triton_type, triton_type_to_torch, unique, ) from .virtualized import V log = logging.getLogger(__name__) # correctness checks struggle with fp16/tf32 VERIFY: dict[str, Any] = {} PRINT_AUTOTUNE = True DEBUG = False if TYPE_CHECKING: import concurrent from torch._inductor.codegen.simd import IterationRangesRoot class KernelNamespace: pass # these objects are imported from the generated wrapper code extern_kernels = KernelNamespace() @dataclasses.dataclass class BenchmarkTensors: """Represents a set of inputs and outputs for autotuning with a template""" input_tensors: list[torch.Tensor] output_tensor: Optional[torch.Tensor] def unpack(self): return self.input_tensors, self.output_tensor @dataclasses.dataclass class AutotuneArgs: """During autotuning, we need to pass the same inputs to all choices. Note: Since we typically have a mix of external choices and triton choices, we create two lists of inputs for the same underlying buffers: - External inputs (for aten kernels): Include offset for sliced tensors - Triton inputs: Use base pointer for sliced tensors, without offset """ triton: BenchmarkTensors extern: BenchmarkTensors expected: Optional[torch.Tensor] = None def get_benchmark_tensors(self, extern=False) -> BenchmarkTensors: """Returns the inputs and output tensors for a given choice.""" bench_tensors = self.extern if extern else self.triton return bench_tensors @classmethod def from_choice_args( cls, example_inputs: list[torch.Tensor], example_inputs_extern: list[torch.Tensor], out: torch.Tensor, out_extern: torch.Tensor, expected: Optional[torch.Tensor] = None, ) -> Self: """Factory method to create AutotuneInputs from separate inputs/outputs""" return cls( triton=BenchmarkTensors(example_inputs, out), extern=BenchmarkTensors(example_inputs_extern, out_extern), expected=expected, ) def verify(self, **kwargs): """Verify the correctness of the benchmarking results""" torch.testing.assert_close(self.extern.output_tensor, self.expected, **kwargs) class PartialRender: """ Some parts of a template need to be generated at the end, but inserted into the template at the start. This allows doing a bunch of replacements after the initial render. """ def __init__(self, code, replacement_hooks) -> None: super().__init__() self.code = code self.replacement_hooks = replacement_hooks def finalize_hook(self, hook_key: str, strict=True) -> None: if hook_key not in self.replacement_hooks: if strict: raise RuntimeError( f"{hook_key} not registered in self.replacement_hooks" ) else: return assert ( self.replacement_hooks[hook_key] is not None ), "hook_key can only be called once" self.code = self.code.replace(hook_key, self.replacement_hooks[hook_key]()) self.replacement_hooks[hook_key] = None def finalize_all(self) -> str: for key, fn in self.replacement_hooks.items(): self.code = self.code.replace(key, fn()) return self.code # This is used to store info needed for lowering each subgraph in triton # templates @dataclasses.dataclass() class SubgraphInfo: body: IndentedBuffer template_mask: Optional[str] = None template_out: Optional[str] = None compute: IndentedBuffer = dataclasses.field(default_factory=IndentedBuffer) indexing_code: IndentedBuffer = dataclasses.field(default_factory=IndentedBuffer) loads: IndentedBuffer = dataclasses.field(default_factory=IndentedBuffer) stores: IndentedBuffer = dataclasses.field(default_factory=IndentedBuffer) ops_handler: Optional[V.WrapperHandler] = None # type: ignore[name-defined] # only copied over if not None range_trees: Optional[list["IterationRangesRoot"]] = None numels = None # type: ignore[var-annotated] def __post_init__(self): self.only_copy_if_non_none_fields = ("range_trees", "numels") def to_dict(self): return { field.name: getattr(self, field.name) for field in dataclasses.fields(self) } class ModificationWrapper(V.WrapperHandler): # type: ignore[name-defined] """Handles placeholder substitutions during subgraph processing.""" def __init__( self, kernel, subgraph_number: int, fixed_inputs: dict[str, Any], mask: Optional[str], ): super().__init__(V.ops) self.name = f"PlaceholderSubstitution_{subgraph_number}" self.kernel = kernel self.fixed_inputs = fixed_inputs self.mask = mask def load(self, name: str, index: sympy.Expr): """Handle loading from tensor or fixed input.""" if name not in self.fixed_inputs: index_str = self._process_indexing(index) var = self._add_kernel_input(name) return f"tl.load({var} + {index_str})" return f"({self.fixed_inputs[name]})" def indirect_indexing(self, index_var: str, size, check, wrap_neg=True): """Convert index variable to symbolic form.""" return sympy_index_symbol(str(index_var)) def store( self, name: str, index: sympy.Expr, value: CSEVariable, mode: StoreMode = None ) -> str: """Currently only supports stores for atomic adds coming from scatter nodes This is used by flex_attention's backwards grad for captured buffers, see zeros_and_scatter lowering """ assert ( self.mask is not None ), "Mask is required for inner stores in modifications" assert mode == "atomic_add", "Only atomic_add is supported for inner stores" buf_name = self._add_kernel_input(name) index_str = self._process_indexing(index) index_str = f"tl.broadcast_to({index_str}, {value}.shape)" store = f"tl.atomic_add({buf_name} + {index_str}, {value}, {self.mask}, sem='relaxed')" return store def _add_kernel_input(self, name: str): """Add name as input to kernel and return input ref.""" return self.kernel.args.input(name) def _process_indexing(self, index): """Process and rename indexing, adding symbols as kernel inputs.""" return self.kernel.kexpr(self.kernel.rename_indexing(index)) class TritonTemplateKernel(TritonKernel): def __init__( self, kernel_name, input_nodes, output_node, defines, num_stages, num_warps, grid_fn, meta, call_sizes, use_jit=False, prefix_args=0, suffix_args=0, epilogue_fn=identity, subgraphs: Optional[list[ir.ComputedBuffer]] = None, workspace_arg: Optional[WorkspaceArg] = None, ) -> None: numel = sympy_product(output_node.get_size()) super().__init__( { "x": numel, "r0_": sympy.S.One, }, features=SIMDKernelFeatures([], numel), ) self.input_nodes = input_nodes self.output_node = output_node self.named_input_nodes = {} # type: ignore[var-annotated] self.defines = defines self.kernel_name = kernel_name self.use_jit = use_jit self.num_stages = num_stages self.num_warps = num_warps self.grid_fn = grid_fn self.meta = meta self.call_sizes = call_sizes # for templates with fixed epilogues self.prefix_args = prefix_args self.suffix_args = suffix_args self.epilogue_fn = epilogue_fn self.render_hooks = {} # type: ignore[var-annotated] self.triton_meta: Optional[dict[str, object]] = None # For Templated Attention this can be a list of ir.Subgraph self.subgraphs: Optional[list[ir.ComputedBuffer]] = subgraphs # Some templates use extra global memory as a workspace self.workspace_arg = workspace_arg if workspace_arg is not None: self.args.workspace_args.append(workspace_arg) # The following attributes (body, template_mask, output_val) are all # used for triton kernel codegen. # They are swapped onto the TritonTemplateKernel object by # `set_subgraph_body` self.subgraph_bodies: dict[str, SubgraphInfo] = {} # input buffers which we are allowed to prologue fuse into self.prologue_supported_inputs: OrderedSet[str] = OrderedSet() # input buffers which we are fusing into self.prologue_fused_inputs: OrderedSet[str] = OrderedSet() # input buffers which we are fusing into, which preserve a zero mask self.prologue_fused_inputs_preserve_zero: OrderedSet[str] = OrderedSet() # The following attributes are all used for triton kernel codegen. # They are swapped onto the TritonTemplateKernel object by # `set_subgraph_body` # NB: the names here must match the fields in SubgraphInfo self.body: IndentedBuffer = FakeIndentedBuffer() self.compute: IndentedBuffer = FakeIndentedBuffer() self.indexing_code: IndentedBuffer = FakeIndentedBuffer() self.loads: IndentedBuffer = FakeIndentedBuffer() self.stores: IndentedBuffer = FakeIndentedBuffer() self.template_mask: Optional[str] = None self.template_out: Optional[str] = None self.ops_handler: Optional[V.WrapperHandler] = None # type: ignore[name-defined] @contextlib.contextmanager def set_subgraph_body(self, body_name: str): assert all( hasattr(self, field.name) for field in dataclasses.fields(SubgraphInfo) ) old_state = { key.name: getattr(self, key.name) for key in dataclasses.fields(SubgraphInfo) } assert body_name in self.subgraph_bodies, body_name subgraph = self.subgraph_bodies[body_name] for key, value in subgraph.to_dict().items(): if value is None and key in subgraph.only_copy_if_non_none_fields: continue setattr(self, key, value) context = ( contextlib.nullcontext if not self.ops_handler else lambda: V.set_ops_handler(self.ops_handler(V.get_ops_handler())) ) with context(): # type: ignore[operator] yield self.subgraph_bodies[body_name] = SubgraphInfo( **{ key.name: getattr(self, key.name) for key in dataclasses.fields(SubgraphInfo) } ) for key, value in old_state.items(): setattr(self, key, value) @contextlib.contextmanager def create_subgraph_body(self, body_name: str): assert body_name not in self.subgraph_bodies self.subgraph_bodies[body_name] = SubgraphInfo( IndentedBuffer(), None, None, ) with self.set_subgraph_body(body_name): yield def need_numel_args(self): return False def estimate_kernel_num_bytes(self): """ Estimate the total number of bytes this kernel takes. For in/out nodes, sizes are counted twice: once for reading and once for writing. """ ninplace_args = len(unique(self.args.inplace_buffers.values())) num_bytes = [] for i, inp in enumerate(itertools.chain(self.input_nodes, (self.output_node,))): size = V.graph.sizevars.size_hints(inp.get_size()) numel = functools.reduce(operator.mul, size, 1) dtype_size = get_dtype_size(inp.get_dtype()) num_bytes.append(numel * dtype_size * (1 + int(i < ninplace_args))) return sum(num_bytes) def jit_lines(self): if self.use_jit: return "@triton.jit" argdefs, _, signature, _ = self.args.python_argdefs() triton_meta: dict[str, Any] = { "signature": signature_to_meta( signature, size_dtype=self.index_dtype, argdefs=argdefs ), "device": DeviceProperties.create(self.output_node.get_device()), "constants": {}, } triton_meta["configs"] = [config_of(signature)] for arg_num in triton_meta["configs"][0].equal_to_1: # type: ignore[index] triton_meta["constants"][signature[arg_num].name] = 1 # type: ignore[index] matrix_instr_nonkdim = self.meta.get("matrix_instr_nonkdim", 0) if matrix_instr_nonkdim != 0: triton_meta["matrix_instr_nonkdim"] = matrix_instr_nonkdim self.triton_meta = triton_meta inductor_meta = { "kernel_name": str(Placeholder.DESCRIPTIVE_NAME), **TritonKernel.inductor_meta_common(), } if config.profile_bandwidth or config.benchmark_kernel: num_gb = self.estimate_kernel_num_bytes() / 1e9 inductor_meta["kernel_num_gb"] = num_gb return f""" @triton_heuristics.template( num_stages={self.num_stages}, num_warps={self.num_warps}, triton_meta={triton_meta!r}, inductor_meta={inductor_meta!r}, ) @triton.jit """ def gen_argdefs(self): def hook(): # python_argdefs() cannot be run until after the rest of the template lazily adds more args arg_defs, *_ = self.args.python_argdefs() return f"{', '.join(arg_defs)}" self.render_hooks[""] = hook return "" def gen_defines(self): return self.defines def def_kernel(self, *argnames): """ Hook called from template code to generate function def and needed args. """ assert all(isinstance(x, str) for x in argnames) renames = IndentedBuffer(initial_indent=1) named_args = self.input_nodes[ self.prefix_args : len(self.input_nodes) - self.suffix_args ] assert len(argnames) == len(named_args), ( len(argnames), len(named_args), self.prefix_args, len(self.input_nodes), ) for input_node in self.input_nodes[: self.prefix_args]: # get args in correct order self.args.input(input_node.get_name()) for name, input_node in zip(argnames, named_args): arg_name = f"arg_{name}" self.named_input_nodes[name] = input_node if input_node.get_name() in V.graph.removed_buffers: continue if input_node.get_name() in self.prologue_fused_inputs: continue self.args.input_buffers[input_node.get_name()] = arg_name # The args may be duplicated, so renaming must be after args are de-duplicated. for name in argnames: input_node = self.named_input_nodes[name] if input_node.get_name() in V.graph.removed_buffers: continue if input_node.get_name() in self.prologue_fused_inputs: continue arg_name = self.args.input_buffers[input_node.get_name()] if input_node.get_layout().offset == 0: renames.writeline(f"{name} = {arg_name}") else: offset = texpr(self.rename_indexing(input_node.get_layout().offset)) renames.writeline(f"{name} = {arg_name} + {offset}") for input_node in self.input_nodes[len(self.input_nodes) - self.suffix_args :]: # get args in correct order if input_node.get_name() in V.graph.removed_buffers: continue if input_node.get_name() in self.prologue_fused_inputs: continue self.args.input(input_node.get_name()) def hook(): # python_argdefs() cannot be run until after the rest of the template lazily adds more args arg_defs, *_ = self.args.python_argdefs() code = IndentedBuffer() code.splice(gen_common_triton_imports()) code.splice(self.jit_lines()) code.writeline(f"def {self.kernel_name}({', '.join(arg_defs)}):") with code.indent(): code.splice(self.defines) code.splice(renames.getvalue()) return code.getvalue() assert "" not in self.render_hooks self.render_hooks[""] = hook return "" def size(self, name: str, index: int): """ Hook called from template code to get the size of an arg. Will add needed args to pass it in if it is dynamic. """ assert isinstance(index, int) if name is None: val = self.output_node.get_size()[index] else: assert isinstance(name, str) val = self.named_input_nodes[name].get_size()[index] return texpr(self.rename_indexing(val)) def stride(self, name, index=None): """ Hook called from template code to get the stride of an arg. Will add needed args to pass it in if it is dynamic. """ if name is None: val = self.output_node.get_stride() else: assert isinstance(name, str) val = self.named_input_nodes[name].get_stride() if isinstance(index, int): return texpr(self.rename_indexing(val[index])) return ", ".join([texpr(self.rename_indexing(i)) for i in val]) def _get_subgraph(self, subgraph_number: int): assert isinstance(subgraph_number, int) assert isinstance(self.subgraphs, list) assert subgraph_number < len( self.subgraphs ), f"Invalid subgraph number provided to create_modification, {subgraph_number} must be < {len(self.subgraphs)}" assert ( self.body.getvalue() == "" ), "Body should be clear before adding a modification" return self.subgraphs[subgraph_number] def _handle_scatter_graph(self, scatter_graph): """Handle processing for a single scatter graph. Args: scatter_graph: The scatter graph to process """ assert isinstance( scatter_graph, ir.ComputedBuffer ), f"scatter_graph must be an instance of ComputeBuffer but got {type(scatter_graph)}" def contiguous_strides(x): # We always create a fresh contiguous grad for scattering into return sum( x_i * stride for x_i, stride in zip(x, scatter_graph.get_stride()) ) return scatter_graph.data.store_output(scatter_graph.name, contiguous_strides, []) # type: ignore[attr-defined] def modification( self, subgraph_number: int, output_name: Optional[str], mask: Optional[str] = None, **fixed_inputs, ) -> str: """This creates a modification function for a subgraph. To use this inside a template, the first argument should specify which subgraph to codegen for Args: subgraph_number (int): The index of the subgraph in self.subgraphs output_name (Optional[str]): The name of the output variable to store the result in mask (Optional[str]): An optional mask to use for the store operation. If provided, this mask will be applied to the store. """ num = 0 out = None scatters = [] while f"mod_{subgraph_number}_{num}" in self.subgraph_bodies: num += 1 with self.create_subgraph_body(f"mod_{subgraph_number}_{num}"): subgraph = self._get_subgraph(subgraph_number) modification_handler = ModificationWrapper( self, subgraph_number, fixed_inputs, mask ) with V.set_ops_handler(modification_handler): assert isinstance( subgraph, (ir.ComputedBuffer, list) ), f"Expected the subgraph to be a ComputedBuffer or a List[ComputedBuffer], got {type(subgraph)}" # Handle scatter stores if isinstance(subgraph, list): for scatter_graph in subgraph: scatters.append(self._handle_scatter_graph(scatter_graph)) elif isinstance(subgraph.data, ir.InputBuffer): out = subgraph.data.make_loader()(()) else: out = subgraph.data.inner_fn(()) self.codegen_body() if output_name is not None: assert isinstance(output_name, str) assert out is not None self.body.writeline(f"{output_name} = {out.value}") else: assert out is None for scatter in scatters: self.body.writeline(str(scatter)) body_val = self.body.getvalue() self.cse.invalidate(OrderedSet[str]()) return body_val def load_input( self, input_name: str, output_name: str, indices: Union[list[Any], tuple[Any]], mask: Optional[str] = None, other: Optional[Union[float, int]] = 0.0, indent_width: int = 4, ): """Loads an input and applies any necessary preprocessing or masking. Args: input_name (str): The name of the input to load. indices (Union[List, Tuple]): The index for each dimension of the input. val (str): The name of the variable to store the loaded value. mask (Optional[str]): An optional mask to use for the load operation. other (Optional[Union[float, int]]): The value to use for masked elements. Default is 0.0. indent_width (int): The number of spaces to use for indentation. """ input_node = self.named_input_nodes[input_name] self.prologue_supported_inputs.add(input_node.get_name()) tilings = (sympy_product(input_node.get_size()), sympy.Integer(1)) groups = { "x": tilings[0], "r0_": tilings[1], } range_trees = self.construct_range_trees( pid_cache=None, inside_reduction=False, is_reduction=False, numels=groups, no_x_dim=False, ) load_code = None with self.create_subgraph_body(f""): assert isinstance(indices, (list, tuple)) assert isinstance(output_name, str) assert isinstance(mask, (str, type(None))) self.range_trees = range_trees self.numels = {k: V.graph.sizevars.simplify(v) for k, v in groups.items()} indices = list(map(OpOverrides.paren, indices)) index_symbols = [sympy.Symbol(x, integer=True) for x in indices] lengths = [V.graph.sizevars.simplify(s) for s in input_node.get_size()] assert len(indices) == len(lengths) index_symbols = [sympy.Symbol(x, integer=True) for x in indices] assert len(indices) == len(lengths) # glue to make generated code use same indexing from template # TODO (from reviewers as well) # in codegen_template, # prologue_node.codegen(kernel.split_and_set_ranges(prologue_node.get_ranges())) # the ranges need to reflect the group of the prologue input or it will error # not sure if there is any difference between original range_tree_entry in # and new one from correct lengths/groups... both actually seem to work for name, range_tree_entry in zip( indices, self.range_trees[0].construct_entries(lengths) ): range_tree_entry.set_name(name) contiguous_index = sympy_dot( ir.FlexibleLayout.contiguous_strides(lengths), index_symbols ) contiguous_index = self.rename_indexing(contiguous_index) self.body.writeline("xindex = " + texpr(contiguous_index)) xindex_range_root = self.range_trees[0].lookup( sympy.Integer(1), sympy_product(lengths) ) xindex_range_root.set_name("xindex") # Note - ["None" override_mask] # MM Templates work by taking out of bounds index values and wrapping them around to 0 # so that no mask is required on the load: offs_a_m = `rm % M` # We should to override the mask to be "None" instead of inheriting the mask that would # have been loaded otherwise. # We are using "None" for clarity in output code, but # we could alternatively emit `xmask = tl.full([xindex.shape], True, tl.int1)` self.template_mask = mask if mask is not None else "None" self.template_out = "xindex" self.template_indices = indices self.named_input_nodes[input_name].data.freeze_layout() self.cse.invalidate(OrderedSet()) template_mask = self.template_mask class StoreOutputSubstitution(V.WrapperHandler): # type: ignore[name-defined] self.name = name def store( self, name: str, index: sympy.Expr, value: "CSEVariable", mode: "StoreMode" = None, ): V.kernel.store_buffer_names.add(name) V.kernel.cse.store_cache[name] = value if name in V.kernel.prologue_fused_inputs: # We load masked out values with 0, then apply a prologue. # The masked out values may not necessariliy be 0 any more # so we need to reapply the mask. value_dtype = value.dtype value_str = str(value) if template_mask != "None" and ( name not in V.kernel.prologue_fused_inputs_preserve_zero or other != 0 ): value_str = ( f"tl.where({template_mask}, {value_str}, {other})" ) if value_dtype != V.graph.get_buffer(name).dtype: value_str = f"{value_str}.to({triton_type(V.graph.get_buffer(name).dtype)})" V.kernel.compute.writeline(f"{output_name} = {value_str}") self.ops_handler = StoreOutputSubstitution input_node = self.named_input_nodes[input_name] output_index = input_node.make_indexer()(index_symbols) # in def_kernel above we define the inputs with the storage offset adjusted # creating the load in input_node.make_indexer() will also adjust by storage offset # so subtract here to not double increment if not V.graph.sizevars.statically_known_equals( input_node.layout.offset, 0 ): output_index = output_index - self.rename_indexing( input_node.get_layout().offset ) output_index = self.rename_indexing(output_index) if output_index == contiguous_index: output_index_str = "xindex" else: out_indexing = self.indexing( output_index, copy_shape=self.template_out, override_mask=self.template_mask, ) from .codegen.triton import IndexingOptions assert isinstance(out_indexing, IndexingOptions) output_index_str = ( f"({out_indexing.index_str}).broadcast_to(xindex.shape)" ) # Generate load code load_code = f"{output_name} = tl.load({input_name} + ({output_index_str})" if mask: load_code += f", mask={mask}, other={other})" else: load_code += ")" hook_key = f"" def hook(): with self.set_subgraph_body(hook_key): self.cse.invalidate(OrderedSet()) self.codegen_body() self.cse.invalidate(OrderedSet()) if input_node.get_name() not in self.prologue_fused_inputs: self.body.writeline(load_code) return textwrap.indent(self.body.getvalue(), " " * indent_width).strip() assert hook_key not in self.render_hooks self.render_hooks[hook_key] = hook return hook_key def store_output( self, indices: Union[list[Any], tuple[Any]], val: str, mask: Optional[str] = None, indent_width: int = 4, ): """Stores the final output and appends any epilogue fusions if the buffer hasn't been optimized away. Args: indices (Union[List, Tuple]): The index for each dimension of the output. The dot product of these indices and output strides must match `val`. val (str): The value to store. mask (Optional[str]): An optional mask to use for the store operation. If provided, this mask will be applied to the store. indent_width (int): The number of spaces to use for indentation. This is used when the call to store_output is indented in the kernel definition. """ with self.create_subgraph_body(""): assert isinstance(indices, (list, tuple)) assert isinstance(val, str) assert isinstance(mask, (str, type(None))) assert self.template_mask is None indices = list(map(OpOverrides.paren, indices)) index_symbols = [sympy.Symbol(x, integer=True) for x in indices] lengths = [ V.graph.sizevars.simplify(s) for s in self.output_node.get_size() ] assert len(indices) == len(lengths) # glue to make generated code use same indexing from template for name, range_tree_entry in zip( indices, self.range_trees[0].construct_entries(lengths) ): range_tree_entry.set_name(name) contiguous_index = sympy_dot( ir.FlexibleLayout.contiguous_strides(lengths), index_symbols ) contiguous_index = self.rename_indexing(contiguous_index) self.body.writeline("xindex = " + texpr(contiguous_index)) self.range_trees[0].lookup(sympy.S.One, sympy_product(lengths)).set_name( "xindex" ) self.template_mask = mask self.template_out = val self.template_indices = indices output_index = self.output_node.get_layout().make_indexer()(index_symbols) output_index = self.rename_indexing(output_index) if output_index == contiguous_index: output_index = sympy.Symbol("xindex", integer=True) acc_dtype = ( triton_type_to_torch(self.meta["ACC_TYPE"]) if "ACC_TYPE" in self.meta else torch.float32 ) epilogue_args = [V.kernel.cse.namedvar(val, dtype=acc_dtype)] for input_node in itertools.chain( self.input_nodes[: self.prefix_args], self.input_nodes[len(self.input_nodes) - self.suffix_args :], ): input_node.freeze_layout() epilogue_args.append(input_node.make_loader()(index_symbols)) V.ops.store( self.output_node.get_name(), output_index, self.epilogue_fn(*epilogue_args), ) self.codegen_body() def hook(): # more stuff might have been added since the codegen_body above self.codegen_body() self.cse.invalidate(OrderedSet()) return textwrap.indent(self.body.getvalue(), " " * indent_width).strip() assert "" not in self.render_hooks self.render_hooks[""] = hook return "" def render(self, template, kwargs): return PartialRender( template.render(**self.template_env(), **kwargs), self.render_hooks, ) def make_load(self, name, indices, mask): """ Optional helper called from template code to generate the code needed to load from an tensor. """ assert isinstance(indices, (list, tuple)) assert isinstance(name, str) assert isinstance(mask, str) stride = self.named_input_nodes[name].get_stride() indices = list(map(OpOverrides.paren, indices)) assert len(indices) == len(stride) index = " + ".join( f"{texpr(self.rename_indexing(s))} * {i}" for s, i in zip(stride, indices) ) return f"tl.load({name} + ({index}), {mask}, other=0.0)" def template_env(self): """ Generate the namespace visible in the template. """ return { fn.__name__: fn for fn in [ self.def_kernel, self.size, self.stride, self.store_output, self.load_input, self.make_load, self.modification, self.gen_argdefs, self.gen_defines, ] } def indexing( self, index: sympy.Expr, *, dense_indexing=False, copy_shape=None, override_mask=None, block_ptr=False, ): """ Override the default indexing to use our custom mask and force dense indexing. """ return super().indexing( index, dense_indexing=False, # We pass template_out as the shape to broadcast the indexing to as # the mask might be broadcast to the output shape copy_shape=self.template_out, override_mask=self.template_mask, block_ptr=block_ptr, ) def codegen_range_tree(self): pass # ignore default codegen def call_kernel(self, name: str, node: Optional[ir.IRNode] = None): wrapper = V.graph.wrapper_code _, call_args, _, arg_types = self.args.python_argdefs() # Handle workspace allocation if self.workspace_arg is not None: wrapper.generate_workspace_allocation(self.workspace_arg) if V.graph.cpp_wrapper: # In the cpp_wrapper case, we have to compute CUDA launch grid at runtime # if any dynamic dimension is involved. We rely on the Python version # of the grid function to generate those grid configs, which may contain # symbolic values. The wrapper will use cexpr to print out C++ code # appropriately for the grid configs. grid = self.call_sizes + [self.meta] wrapper.generate_kernel_call( name, call_args, grid=self.grid_fn(*grid), # Calling self.grid_fn(*grid) already computes grid as a tuple, # so we need to explicitly set grid_fn as empty here. Otherwise, the # generated wrapper code will wrap the tuple as grid(tuple), which can # cause incorrect grid computation in some corner cases. grid_fn="", arg_types=arg_types, triton_meta=self.triton_meta, ) else: wrapper.add_import_once(f"import {self.grid_fn.__module__}") meta = wrapper.add_meta_once(self.meta) grid = self.call_sizes + [meta] wrapper.generate_kernel_call( name, call_args, grid=grid, grid_fn=f"{self.grid_fn.__module__}.{self.grid_fn.__name__}", arg_types=arg_types, triton_meta=self.triton_meta, gpu="cpu" not in V.graph.device_types, ) if self.workspace_arg is not None: wrapper.generate_workspace_deallocation(self.workspace_arg) @functools.lru_cache(None) def _jinja2_env(): try: import jinja2 return jinja2.Environment( undefined=jinja2.StrictUndefined, ) except ImportError: return None class TritonTemplate(KernelTemplate): index_counter = itertools.count() all_templates: dict[str, "TritonTemplate"] = {} def __init__(self, name: str, grid: Any, source: str, debug=False) -> None: super().__init__(name) self.grid = grid self.template = self._template_from_string(source) assert name not in self.all_templates, "duplicate template name" self.all_templates[name] = self self.debug = debug def generate( # type: ignore[override] self, input_nodes, layout, num_stages, num_warps, prefix_args=0, suffix_args=0, epilogue_fn=identity, subgraphs=None, mutated_inputs=None, call_sizes=None, workspace_arg: Optional[WorkspaceArg] = None, **kwargs, ): """This function generates a TritonTemplateCaller Args: input_nodes: List of input nodes layout: Output layout num_stages: Number of stages for triton launch num_warps: Number of warps for triton launch prefix_args: Number of input nodes to be passed as arguments suffix_args: Number of input nodes to be passed as arguments epilogue_fn: Optional epilogue function to be called on the output subgraphs: Optional subgraphs to be passed as arguments, these will be inlined into the triton template string mutated_inputs: Optional list of input nodes that are mutated by the kernel, this is helpful if you need to return multiple outputs. You can pass them as inputs and mark them as being mutated by the kernel. """ assert self.template, "requires jinja2" defines = StringIO() for name, val in kwargs.items(): defines.write(f"{name} : tl.constexpr = {val}\n") defines = defines.getvalue() fake_out = ir.Buffer(name="buf_out", layout=layout) kernel_name = f"triton_{self.name}" numel = sympy_product(layout.size) buffers = itertools.chain(input_nodes, (fake_out,)) if not TritonScheduling.can_use_32bit_indexing(numel, buffers): raise NotImplementedError( "64-bit indexing is not yet implemented for triton templates" ) if call_sizes is None: call_sizes = layout.size kernel_options = { "input_nodes": input_nodes, "defines": defines, "num_stages": num_stages, "num_warps": num_warps, "grid_fn": self.grid, "meta": kwargs, "call_sizes": call_sizes, "prefix_args": prefix_args, "suffix_args": suffix_args, "epilogue_fn": epilogue_fn, "subgraphs": subgraphs, } with patch.object( V.graph, "get_dtype", self._fake_get_dtype(fake_out) ), V.graph.set_current_device(layout.device), TritonTemplateKernel( kernel_name=kernel_name, output_node=fake_out, workspace_arg=workspace_arg, use_jit=False, **kernel_options, ) as kernel: try: template = kernel.render(self.template, kwargs) with kernel.set_subgraph_body(""): code = template.finalize_all() except ZeroDivisionError: # TODO(nmacchioni): fix sympy division by zero return None if self.debug: print("Generated Code:\n", code) extra = ( "-".join( [ *[ f"{kwarg}={repr(kwargs[kwarg])}" for kwarg in sorted(kwargs.keys()) ], f"num_stages={num_stages}", f"num_warps={num_warps}", ] ) + "-" ) mod = PyCodeCache.load(code, extra) input_call_args = tuple(kernel.args.input_buffers.keys()) # We expect the input_buffer order to be [*input_nodes, *captured_buffers] expected_input_args = tuple(unique(x.get_name() for x in input_nodes)) assert input_call_args[: len(expected_input_args)] == expected_input_args, ( input_call_args, expected_input_args, ) full_input_nodes = tuple([V.graph.get_buffer(k) for k in input_call_args]) extra_args = V.graph.sizevars.size_hints( map(sympy.expand, tuple(kernel.args.sizevars.keys())), fallback=config.unbacked_symint_fallback, ) kernel_hash_name = f"triton_{self.name}_{next(self.index_counter)}" def make_kernel_render(out_node): kernel = TritonTemplateKernel( kernel_name=str(Placeholder.KERNEL_NAME), output_node=out_node, workspace_arg=workspace_arg, use_jit=False, **kernel_options, ) render = functools.partial( kernel.render, self.template, kwargs, ) return kernel, render # create the BenchmarkRequest assert mod.__file__ is not None grid = self.grid( *V.graph.sizevars.size_hints( call_sizes, fallback=config.unbacked_symint_fallback, ), kwargs, ) bmreq_cls: type[TritonBenchmarkRequest] if layout.device.type == "cpu": bmreq_cls = TritonCPUBenchmarkRequest else: bmreq_cls = TritonGPUBenchmarkRequest bmreq = bmreq_cls( module_path=mod.__file__, module_cache_key=mod.key, kernel_name=kernel_name, grid=grid, extra_args=extra_args, num_stages=num_stages, num_warps=num_warps, matrix_instr_nonkdim=kwargs.get("matrix_instr_nonkdim", 0), input_tensor_meta=TensorMeta.from_irnodes(full_input_nodes), # type: ignore[arg-type] output_tensor_meta=TensorMeta.from_irnodes(layout), workspace_arg=workspace_arg, ) return TritonTemplateCaller( kernel_hash_name, full_input_nodes, layout, make_kernel_render, extra.strip("-").replace("-", ", "), bmreq, log_info={ "tile_shape": str( ( kwargs.get("BLOCK_M", -1), kwargs.get("BLOCK_K", -1), kwargs.get("BLOCK_N", -1), ) ), "num_stages": num_stages, "num_warps": num_warps, "allow_tf32": str(kwargs.get("ALLOW_TF32", None)), "acc_type": str(kwargs.get("ACC_TYPE", None)), }, mutated_inputs=mutated_inputs, workspace_arg=workspace_arg, allowed_prologue_inps=kernel.prologue_supported_inputs.copy(), ) class ExternKernelChoice: def __init__( self, kernel, cpp_kernel=None, *, name=None, has_out_variant=True, op_overload=None, use_fallback_kernel=False, kernel_creator=None, ) -> None: super().__init__() name = name or kernel.__name__ assert callable(kernel) assert not hasattr(extern_kernels, name), f"duplicate extern kernel: {name}" self.name = name self.cpp_kernel_name = cpp_kernel self.has_out_variant = has_out_variant setattr(extern_kernels, name, kernel) self.op_overload = op_overload self.use_fallback_kernel = use_fallback_kernel self.kernel_creator = kernel_creator def to_callable(self): return getattr(extern_kernels, self.name) def call_name(self): return f"extern_kernels.{self.name}" @functools.lru_cache(None) # noqa: B019 def hash_key(self): fn = self.to_callable() parts = [ self.name, getattr(fn, "__name__", ""), getattr(fn, "__module__", ""), ] try: parts.append(inspect.getsource(fn)) except Exception: pass return code_hash("-".join(parts)) def bind( self, input_nodes, layout, ordered_kwargs_for_cpp_kernel=(), **kwargs, ): self.ordered_kwargs_for_cpp_kernel = ordered_kwargs_for_cpp_kernel return ExternKernelCaller( self, input_nodes, layout, kwargs, has_out_variant=self.has_out_variant ) class TritonTemplateCaller(ir.TritonTemplateCallerBase): def __init__( self, name, input_nodes, layout, make_kernel_render, description, bmreq, log_info: Optional[ dict[str, Union[PrimitiveInfoType, list[PrimitiveInfoType]]] ] = None, mutated_inputs=None, workspace_arg: Optional[WorkspaceArg] = None, allowed_prologue_inps: Optional[OrderedSet[str]] = None, ) -> None: super().__init__(name, input_nodes, layout, description) self.make_kernel_render = make_kernel_render self.bmreq: TritonBenchmarkRequest = bmreq if log_info is None: log_info = {} self.log_info: dict[str, Any] = log_info self.log_info.update( { "backend": "Triton", "grid": str(self.bmreq.grid), "num_stages": self.bmreq.num_stages, "num_warps": self.bmreq.num_warps, } ) self.mutated_inputs = mutated_inputs self.workspace_arg = workspace_arg self.allowed_prologue_inps = ( allowed_prologue_inps if allowed_prologue_inps is not None else OrderedSet() ) def benchmark(self, *args, out): assert self.bmreq is not None return self.bmreq.benchmark(*args, output_tensor=out) def precompile(self): assert self.bmreq is not None self.bmreq.precompile() def __str__(self) -> str: return f"TritonTemplateCaller({self.bmreq.module_path}, {self.description})" def call_name(self): return f"template_kernels.{self.name}" def hash_key(self): return "-".join( [ self.name.rsplit("_", 1)[0], self.bmreq.module_cache_key, ] ) def output_node(self): return ir.TensorBox.create( ir.TritonTemplateBuffer( layout=self.layout, inputs=self.input_nodes, make_kernel_render=self.make_kernel_render, mutated_inputs=self.mutated_inputs, allowed_prologue_inps=self.allowed_prologue_inps, ) ) def info_dict(self) -> dict[str, Union[PrimitiveInfoType, list[PrimitiveInfoType]]]: """Information returned here is logged to the autotune log file when that is enabled.""" return self.log_info def get_make_kernel_render(self): return self.make_kernel_render def autoheuristic_id(self): type_name = "triton" info = self.info_dict() # TODO(AlnisM): Does tile_shape always exist? tile = info["tile_shape"] tile_vals = eval(tile) # type: ignore[arg-type] BLOCK_M = tile_vals[0] BLOCK_K = tile_vals[1] BLOCK_N = tile_vals[2] num_stages = info["num_stages"] num_warps = info["num_warps"] return f"type={type_name}_BLOCK-M={BLOCK_M}_BLOCK-K={BLOCK_K}_BLOCK-N={BLOCK_N}_numstages={num_stages}_numwarps={num_warps}" class ExternKernelCaller(ChoiceCaller): def __init__( self, choice: ExternKernelChoice, input_nodes, layout, kwargs=None, *, has_out_variant=True, ) -> None: super().__init__(choice.name, input_nodes, layout, description="") self.choice = choice self.kwargs = kwargs or {} self.has_out_variant = has_out_variant def __str__(self) -> str: return f"ExternKernelCaller({self.choice.call_name()})" def benchmark(self, *args, out): if out.numel() == 0: # no need to run the kerrnel of do benchmarking return 0.0 if self.has_out_variant: return super().benchmark(*args, out=out) else: algo = self.to_callable() out_new = algo(*args) torch._C._dynamo.guards.assert_size_stride( out_new, tuple(out.size()), tuple(out.stride()) ) out.copy_(out_new) # for correctness checking return benchmarker.benchmark(algo, args, {}) def to_callable(self): fn = self.choice.to_callable() if self.kwargs: return functools.partial(fn, **self.kwargs) return fn def hash_key(self): return "-".join( [ self.choice.name, *[ f"{kwarg}={repr(self.kwargs[kwarg])}" for kwarg in sorted(self.kwargs.keys()) ], self.choice.hash_key(), ] ) def output_node(self): if self.choice.use_fallback_kernel: assert ( self.choice.op_overload is not None ), "Please provide an op_overload to use ir.FallbackKernel" inner = ir.FallbackKernel.create( self.choice.op_overload, *self.input_nodes, **self.kwargs ) elif self.choice.kernel_creator is not None: inner = self.choice.kernel_creator(*self.input_nodes, **self.kwargs) else: cls = ir.ExternKernelOut if self.has_out_variant else ir.ExternKernelAlloc inner = cls( layout=self.layout, inputs=self.input_nodes, python_kernel_name=self.choice.call_name(), cpp_kernel_name=self.choice.cpp_kernel_name, ordered_kwargs_for_cpp_kernel=self.choice.ordered_kwargs_for_cpp_kernel, op_overload=self.choice.op_overload, kwargs=self.kwargs, ) return ir.TensorBox.create(inner) def info_dict(self) -> dict[str, Union[PrimitiveInfoType, list[PrimitiveInfoType]]]: """Information returned here is logged to the autotune log file when that is enabled.""" return { "backend": "extern", "kernel_call_name": self.choice.call_name(), } def autoheuristic_id(self): return f"extern_{self.choice.name}" @functools.lru_cache(None) def get_mm_log_filename() -> Optional[str]: mm_file_name = os.environ.get("TORCHINDUCTOR_MM_LOGGING_FILE", None) if not mm_file_name: return None if "json" not in mm_file_name: mm_file_name = f"{mm_file_name}.json" return mm_file_name def append_to_log(filename, data): lock_file = filename.replace(".json", ".lock") lock = FileLock(lock_file) with lock: try: with open(filename) as f: log_data = json.load(f) except (FileNotFoundError, json.JSONDecodeError): log_data = [] log_data.append(data) with open(filename, "w") as f: json.dump(log_data, f, indent=4) class DataProcessorChoiceCallerWrapper: def __init__(self, wrapped, preprocessor, postprocessor) -> None: self._wrapped = wrapped if preprocessor is not None: self._preprocessor = preprocessor else: self._preprocessor = lambda x, y: (x, y) if postprocessor is not None: self._postprocessor = postprocessor else: self._postprocessor = lambda x: x def __getattr__(self, name): return getattr(self._wrapped, name) def benchmark(self, *args, out) -> float: new_args, new_out = self._preprocessor(args, out) result = self._wrapped.benchmark(*new_args, out=new_out) new_out = self._postprocessor(new_out) if out is not new_out: out.copy_(new_out) return result def output_node(self) -> ir.TensorBox: result = self._wrapped.output_node() return self._postprocessor(result) def __repr__(self) -> str: return f"DataProcessorChoiceCallerWrapper({self._wrapped})" class DataProcessorTemplateWrapper: """ A wrapper class for a kernel template. This class together with `DataProcessorChoiceCallerWrapper` provides a convenient way to preprocess and postprocess data before and after using the wrapped template. A typical usage is to reorder or filter the input nodes in order to match the expected input of other kernel choices like a ATen kernel. A more complicated usage is to prepack the weights. See the example from :mod:`cpp_gemm_template` for more details. """ def __init__( self, wrapped_template_cls, preprocessor, postprocessor, **kwargs, ) -> None: if preprocessor is not None: self._preprocessor = preprocessor else: self._preprocessor = lambda x, y: (x, y) if postprocessor is not None: self._postprocessor = postprocessor else: self._postprocessor = lambda x: x assert "input_nodes" in kwargs assert "layout" in kwargs kwargs["input_nodes"], kwargs["layout"] = preprocessor( kwargs["input_nodes"], kwargs["layout"] ) self._wrapped = wrapped_template_cls(**kwargs) def __getattr__(self, name): return getattr(self._wrapped, name) def maybe_append_choice(self, choices, **kwargs): return type(self._wrapped).maybe_append_choice(self, choices, **kwargs) def generate(self, **kwargs): choice_caller = self._wrapped.generate(**kwargs) return DataProcessorChoiceCallerWrapper( choice_caller, self._preprocessor, self._postprocessor ) def __repr__(self) -> str: return f"DataProcessorTemplateWrapper({self._wrapped})" class ErrorFromChoice(RuntimeError): def __init__(self, msg, choice: ChoiceCaller, inputs_str) -> None: msg += f"\nFrom choice {choice}\n{inputs_str}" super().__init__(msg) self.choice = choice class NoValidChoicesError(RuntimeError): pass @functools.lru_cache(None) def get_env_num_workers() -> Optional[int]: if "TORCHINDUCTOR_COMPILE_THREADS" in os.environ: return int(os.environ["TORCHINDUCTOR_COMPILE_THREADS"]) return None def create_inputs_key(input_nodes) -> str: return repr([AlgorithmSelectorCache.key_of(x) for x in input_nodes]) def create_precompile_key( name: str, inputs_key: str, choices: list[ChoiceCaller] ) -> str: return ":".join( [ name, inputs_key, torch.get_float32_matmul_precision(), ] + [choice.hash_key() for choice in choices] ) class AlgorithmSelectorCache(PersistentCache): def __init__(self, *args, **kwargs) -> None: super().__init__(*args, **kwargs) # the autotuning will get occur in the scheduler, so there is # no guarantee that the first lowering for a given key will also be the # first to benchmark it. share a single precompilation function for all lowerings # of a particular key self.precompile_cache: dict[str, Callable[[], None]] = {} # list of callbacks that are called after benchmarking self.feedback_saver_fns: list[ Callable[ [dict[ChoiceCaller, float], str, list[Any], list[ChoiceCaller]], None ] ] = [] def __call__( self, name, choices: list[ChoiceCaller], input_nodes, layout, # optional dict mapping arg indices to the functions # generating a torch.Tensor for that input from the # corresponding ir.Buffer. if passed for a given # arg, the function will be called instead of # generating a random torch.Tensor for benchmarking. input_gen_fns: Optional[dict[int, Callable[[ir.Buffer], torch.Tensor]]] = None, precompilation_timeout_seconds: int = 60 * 60, return_multi_template=False, ): from .codegen.cuda.cuda_kernel import CUDATemplateCaller # Templates selected with input_gen_fns require specific input data to avoid IMA # Passing custom input gen fns to benchmark_fusion NYI, so skip deferred template selection # TODO(jgong5): support multi-template on CPU if input_gen_fns is not None or layout.device.type == "cpu": return_multi_template = False # TODO - assert that we have not mutating kernels here # TODO(nmacchioni): remove once CI tests are fixed choices = [choice for choice in choices if choice is not None] if config.test_configs.autotune_choice_name_regex is not None: choices = [ c for c in choices if re.search( config.test_configs.autotune_choice_name_regex, c.name, ) ] if config.test_configs.autotune_choice_desc_regex is not None: choices = [ c for c in choices if re.search( config.test_configs.autotune_choice_desc_regex, c.description, ) ] if mm_file_name := get_mm_log_filename(): M, K = input_nodes[-2].get_size()[:2] N = input_nodes[-1].get_size()[-1] append_to_log(mm_file_name, {"invoke": str((M, K, N))}) if len(choices) == 0: backend_config = ( "max_autotune_gemm_backends" if name != "convolution" else "max_autotune_conv_backends" ) raise NoValidChoicesError( f"No choices to select, please consider adding ATEN into {backend_config} " "config (defined in torch/_inductor/config.py) to allow at least one choice. " ) log.debug("Max autotune selects from %s choices.", str(len(choices))) if len(choices) == 1: if not isinstance(choices[0], CUDATemplateCaller): # CUDATemplateCaller still needs to go through autotuning process to retrieve workspace size. return choices[0].output_node() @functools.lru_cache(None) def make_benchmark_fn(): return self.make_benchmark_fn(choices, input_nodes, layout, input_gen_fns) inputs_key = create_inputs_key(input_nodes) def precompile(choices) -> Callable[[], None]: def no_op(*args, **kwargs): return if ( precompilation_timeout_seconds is None or precompilation_timeout_seconds <= 0 ): return no_op env_workers = get_env_num_workers() num_workers = env_workers if env_workers is not None else (len(choices)) if num_workers <= 0: return no_op # https://github.com/python/cpython/issues/106905 if ( sys.version_info.major == 3 and sys.version_info.minor == 11 and sys.version_info.micro <= 8 ): return no_op # check local and global cache before precompiling timings = self.lookup( choices, name, inputs_key, benchmark=None, ) if timings: return no_op if config.search_autotune_cache and not ( config.max_autotune or config.max_autotune_gemm ): return no_op precompile_key = create_precompile_key(name, inputs_key, choices) if precompile_func := self.precompile_cache.get(precompile_key): return precompile_func log.info( "Multithreaded precompilation for %d choices using %d worker threads", len(choices), num_workers, ) # In rare circumstances, because python threads inherit global state, # thread pool executor can race and leave stdout/stderr in a state # different than the original values. we explicitly restore the state # here to avoid this issue. initial_stdout = sys.stdout initial_stderr = sys.stderr def precompile_with_captured_stdout(choice): with restore_stdout_stderr(initial_stdout, initial_stderr): choice.precompile() def on_complete(future): assert future in start_times elapsed_times[future] = time.time() - start_times[future] executor = ThreadPoolExecutor(max_workers=num_workers) async_compile = torch._inductor.async_compile.AsyncCompile() futures: dict[concurrent.futures.Future[Any], ChoiceCaller] = {} start_times: dict[concurrent.futures.Future[Any], float] = {} elapsed_times: dict[concurrent.futures.Future[Any], float] = {} for c in choices: if hasattr(c, "precompile"): triton_cuda_choice = isinstance( c, TritonTemplateCaller ) and isinstance(c.bmreq, TritonGPUBenchmarkRequest) if triton_cuda_choice and async_compile.use_process_pool(): with open(c.bmreq.module_path) as file: source_code = file.read() future = async_compile.triton( kernel_name=c.bmreq.kernel_name, source_code=source_code ).future else: future = executor.submit(precompile_with_captured_stdout, c) start_times[future] = time.time() future.add_done_callback(on_complete) futures[future] = c @functools.lru_cache(None) @restore_stdout_stderr(initial_stdout, initial_stderr) def wait_on_futures(): counters["inductor"]["select_algorithm_precompile"] += 1 for future in as_completed( futures, timeout=precompilation_timeout_seconds, ): if e := future.exception(): log.error( "Exception %s for benchmark choice %s", e, futures[future] ) else: log.info( "Precompiling benchmark choice %s took %.02fs", futures[future], elapsed_times[future], ) executor.shutdown(wait=True) self.precompile_cache[precompile_key] = wait_on_futures return wait_on_futures def autotune(choices): with dynamo_timed( f"{name}_template_autotuning", log_pt2_compile_event=True, dynamo_compile_column_us="compile_time_autotune_time_us", ): return make_benchmark_fn()(choices) if config.autotune_in_subproc: from .autotune_process import tuning_pool # do the optional warmup tuning_pool.initialize() def do_autotuning(precompile_fn): precompile_start_ts = time.time() with dynamo_timed( f"{name}_template_precompiling", log_pt2_compile_event=True, dynamo_compile_column_us="compile_time_autotune_time_us", ): precompile_fn() precompile_elapse = time.time() - precompile_start_ts autotune_start_ts = time.time() timings = self.lookup( choices, name, inputs_key, autotune, ) autotune_elapse = time.time() - autotune_start_ts if timings and all( not math.isfinite(timing) for timing in timings.values() ): raise NoValidChoicesError if make_benchmark_fn.cache_info().currsize: counters["inductor"]["select_algorithm_autotune"] += 1 if ( make_benchmark_fn.cache_info().currsize or log.getEffectiveLevel() == logging.DEBUG or config.trace.log_autotuning_results ): self.log_results( name, input_nodes, timings, autotune_elapse, precompile_elapse ) for feedback_fn in self.feedback_saver_fns: feedback_fn(timings, name, input_nodes, choices) return timings precompile_fn = precompile(choices) if return_multi_template and (config.max_autotune or config.max_autotune_gemm): def get_timings(): timings = do_autotuning(precompile_fn) min_extern_choice = float("inf") for choice, timing in timings.items(): if isinstance(choice, ExternKernelCaller): min_extern_choice = min(min_extern_choice, timing) timings = { choice: time for choice, time in timings.items() if ( time <= min_extern_choice or not isinstance(choice, ExternKernelCaller) ) } return timings # We take the union of allowed prologue inputs from all choices, # and, within benchmark fusion, don't allow prologue fusion for # choices which dont support the whole union. allowed_prologue_inps: OrderedSet[str] = OrderedSet() for c in choices: if isinstance(c, TritonTemplateCaller): allowed_prologue_inps |= c.allowed_prologue_inps return torch._inductor.ir.TensorBox.create( torch._inductor.ir.MultiTemplateBuffer( layout, input_nodes, get_timings, choices, allowed_prologue_inps, ) ) # TODO - dont want to precompile if we have a cache hit timings = do_autotuning(precompile_fn) if timings == {} or choices[0] not in timings: return choices[0].output_node() selected_key = builtins.min(timings, key=timings.__getitem__) selected_choice = selected_key.output_node() log.debug("selected choice: %s", str(selected_choice)) return selected_choice @classmethod def make_benchmark_fn( cls, choices, input_nodes, layout, input_gen_fns=None, ): if input_gen_fns is None: input_gen_fns = {} def get_inputs( choices: Union[list[ExternKernelCaller], list[TritonTemplateCaller]] ) -> AutotuneArgs: # de-duplicate args unique_example_inputs = { x.get_name(): input_gen_fns.get(i, cls.benchmark_example_value)(x) for i, x in enumerate(input_nodes) } example_inputs = list(unique_example_inputs.values()) example_inputs_extern = [ ( unique_example_inputs[input_node.get_name()] if unique_example_inputs[input_node.get_name()].is_mkldnn else torch.as_strided( unique_example_inputs[input_node.get_name()], V.graph.sizevars.size_hints( input_node.get_size(), fallback=config.unbacked_symint_fallback, ), V.graph.sizevars.size_hints( input_node.get_stride(), fallback=config.unbacked_symint_fallback, ), V.graph.sizevars.size_hint( input_node.get_layout().offset, fallback=config.unbacked_symint_fallback, ), ) ) for input_node in input_nodes ] out = cls.benchmark_example_value(layout) out_extern = torch.as_strided( out, out.size(), out.stride(), V.graph.sizevars.size_hint(layout.offset) ) expected = None if VERIFY: choices[0].benchmark(*example_inputs_extern, out=out_extern) expected = out_extern.clone() return AutotuneArgs.from_choice_args( example_inputs, example_inputs_extern, out, out_extern, expected, ) if DEBUG: print(f"{len(choices)} tuning requests:") def benchmark_choice_in_current_process( choice: ChoiceCaller, autotune_args: AutotuneArgs ) -> float: is_extern = isinstance(choice, ExternKernelCaller) benchmark_tensors = autotune_args.get_benchmark_tensors(is_extern) inpts, output = benchmark_tensors.unpack() output.zero_() result = choice.benchmark(*inpts, out=output) device_type = next( (tensor.device.type for tensor in inpts if is_gpu(tensor.device.type)), "cuda", ) device_interface = get_interface_for_device(device_type) if device_interface.is_available(): device_interface.synchronize() # shake out any CUDA errors if VERIFY and autotune_args.expected is not None: autotune_args.verify(**VERIFY) return result def benchmark_in_current_process( choices: Union[list[ExternKernelCaller], list[TritonTemplateCaller]], ) -> dict[Union[ExternKernelCaller, TritonTemplateCaller], float]: inputs = get_inputs(choices) timings = {} for choice in choices: try: timing = benchmark_choice_in_current_process(choice, inputs) except CUDACompileError as e: log.error( "CUDA compilation error during autotuning: \n%s. \nIgnoring this choice.", str(e), ) timing = float("inf") except NotImplementedError as e: log.warning("Not yet implemented: %s", e) timing = float("inf") except RuntimeError as e: msg = str(e) if "invalid argument" in msg: msg += "\n\nThis may mean this GPU is too small for max_autotune mode.\n\n" else: if "illegal memory access" in msg: msg += "\n\nEither error in template or triton bug.\n" log.error( "Runtime error during autotuning: \n%s. \nIgnoring this choice.", msg, ) timing = float("inf") except AssertionError as e: raise AssertionError( # noqa: B904 f"Incorrect result from choice {choice}\n\n{e}" ) except Exception as e: try: from triton.runtime.autotuner import OutOfResources if isinstance(e, OutOfResources): log.warning(e) timing = float("inf") else: raise e except ImportError: raise e from None timings[choice] = timing return timings def benchmark_in_sub_process( choices: Union[list[ExternKernelCaller], list[TritonTemplateCaller]] ): from . import autotune_process # only benchmark triton kernel in sub process for now. # ATen/Extern kernel are still benchmarked in the current process. extern = [c for c in choices if isinstance(c, ExternKernelCaller)] triton = [c for c in choices if not isinstance(c, ExternKernelCaller)] timings = benchmark_in_current_process(extern) timings.update(autotune_process.benchmark_in_sub_process(triton)) # type: ignore[arg-type] return timings benchmark = ( benchmark_in_sub_process if config.autotune_in_subproc else benchmark_in_current_process ) return benchmark @staticmethod def log_results( name: str, input_nodes: list[ir.IRNode], timings: dict[ChoiceCaller, float], elapse: float, precompile_elapse: float, ): V.debug.log_autotuning_results( name, input_nodes, timings, elapse, precompile_elapse ) if not (config.max_autotune or config.max_autotune_gemm) or not PRINT_AUTOTUNE: return sizes = ", ".join( [ "x".join( map( str, V.graph.sizevars.size_hints( n.get_size(), fallback=config.unbacked_symint_fallback # type: ignore[arg-type] ), ) ) for n in input_nodes ] ) if config.autotune_num_choices_displayed == 0: return elif config.autotune_num_choices_displayed is None: n = -1 else: n = config.autotune_num_choices_displayed top_k = sorted(timings, key=timings.__getitem__)[:n] best = top_k[0] def get_choice_info(choice): if isinstance(choice, torch._inductor.select_algorithm.ExternKernelCaller): return {"type": "cublas", "time": timings[choice]} assert isinstance( choice, torch._inductor.select_algorithm.TritonTemplateCaller ) info = choice.info_dict() tile = info["tile_shape"] tile_vals = eval(tile) # type: ignore[arg-type] BLOCK_M = tile_vals[0] BLOCK_K = tile_vals[1] BLOCK_N = tile_vals[2] return { "type": "triton", "time": timings[choice], "BLOCK_M": BLOCK_M, "BLOCK_K": BLOCK_K, "BLOCK_N": BLOCK_N, "num_stages": info["num_stages"], "num_warps": info["num_warps"], } mm_filename = get_mm_log_filename() if mm_filename and "mm" in name: M, K = input_nodes[-2].get_size()[:2] N = input_nodes[-1].get_size()[-1] out_dict = { str((M, K, N)): [get_choice_info(choice) for choice in timings.keys()] } append_to_log(mm_filename, out_dict) best_time = timings[best] sys.stderr.write(f"AUTOTUNE {name}({sizes})\n") for choice in top_k: result = timings[choice] if result: kernel_description = choice.description sys.stderr.write( f" {choice.name} {result:.4f} ms {best_time / result:.1%} {kernel_description}\n" ) else: sys.stderr.write( f" {choice.name} {result:.4f} ms \n" ) autotune_type_str = ( "SubProcess" if config.autotune_in_subproc else "SingleProcess" ) sys.stderr.write( f"{autotune_type_str} AUTOTUNE benchmarking takes {elapse:.4f} seconds and {precompile_elapse:.4f}" f" seconds precompiling for {len(timings)} choices\n" ) @staticmethod def benchmark_example_value(node): """ Convert an ir.Buffer into a concrete torch.Tensor we can use for benchmarking. """ if isinstance(node, ir.Layout): node = ir.Buffer(name="fake", layout=node) # triton templates want the base tensor. if isinstance(node, ir.BaseView): node = node.unwrap_view() return AlgorithmSelectorCache.generate_example_value( V.graph.sizevars.size_hints( node.get_size(), fallback=config.unbacked_symint_fallback, ), V.graph.sizevars.size_hints( node.get_stride(), fallback=config.unbacked_symint_fallback, ), node.get_device(), node.get_dtype(), node.layout.offset, ) @staticmethod def generate_example_value(size, stride, device, dtype, extra_size): # preserve rng states to avoid the rand_strided call below changes # the rng states for the real model code. with preserve_rng_state(): return rand_strided( size, stride, device=device, dtype=dtype, extra_size=extra_size, ) @staticmethod def key_of(node): """ Extract the pieces of an ir.Buffer that we should invalidate cached autotuning results on. """ sizevars = V.graph.sizevars return ( node.get_device().type, str(node.get_dtype()), *sizevars.size_hints( node.get_size(), fallback=config.unbacked_symint_fallback, ), *sizevars.size_hints( node.get_stride(), fallback=config.unbacked_symint_fallback, ), sizevars.size_hint( node.get_layout().offset, fallback=config.unbacked_symint_fallback, ), ) def add_feedback_saver( self, fn: Callable[ [dict[ChoiceCaller, float], str, list[Any], list[ChoiceCaller]], None ], ): self.feedback_saver_fns.append(fn) _ALGORITHM_SELECTOR_CACHE: Optional[AlgorithmSelectorCache] = None def autotune_select_algorithm(*args, **kwargs): global _ALGORITHM_SELECTOR_CACHE if _ALGORITHM_SELECTOR_CACHE is None: _ALGORITHM_SELECTOR_CACHE = AlgorithmSelectorCache() if "return_multi_template" not in kwargs: kwargs[ "return_multi_template" ] = torch._inductor.config.benchmark_epilogue_fusion return _ALGORITHM_SELECTOR_CACHE(*args, **kwargs) def add_feedback_saver( fn: Callable[[dict[ChoiceCaller, float], str, list[Any], list[ChoiceCaller]], None] ): global _ALGORITHM_SELECTOR_CACHE if _ALGORITHM_SELECTOR_CACHE is None: _ALGORITHM_SELECTOR_CACHE = AlgorithmSelectorCache() _ALGORITHM_SELECTOR_CACHE.add_feedback_saver(fn) def realize_inputs(*args): if len(args) == 1: return ir.ExternKernel.require_stride1(ir.ExternKernel.realize_input(args[0])) return [realize_inputs(x) for x in args] # ensure lowering is imported so that `extern_kernels.*` is populated from . import lowering # noqa: F401