# mypy: allow-untyped-defs import contextlib import dataclasses import functools import itertools import logging import math import re import sys from collections import namedtuple from copy import copy, deepcopy from enum import Enum from typing import Any, cast, Dict, List, Optional, Sequence, Set, Tuple, Union import sympy import torch import torch.fx from torch._inductor import dependencies from torch._prims_common import is_float_dtype from torch.utils import _pytree as pytree from torch.utils._sympy.functions import CeilDiv, FloorDiv, ModularIndexing from torch.utils._sympy.symbol import free_symbol_is_type, symbol_is_type, SymT from torch.utils._sympy.value_ranges import bound_sympy, ValueRanges from ..._dynamo.utils import counters from .. import codecache, config, cpp_builder, cpu_vec_isa, ir, metrics from ..codegen.wrapper import WrapperCodeGen from ..optimize_indexing import range_expressable_in_32_bits from ..scheduler import ( BaseSchedulerNode, BaseScheduling, ForeachKernelSchedulerNode, FusedSchedulerNode, Scheduler, SchedulerNode, ) from ..utils import ( cache_on_self, get_bounds_index_expr, get_fused_kernel_name, is_welford_reduction, parallel_num_threads, Placeholder, sympy_index_symbol, sympy_index_symbol_with_prefix, sympy_product, sympy_subs, ) from ..virtualized import NullKernelHandler, ops, OpsValue, V from .common import ( BackendFeature, BracesBuffer, CppWrapperKernelArgs, CSE, CSEVariable, DataTypePropagation, DeferredLine, DTYPE_TO_COMPUTATION_DTYPE, IndentedBuffer, Kernel, KernelArgs, OpOverrides, OptimizationContext, ) from .cpp_utils import ( cexpr, cexpr_index, DTYPE_TO_CPP, INDEX_TYPE, LocalBufferContext, unify_mask_base_type, value_to_cpp, ) _IS_WINDOWS = sys.platform == "win32" schedule_log = torch._logging.getArtifactLogger(__name__, "schedule") NATIVE_OMP_RTYPES = {"+", "*", "^", "||", "min", "max"} RTYPE_TO_CPP = { "sum": "+", "prod": "*", "xor_sum": "^", "min": "min", "max": "max", "argmin": "argmin", "argmax": "argmax", "any": "||", "welford_reduce": "welford", "welford_combine": "welford", } VECTORIZABLE_RTYPES = { "max", "min", "sum", "prod", "xor_sum", "welford_reduce", "welford_combine", } PYTHON_TO_CPP = { "Tensor": "at::Tensor", "int": "long", "float": "double", "bool": "bool", "str": "std::string", "ScalarType": "c10::ScalarType", "MemoryFormat": "at::MemoryFormat", "Layout": "at::Layout", "Device": "at::Device", "number": "at::Scalar", } CONTAINER_PYTHON_TO_CPP = { "List": "std::vector", "Optional": "c10::optional", } DTYPE_LOWP_FP = [ torch.bfloat16, torch.float16, ] BIN_CMP_OPS = ["eq", "ne", "le", "ge", "lt", "gt"] def reduction_init(reduction_type, dtype): if dtype in DTYPE_LOWP_FP: # Since load promotes all half-precision inputs to float, the initial # constant for reduction must be promoted as well dtype = torch.float32 if reduction_type in ("xor_sum", "sum", "any"): return 0 if reduction_type == "prod": return 1 if reduction_type in {"max", "argmax"}: return ( f"-std::numeric_limits<{DTYPE_TO_CPP[dtype]}>::infinity()" if is_float_dtype(dtype) else f"std::numeric_limits<{DTYPE_TO_CPP[dtype]}>::min()" ) if reduction_type in {"min", "argmin"}: return ( f"std::numeric_limits<{DTYPE_TO_CPP[dtype]}>::infinity()" if is_float_dtype(dtype) else f"std::numeric_limits<{DTYPE_TO_CPP[dtype]}>::max()" ) if is_welford_reduction(reduction_type): return f"Welford<{DTYPE_TO_CPP[dtype]}>()" raise AssertionError(reduction_type) def reduction_acc_type(reduction_type, dtype): assert reduction_type not in {"argmin", "argmax"} scalar_type = DTYPE_TO_CPP[DTYPE_TO_COMPUTATION_DTYPE[dtype]] if is_welford_reduction(reduction_type): return f"Welford<{scalar_type}>" return scalar_type def reduction_combine(reduction_type, var, next_value): if reduction_type == "sum": return f"{var} + {next_value}" if reduction_type == "prod": return f"{var} * {next_value}" if reduction_type == "xor_sum": return f"{var} ^ {next_value}" if reduction_type == "any": return f"{var} || {next_value}" if reduction_type in ("min", "max"): return f"{reduction_type}_propagate_nan({var}, {next_value})" if reduction_type == "welford_reduce": return f"welford_combine({var}, {next_value})" if reduction_type == "welford_combine": if isinstance(next_value, tuple): mean, m2, weight = next_value else: mean, m2, weight = reduction_project(reduction_type, next_value) return f"welford_combine({var}, {{{mean}, {m2}, {weight}}})" raise AssertionError(reduction_type) def reduction_project(reduction_type, acc): if is_welford_reduction(reduction_type): return f"{acc}.mean", f"{acc}.m2", f"{acc}.weight" elif reduction_type in {"argmin", "argmax"}: return f"{acc}.index" return acc def is_to_lowp_dtype(expr): to_exprs = ["convert", "convert"] return any(to_expr in expr for to_expr in to_exprs) def get_lowp_to_high_prec_expr(lowp_var, dtype, kernel): if isinstance(kernel, CppVecKernel): return f"at::vec::convert<{DTYPE_TO_CPP[dtype]}>({lowp_var})" else: assert isinstance(kernel, CppKernel) return f"c10::convert<{DTYPE_TO_CPP[dtype]}>({lowp_var})" index_value_name_counter = 1 def argmax_argmin_prefix(reduction_type, src_dtype, tmpvar): global index_value_name_counter num_threads = ( "max_threads" if config.cpp.dynamic_threads else parallel_num_threads() ) struct_name = f"IndexValue_{index_value_name_counter}" index_value_name_counter += 1 # A small annoyance, due to it being a little cumbersome to just throw {} into strings prefix = [ f"struct {struct_name} {{size_t index; {DTYPE_TO_CPP[src_dtype]} value;}};", f"{struct_name} {tmpvar}{{0, {reduction_init(reduction_type, src_dtype)}}};", ] local_init = [ f"{struct_name} {tmpvar}_local{{0, {reduction_init(reduction_type, src_dtype)}}};", ] tmpvar_per_thd = f"{tmpvar}_arr[{num_threads}]" parallel_prefix = [ f"{struct_name} {tmpvar_per_thd};", ] return prefix, parallel_prefix, local_init @functools.lru_cache def stride_at(index: sympy.Expr, var: sympy.Symbol): replacement = {var: var + 1} new_index = sympy_subs(index, replacement) # type: ignore[arg-type] return sympy.simplify(new_index - index) @functools.lru_cache def simplify_index_in_vec_range(index: sympy.Expr, var: sympy.Expr, vec_length: int): """ Simplifies the index expression within the range of a vectorized loop. Given a vectorized loop variable `var` in the range of a loop with `vec_length`, this function transforms the `index` into an equivalent form. It handles simplifications for cases where `var` can be expressed as `vec_length * a + b`, where `b` ranges from 0 to `vec_length - 1`. The function reduces occurrences of `FloorDiv` and `ModularIndexing` in the `index` with best-effort optimizations. NOTE: The simplified index expression is intended for analysis purposes only, not for code generation. It replaces `FloorDiv` and `ModularIndexing` with free variables which are not dependent on the loop variable `var` in the vectorized range. Check https://github.com/pytorch/pytorch/pull/117221#discussion_r1449746217 for more details. Examples: 1. If `var` is `x3` and `vec_length` is 16, and `x3 = 16*a + b`, then `FloorDiv(x3, div)` or `ModularIndexing(x3, div, mod)` becomes a free variable when `div` is divisible by 16. 2. `ModularIndexing(x3, 1, mod)` can be simplified to `x3 + c` where `c` is a free variable when `mod` is divisible by 16. """ div_freevar_id = 0 mod_freevar_id = 0 def visit_indexing_div(divisor): nonlocal div_freevar_id result = FloorDiv(var, divisor) if sympy.gcd(divisor, vec_length) == vec_length: result = sympy.Symbol(f"{var}_div_c{div_freevar_id}") div_freevar_id += 1 return result def visit_modular_indexing(divisor, modulus): nonlocal mod_freevar_id result = ModularIndexing(var, divisor, modulus) if sympy.gcd(divisor, vec_length) == vec_length: result = sympy.Symbol(f"{var}_mod_c{mod_freevar_id}") mod_freevar_id += 1 elif divisor == 1 and sympy.gcd(modulus, vec_length) == vec_length: result = var + sympy.Symbol(f"{var}_mod_c{mod_freevar_id}") mod_freevar_id += 1 return result original_index = index div = sympy.Wild("divisor", integer=True) if index.has(FloorDiv): index = index.replace(FloorDiv(var, div), visit_indexing_div) mod = sympy.Wild("modulus", integer=True) if index.has(ModularIndexing): index = index.replace(ModularIndexing(var, div, mod), visit_modular_indexing) index = sympy.simplify(index) if index != original_index: return simplify_index_in_vec_range(index, var, vec_length) return index @functools.lru_cache def stride_at_vec_range(index: sympy.Expr, var: sympy.Symbol, vec_length: int): index_vec_simplified = simplify_index_in_vec_range(index, var, vec_length) return stride_at(index_vec_simplified, var) class OuterLoopFusedSchedulerNode(FusedSchedulerNode): @classmethod def fuse( # type: ignore[override] cls, node1: BaseSchedulerNode, node2: BaseSchedulerNode, outer_loop_fusion_depth ): assert node1.scheduler is node2.scheduler assert all( type(node) in ( OuterLoopFusedSchedulerNode, SchedulerNode, FusedSchedulerNode, ) for node in (node1, node2) ) if any(type(node) is OuterLoopFusedSchedulerNode for node in (node1, node2)): return cls( node1.scheduler, ( list(node1.get_outer_nodes()) if type(node1) is OuterLoopFusedSchedulerNode else [ node1, ] ) + ( list(node2.get_outer_nodes()) if type(node2) is OuterLoopFusedSchedulerNode else [ node2, ] ), outer_loop_fusion_depth, ) else: return cls(node1.scheduler, [node1, node2], outer_loop_fusion_depth) # type: ignore[list-item] def __init__( self, scheduler: "Scheduler", outer_fused_nodes: List[Union[FusedSchedulerNode, SchedulerNode]], outer_loop_fusion_depth, ): self.outer_fused_nodes: List[ Union[FusedSchedulerNode, SchedulerNode] ] = outer_fused_nodes self.outer_loop_fusion_depth = outer_loop_fusion_depth flatten_snodes = [] for _node in self.outer_fused_nodes: assert isinstance(_node, (SchedulerNode, FusedSchedulerNode)) flatten_snodes.extend(list(_node.get_nodes())) super().__init__(scheduler, flatten_snodes) # type: ignore[arg-type] def get_outer_nodes(self): return self.outer_fused_nodes def check_outer_fusion_loop_level_attr( self, cpp_kernel_proxy_list, outer_loop_fusion_depth ): # This function ensures that the same tiling split is applied at each loop level within the outer loop fusion depth. # In the fusion stage, we only examine nodes with same vars and reduce. # However, for nodes with same vars and reduce, the loops may still have different tile splits. # For example (test_expr_vec_non_contiguous in test_cpu_repro.py): # * buf0 tiling along the 2nd loop level, buf1 tiling along the 3rd loop level. # If the check failed, we should fall back to standard loop codegen. def _inner( left_loop_level: LoopLevel, right_loop_level: LoopLevel, loop_fusion_depth: int, ) -> bool: # Check if same loop level attr outer_loops_attr_compare_list = [ "var", "size", "offset", "steps", ] if not ( all( getattr(left_loop_level, attr_compare) == getattr(right_loop_level, attr_compare) for attr_compare in outer_loops_attr_compare_list ) ): return False assert loop_fusion_depth >= 1 if (loop_fusion_depth := loop_fusion_depth - 1) > 0: # If the next loop level is expected to undergo outer loop fusion, # there should be no kernel present at the current loop level. assert ( left_loop_level.kernel is None and right_loop_level.kernel is None ) # Check next loop level attr if any( # Assume no main/tail loop split at any outer loop fusion depth # Given no clear performance benefit for this complex case len(loop_level.inner) != 1 for loop_level in [left_loop_level, right_loop_level] ) or not _inner( left_loop_level.inner[0], right_loop_level.inner[0], loop_fusion_depth, ): return False return True for idx in range(len(cpp_kernel_proxy_list) - 1): left_loop_nest = cpp_kernel_proxy_list[idx].loop_nest right_loop_nest = cpp_kernel_proxy_list[idx + 1].loop_nest if any( # Assume no main/tail loop split at any outer loop fusion depth len(loop_nest.root) != 1 for loop_nest in [left_loop_nest, right_loop_nest] ) or not _inner( left_loop_nest.root[0], right_loop_nest.root[0], outer_loop_fusion_depth ): return False return True def merge_outer_fusion_kernels( self, cpp_kernel_proxy_list, ): loop_nest_list: List[LoopNestWithSplit] = [ kernel.loop_nest for kernel in cpp_kernel_proxy_list ] kernel_group = cpp_kernel_proxy_list[0].kernel_group def _merge_outer_fusion_loop_levels( loop_level_nested_list: List[List["LoopLevel"]], outer_loop_fusion_depth, ): assert outer_loop_fusion_depth >= 1 # Assume no main/tail loop split at any outer loop fusion depth assert all( len(loop_level_list) == 1 for loop_level_list in loop_level_nested_list ) if (outer_loop_fusion_depth := outer_loop_fusion_depth - 1) >= 1: # Further merge the next loop level next_loop_level_nested_list = [ loop_level_list[0].inner for loop_level_list in loop_level_nested_list ] _merge_outer_fusion_loop_levels( next_loop_level_nested_list, outer_loop_fusion_depth, ) else: outer_loop_fused_kernel = OuterLoopFusedKernel(kernel_group) loop_level_of_first_kernel = loop_level_nested_list[0][0] for kernel_idx in range(len(loop_level_nested_list)): outer_loop_fused_kernel.inner.append( deepcopy(loop_level_nested_list[kernel_idx][0]), ) loop_level_of_first_kernel.inner = [] loop_level_of_first_kernel.kernel = outer_loop_fused_kernel # Merge the List[LoopNestWithSplit] from cpp_kernel_proxy_list # into cpp_kernel_proxy_list[0].loop_nest _merge_outer_fusion_loop_levels( [_loop_nest.root for _loop_nest in loop_nest_list], # type: ignore[misc] self.outer_loop_fusion_depth, ) return cpp_kernel_proxy_list[0] class RecordOptimizationContext: def __init__(self, func_name: str = ""): self.func_name = func_name self.current_node: Optional[torch.fx.Node] = None self.opt_ctx: Optional[OptimizationContext] = None def __enter__(self): assert V.interpreter assert V.interpreter.current_node self.current_node = V.interpreter.current_node assert self.current_node is not None if OptimizationContext.key in self.current_node.meta: self.opt_ctx = self.current_node.meta[OptimizationContext.key] else: self.opt_ctx = OptimizationContext() assert self.opt_ctx is not None self.opt_ctx.ops_name = self.func_name return self def __exit__(self, exc_type, exc_val, exc_tb): assert self.current_node assert self.opt_ctx self.current_node.meta[OptimizationContext.key] = self.opt_ctx def get_opt_ctx(self): return self.opt_ctx def get_fx_node(self): assert self.current_node return self.current_node def get_opt_ctx(node: torch.fx.Node) -> OptimizationContext: return node.meta.get(OptimizationContext.key, None) def get_current_node_opt_ctx() -> OptimizationContext: assert V.interpreter.current_node return get_opt_ctx(V.interpreter.current_node) class CppCSEVariable(CSEVariable): def __init__(self, name, bounds: ValueRanges[Any]): super().__init__(name, bounds) self.is_vec = False self.dtype: Optional[torch.dtype] = None self.dependent_itervars: Set[sympy.Symbol] = set() def __repr__(self): return ( f"CppCSEVariable(name: {self.name}, bounds: {self.bounds}, is_vec: {self.is_vec}, dtype: {self.dtype}, " f"dependent_itervars: {self.dependent_itervars})" ) def update_on_args(self, name, args, kwargs): if name == "load": # args[1] is index self._set_dependent_itervars(args[1]) else: # propagate relevant itervars and is_vec from args self.dependent_itervars.update( *[ arg.dependent_itervars for arg in args if isinstance(arg, CppCSEVariable) ] ) if name == "index_expr": self._set_dependent_itervars(args[0]) if any(arg.is_vec for arg in args if isinstance(arg, CppCSEVariable)): self.is_vec = True # NOTE [dtype of CppCSEVariable] # Deciding dtype according to the current optimization context is not # always accurate since the dtypes are initialized during dtype propagation # at the beginning of the codegen. It is possible that some ops are invoked # during the codegen of the current op and take different dtypes from the # current op. # TODO(jgong5): A more accurate way of deciding the dtype of the variables is to # propagate the dtypes here inside `update_on_args`. if ( hasattr(V.interpreter, "current_node") and get_current_node_opt_ctx() is not None ): self.dtype = get_current_node_opt_ctx().dtype if name in BIN_CMP_OPS: self.dtype = torch.bool def _set_dependent_itervars(self, index: sympy.Expr): """ Set the relevant itervars for this variable based on the `index` expression. This includes the itervars directly used in the `index` as well as relevant itervars of other cse variables used in the `index`. """ for s in index.free_symbols: if s in V.kernel.itervars: self.dependent_itervars.add(s) # type: ignore[arg-type] elif s.name in V.kernel.cse.varname_map: # type: ignore[attr-defined] self.dependent_itervars.update( V.kernel.cse.varname_map[s.name].dependent_itervars # type: ignore[attr-defined] ) def depends_on(self, itervar: sympy.Symbol): return itervar in self.dependent_itervars class CppOverrides(OpOverrides): """Map element-wise ops to C++""" @staticmethod def add(a, b): return f"decltype({a})({a} + {b})" @staticmethod def sub(a, b): return f"decltype({a})({a} - {b})" @staticmethod def mul(a, b): return f"decltype({a})({a} * {b})" @staticmethod def to_dtype(x, dtype, src_dtype=None): assert dtype in DTYPE_TO_CPP, f"{dtype} missing from {__name__}.DTYPE_TO_CPP" return f"c10::convert<{DTYPE_TO_CPP[dtype]}>({x})" @staticmethod def to_dtype_bitcast(x, dtype, src_dtype): assert dtype in DTYPE_TO_CPP, f"{dtype} missing from {__name__}.DTYPE_TO_CPP" if src_dtype in (torch.float16, torch.bfloat16): # c10::bit_cast requires the source and target have the bitwidth. # Because the input tensor's dtype could be promoted, e.g. from float16 to # float, we have to cast the tensor to its original source dtype before # invoking bit_cast. We also need to convert the bit-casted tensor # back to float to make sure we keep using higher precision values # for the rest of the computation. cast_x = f"c10::convert<{DTYPE_TO_CPP[src_dtype]}>({x})" cast_x = f"c10::bit_cast<{DTYPE_TO_CPP[dtype]}>({cast_x})" return f"c10::convert<{DTYPE_TO_CPP[torch.float32]}>({cast_x})" else: return f"c10::bit_cast<{DTYPE_TO_CPP[dtype]}>({x})" @staticmethod def abs(x): return f"std::abs({x})" @staticmethod def sin(x): return f"std::sin({x})" @staticmethod def cos(x): return f"std::cos({x})" @staticmethod def neg(x): return f"decltype({x})(-{x})" @staticmethod def exp(x): # return f"Sleef_expf_u10({x})" return f"std::exp({x})" @staticmethod def exp2(x): return f"std::exp2({x})" @staticmethod def expm1(x): return f"std::expm1({x})" @staticmethod def erf(x): return f"std::erf({x})" @staticmethod def erfc(x): return f"std::erfc({x})" @staticmethod def erfinv(x): return f"calc_erfinv({x})" @staticmethod def sqrt(x): return f"std::sqrt({x})" @staticmethod def rsqrt(x): return f"1 / std::sqrt({x})" @staticmethod def log1p(x): bug = config.cpp.inject_log1p_bug_TESTING_ONLY if bug == "accuracy": return f"{x} + decltype({x})(1)" elif bug is None: return f"std::log1p({x})" else: raise AssertionError( f"unrecognized config cpp.inject_log1p_bug_TESTING_ONLY = {bug!r}" ) @staticmethod def tan(x): return f"std::tan({x})" @staticmethod def tanh(x): return f"std::tanh({x})" @staticmethod def signbit(x): return f"std::signbit({x})" @staticmethod def pow(a, b): return f"std::pow({a}, {b})" @staticmethod def log(x): return f"std::log({x})" @staticmethod def round(x): return f"std::nearbyint({x})" @staticmethod def floor(x): return f"std::floor({x})" @staticmethod def floordiv(a, b): # a and b are integer type quot = f"{a} / {b}" rem = f"{a} % {b}" return f"(({a} < 0) != ({b} < 0) ? ({rem} != 0 ? {quot} - 1 : {quot}) : {quot})" @staticmethod def ceil(x): return f"std::ceil({x})" @staticmethod def trunc(x): return f"std::trunc({x})" @staticmethod def truncdiv(a, b): # a and b are integer type return f"{a} / {b}" @staticmethod def fmod(a, b): return f"std::fmod({a}, {b})" @staticmethod def isinf(x): return f"std::isinf({x})" @staticmethod def isnan(x): return f"std::isnan({x})" @staticmethod def lgamma(x): return f"std::lgamma({x})" @staticmethod def acos(x): return f"std::acos({x})" @staticmethod def acosh(x): return f"std::acosh({x})" @staticmethod def cosh(x): return f"std::cosh({x})" @staticmethod def sinh(x): return f"std::sinh({x})" @staticmethod def asin(x): return f"std::asin({x})" @staticmethod def asinh(x): return f"std::asinh({x})" @staticmethod def atan2(x, y): return f"std::atan2({x}, {y})" @staticmethod def atan(x): return f"std::atan({x})" @staticmethod def atanh(x): return f"std::atanh({x})" @staticmethod def copysign(x, y): return f"std::copysign({x}, {y})" @staticmethod def frexp(x): cache_keys = f"frexp({x})[0]", f"frexp({x})[1]" if all(cache_key in V.kernel.cse.cache for cache_key in cache_keys): return tuple(V.kernel.cse.cache[cache_key] for cache_key in cache_keys) code = BracesBuffer() exponent = V.kernel.cse.newvar() mantissa = V.kernel.cse.newvar() code.writeline(f"int32_t {exponent};") code.writeline(f"auto {mantissa} = std::frexp({x}, &{exponent});") V.kernel.compute.splice(code) cse_vars = (mantissa, exponent) for cache_key, cse_var in zip(cache_keys, cse_vars): V.kernel.cse.cache[cache_key] = cse_var return mantissa, exponent @staticmethod def hypot(x, y): return f"std::hypot({x}, {y})" @staticmethod def log10(x): return f"std::log10({x})" @staticmethod def log2(x): return f"std::log2({x})" @staticmethod def nextafter(x, y): return f"std::nextafter({x}, {y})" @staticmethod def relu(x): bug = config.cpp.inject_relu_bug_TESTING_ONLY if bug == "compile_error": return "compile error!" elif bug == "runtime_error": return f"{x}; throw 1" elif bug == "accuracy": return f"{x} + decltype({x})(1)" elif bug is None: return f"std::max({x}, decltype({x})(0))" else: raise AssertionError( f"unrecognized config cpp.inject_relu_bug_TESTING_ONLY = {bug!r}" ) @staticmethod def minimum(a, b): return f"min_propagate_nan({a}, {b})" @staticmethod def maximum(a, b): return f"max_propagate_nan({a}, {b})" @staticmethod def where(a, b, c): return f"{a} ? {b} : {c}" @staticmethod def mod(a, b): return f"mod({a}, {b})" @staticmethod def constant(val, dtype): opt_ctx: OptimizationContext = get_current_node_opt_ctx() assert opt_ctx and opt_ctx.dtype is not None, opt_ctx dtype = opt_ctx.dtype if dtype in DTYPE_LOWP_FP: # Since load promotes all half-precision inputs to float, constants # must be promoted as well dtype = torch.float32 return value_to_cpp(val, DTYPE_TO_CPP[dtype]) @staticmethod def index_expr(expr, dtype): opt_ctx: OptimizationContext = get_current_node_opt_ctx() assert opt_ctx and opt_ctx.dtype is not None dtype = opt_ctx.dtype idx_str = cexpr(V.kernel.rename_indexing(expr)) var = V.kernel.cse.generate( V.kernel.compute, idx_str, bounds=get_bounds_index_expr(expr) ) return ops.to_dtype(var, dtype) @staticmethod def masked(mask, body, other): code = BracesBuffer() # Write masked operation into a lambda body_var = V.kernel.cse.newvar() code.writeline(f"auto {body_var} = [&]") with V.kernel.swap_buffers(code), code.indent(): result = body() code.writeline(f"return {result};") code.writeline(";") V.kernel.compute.splice(code) # Use the lambda's return type as the type of other other_code = value_to_cpp(other, f"decltype({body_var}())") return f"{mask} ? {body_var}() : {other_code}" @staticmethod def logical_and(a, b): return f"{a} && {b}" @staticmethod def logical_not(a): return f"!{a}" @staticmethod def logical_or(a, b): return f"{a} || {b}" @staticmethod def logical_xor(a, b): return f"{a} != {b}" @staticmethod def bitwise_and(a, b): return f"decltype({a})({a} & {b})" @staticmethod def bitwise_not(a): return f"decltype({a})(~{a})" @staticmethod def bitwise_or(a, b): return f"decltype({a})({a} | {b})" @staticmethod def bitwise_xor(a, b): return f"decltype({a})({a} ^ {b})" @staticmethod def bitwise_left_shift(a, b): return f"decltype({a})({a} << {b})" @staticmethod def bitwise_right_shift(a, b): return f"decltype({a})({a} >> {b})" @staticmethod def rand(seed: sympy.Expr, offset: sympy.Expr): return f"normalized_rand_cpu({seed}, {offset})" @staticmethod def randn(seed: sympy.Expr, offset: sympy.Expr): return f"randn_cpu({seed}, {offset})" @staticmethod def randint64(seed: sympy.Expr, offset: sympy.Expr, low, high): return f"randint64_cpu({seed}, {offset}, {low}, {high})" @staticmethod def sigmoid(x): return f"decltype({x})(1) / (decltype({x})(1) + std::exp(-{x}))" @staticmethod def sign(x): code = BracesBuffer() scalar_zero = f"decltype({x})(0)" scalar_one = f"decltype({x})(1)" code.writeline("[&]()") with code.indent(): code.writeline(f"auto left = {x} > 0 ? {scalar_one} : {scalar_zero};") code.writeline(f"auto right = {x} < 0 ? {scalar_one} : {scalar_zero};") code.writeline("return left - right;") code.writeline("()") return code CppOverrides._initialize_pointwise_overrides("cpp") class CppVecOverrides(CppOverrides): """Map element-wise ops to aten vectorization C++""" def __new__(cls, *args, **kargs): self = super().__new__(cls) def wrap(func): # `CppVecKernel` generates both scalar ops and vector ops according to # whether the inputs are scalars or vectors while all ops in `CppVecOverrides` # (except for some ops explained below) assume the inputs are vectors. We wrap the ops in # `CppVecOverrides` to broadcast scalar inputs to vectors if needed or fallback to # `CppOverrides` when all inputs are scalars. # # Notes on ops handled separately in their own functions: # `ops.masked`: # needs recursive handling of masked body. # `ops.index_expr`: # needs to further analyze the dependency of the index expression on # the tiling itervar. def wrapper(*args, **kwargs): scalars = [ arg for arg in args if isinstance(arg, (int, sympy.Expr)) or (isinstance(arg, CppCSEVariable) and not arg.is_vec) ] vectors = [ arg for arg in args if isinstance(arg, CppCSEVariable) and arg.is_vec ] new_args = list(args) if scalars and vectors: # broadcast scalar args to vector if needed new_args = [] vec_dtype = vectors[0].dtype for arg in args: if isinstance(arg, (int, sympy.Expr)): arg_dtype = torch.int64 opt_ctx: OptimizationContext = get_current_node_opt_ctx() assert opt_ctx if opt_ctx.dtype is not None: arg_dtype = opt_ctx.dtype if isinstance(arg, sympy.Expr) and not arg.is_number: arg = ops.index_expr(arg, arg_dtype) else: arg = ops.constant(arg, arg_dtype) arg = arg.value if isinstance(arg, OpsValue) else arg if isinstance(arg, CppCSEVariable) and not arg.is_vec: assert isinstance(V.kernel, CppVecKernel) # align scalar data type to the vector for binary ops if len(args) == 2 and arg.dtype != vec_dtype: arg = ops.to_dtype(arg, vec_dtype) arg = arg.value if isinstance(arg, OpsValue) else arg # See NOTE [dtype of CppCSEVariable]: we have to fix arg.dtype since # the dtype from optimization context could be wrong. assert isinstance(arg, CppCSEVariable) arg.dtype = vec_dtype new_arg = V.kernel.broadcast(arg) new_args.append(new_arg) else: new_args.append(arg) if vectors: return func(*new_args, **kwargs) else: # fallback to scalar ops scalar_ops = super(CppVecOverrides, self) scalar_func = getattr( scalar_ops, func.__name__, scalar_ops.__getattr__(func.__name__) # type: ignore[attr-defined] ) assert scalar_func is not None return scalar_func(*args, **kwargs) return wrapper for name, method in vars(CppVecOverrides).items(): if getattr(method, "__class__", None) == staticmethod and name not in [ "masked", "index_expr", ]: setattr(self, name, wrap(method.__func__)) return self @staticmethod def add(a, b): return f"{a} + {b}" @staticmethod def sub(a, b): return f"{a} - {b}" @staticmethod def mul(a, b): return f"{a} * {b}" @staticmethod def truediv(a, b): return f"{a} / {b}" @staticmethod def abs(x): return f"{x}.abs()" @staticmethod def sin(x): return f"{x}.sin()" @staticmethod def cos(x): return f"{x}.cos()" @staticmethod def exp(x): return f"{x}.exp()" @staticmethod def exp2(x): return f"{x}.exp2()" @staticmethod def expm1(x): # decompose for a better performance vec_one = f"decltype({x})(1)" return f"{x}.exp() - {vec_one}" @staticmethod def erf(x): return f"{x}.erf()" @staticmethod def erfc(x): return f"{x}.erfc()" @staticmethod def erfinv(x): return f"{x}.erfinv()" @staticmethod def sqrt(x): return f"{x}.sqrt()" @staticmethod def eq(x, y): assert isinstance(V.kernel, CppVecKernel) assert isinstance(x, CppCSEVariable) assert x.dtype is not None return f"{V.kernel._get_mask_type(x.dtype)}({x} == {y})" @staticmethod def ne(x, y): assert isinstance(V.kernel, CppVecKernel) assert isinstance(x, CppCSEVariable) if x.dtype == torch.bool: assert y.dtype == torch.bool x_cast, y_cast = unify_mask_base_type(V.kernel.compute, (x, y)) return f"{x_cast} != {y_cast}" else: assert x.dtype is not None return f"{V.kernel._get_mask_type(x.dtype)}({x} != {y})" @staticmethod def lt(x, y): assert isinstance(V.kernel, CppVecKernel) assert isinstance(x, CppCSEVariable) assert x.dtype is not None return f"{V.kernel._get_mask_type(x.dtype)}({x} < {y})" @staticmethod def gt(x, y): assert isinstance(V.kernel, CppVecKernel) assert isinstance(x, CppCSEVariable) assert x.dtype is not None return f"{V.kernel._get_mask_type(x.dtype)}({x} > {y})" @staticmethod def le(x, y): assert isinstance(V.kernel, CppVecKernel) assert isinstance(x, CppCSEVariable) assert x.dtype is not None return f"{V.kernel._get_mask_type(x.dtype)}({x} <= {y})" @staticmethod def ge(x, y): assert isinstance(V.kernel, CppVecKernel) assert isinstance(x, CppCSEVariable) assert x.dtype is not None return f"{V.kernel._get_mask_type(x.dtype)}({x} >= {y})" @staticmethod def and_(x, y): return f"{x} & {y}" @staticmethod def rsqrt(x): return f"{x}.rsqrt()" @staticmethod def pow(a, b): return f"{a}.pow({b})" @staticmethod def log(x): return f"{x}.log()" @staticmethod def round(x): return f"{x}.round()" @staticmethod def floor(x): return f"{x}.floor()" @staticmethod def ceil(x): return f"{x}.ceil()" @staticmethod def trunc(x): return f"{x}.trunc()" @staticmethod def fmod(a, b): return f"{a}.fmod({b})" @staticmethod def lgamma(x): return f"{x}.lgamma()" @staticmethod def logical_and(a, b): return f"{a} & {b}" @staticmethod def logical_not(a): return f"~{a}" @staticmethod def logical_or(a, b): return f"{a} | {b}" @staticmethod def logical_xor(a, b): return f"{a} ^ {b}" @staticmethod def bitwise_and(a, b): return f"{a} & {b}" @staticmethod def bitwise_not(a): return f"~{a}" @staticmethod def bitwise_or(a, b): return f"{a} | {b}" @staticmethod def bitwise_xor(a, b): return f"{a} ^ {b}" @staticmethod def bitwise_left_shift(a, b): return f"{a} << {b}" @staticmethod def bitwise_right_shift(a, b): return f"{a} >> {b}" @staticmethod def tan(a): return f"{a}.tan()" @staticmethod def tanh(a): vec_one = f"decltype({a})(1)" vec_two = f"decltype({a})(2)" vec_minus_two = f"decltype({a})(-2)" return f"{vec_two} / ({vec_one} + ({vec_minus_two} * {a}).exp()) - {vec_one}" @staticmethod def reciprocal(a): return f"{a}.reciprocal()" @staticmethod def atan(x): return f"{x}.atan()" @staticmethod def acos(x): return f"{x}.acos()" @staticmethod def asin(x): return f"{x}.asin()" @staticmethod def cosh(x): return f"{x}.cosh()" @staticmethod def sinh(x): return f"{x}.sinh()" @staticmethod def log10(x): return f"{x}.log10()" @staticmethod def log2(x): return f"{x}.log2()" @staticmethod def nextafter(x, y): return f"{x}.nextafter({y})" @staticmethod def copysign(a, b): return f"{a}.copysign({b})" @staticmethod def atan2(a, b): return f"{a}.atan2({b})" @staticmethod def hypot(a, b): return f"{a}.hypot({b})" @staticmethod def atanh(x): # For real x, atanh(x) = 1/2 * log((1+x)/(1-x)) vec_one = f"decltype({x})(1)" vec_one_half = f"decltype({x})(0.5)" return f"{vec_one_half} * (({vec_one} + {x})/({vec_one} - {x})).log()" @staticmethod def asinh(x): # For real x, asinh(x) = log(x + sqrt(1 + x**2)) vec_one = f"decltype({x})(1)" return f"({x} + ({vec_one} + {x}*{x}).sqrt()).log()" @staticmethod def acosh(x): return f"{x}.acosh()" @staticmethod def relu(x): bug = config.cpp.inject_relu_bug_TESTING_ONLY if bug == "compile_error": return "compile error!" elif bug == "runtime_error": return f"{x}; throw 1" elif bug == "accuracy": return f"{x} + decltype({x})(1)" elif bug is None: return f"at::vec::clamp_min({x}, decltype({x})(0))" else: raise AssertionError( f"unrecognized config cpp.inject_relu_bug_TESTING_ONLY = {bug!r}" ) # TODO: this seems to be dead @staticmethod def sigmoid(x): return f"decltype({x})(1)/(decltype({x})(1) + {x}.neg().exp())" @staticmethod def neg(x): return f"{x}.neg()" @staticmethod def floordiv(a, b): # a and b are integer type _t = f"decltype({a})" quot = f"{a} / {b}" has_rem = f"({a} % {b} != {_t}(0))" is_neg = f"(({a} < {_t}(0)) != ({b} < {_t}(0)))" return f"{_t}::blendv({quot}, {quot} - {_t}(1), {has_rem} & {is_neg})" @staticmethod def truncdiv(a, b): # a and b are integer type return f"{a} / {b}" @staticmethod def minimum(a, b): if a.dtype == torch.bool: assert b.dtype == torch.bool a_cast, b_cast = unify_mask_base_type(V.kernel.compute, (a, b)) return f"{a_cast} & {b_cast}" else: return f"at::vec::minimum({a}, {b})" @staticmethod def maximum(a, b): if a.dtype == torch.bool: assert b.dtype == torch.bool a_cast, b_cast = unify_mask_base_type(V.kernel.compute, (a, b)) return f"{a_cast} | {b_cast}" else: return f"at::vec::maximum({a}, {b})" @staticmethod def square(a): return f"{a} * {a}" @staticmethod def where(a, b, c): assert isinstance(V.kernel, CppVecKernel) if b.dtype == torch.bool: assert c.dtype == torch.bool blendv_a, blendv_b, blendv_c = unify_mask_base_type( V.kernel.compute, (a, b, c) ) return f"decltype({blendv_b})::blendv({blendv_c}, {blendv_b}, {blendv_a})" else: return f"decltype({b})::blendv({c}, {b}, {V.kernel._get_mask_cast(a, b.dtype)})" @staticmethod def sign(x): code = BracesBuffer() vec_zero = f"decltype({x})(0)" vec_one = f"decltype({x})(1)" blendv_l = f"decltype({x})::blendv({vec_zero}, {vec_one}, {vec_zero} < {x})" blendv_r = f"decltype({x})::blendv({vec_zero}, {vec_one}, {x} < {vec_zero})" code.writeline("[&]()") with code.indent(): code.writeline(f"auto left = {blendv_l};") code.writeline(f"auto right = {blendv_r};") code.writeline("return left - right;") code.writeline("()") return code @staticmethod def to_dtype(x, dtype, src_dtype=None): assert dtype in [ torch.bool, torch.float, torch.bfloat16, torch.float16, torch.uint8, torch.int8, torch.int32, torch.int64, ], f"{__name__} does not support {dtype}" node: torch.fx.Node = V.interpreter.current_node assert node and isinstance(node, torch.fx.Node) opt_ctx_x = get_opt_ctx(node.args[1]) assert opt_ctx_x assert opt_ctx_x.dtype is not None assert isinstance(V.kernel, CppVecKernel) src_dtype = opt_ctx_x.dtype src_cpp_type = DTYPE_TO_CPP[src_dtype] src_num_vectors = V.kernel._get_num_vectors(src_dtype) dst_cpp_type = DTYPE_TO_CPP[dtype] dst_num_vectors = V.kernel._get_num_vectors(dtype) if src_dtype != torch.bool and dtype == torch.bool: return f"{V.kernel._get_mask_type(src_dtype)}::from<{src_cpp_type},{src_num_vectors}>({x})" if opt_ctx_x.dtype == torch.bool and dtype != torch.bool: return f"{x}.to<{dst_cpp_type},{dst_num_vectors}>()" if src_dtype != dtype: if src_num_vectors == dst_num_vectors == 1: return f"at::vec::convert<{dst_cpp_type}>({x})" else: return f"at::vec::convert<{dst_cpp_type},{dst_num_vectors},{src_cpp_type},{src_num_vectors}>({x})" return f"({x})" @staticmethod def log1p(x): bug = config.cpp.inject_log1p_bug_TESTING_ONLY if bug == "accuracy": return f"{x} + decltype({x})(1)" elif bug is None: return f"{x}.log1p()" else: raise AssertionError( f"unrecognized config cpp.inject_log1p_bug_TESTING_ONLY = {bug!r}" ) @staticmethod def masked(mask, body, other): assert isinstance(V.kernel, CppVecKernel) code = BracesBuffer() var = V.kernel.cse.newvar() with V.kernel.masked(mask) as new_mask: code.writeline(f"auto {var} = [&]") with V.kernel.swap_buffers(code), code.indent(): result = body() code.writeline(f"return {result};") code.writeline(";") V.kernel.compute.splice(code) dtype = result.dtype body_code = f"{var}()" body_code_vec = ( body_code if result.is_vec else f"{V.kernel._get_vec_type(dtype)}({body_code})" ) other_code = value_to_cpp(other, DTYPE_TO_CPP[dtype]) # loading bool as VecMask other_code_vec = ( f"{V.kernel._get_mask_type()}::from({other_code})" if dtype == torch.bool else f"{V.kernel._get_vec_type(dtype)}({other_code})" ) assert isinstance(new_mask, CppCSEVariable), new_mask if new_mask.is_vec: code = BracesBuffer() code.writeline("[&]") with V.kernel.swap_buffers(code), code.indent(): code.writeline(f"if ({new_mask}.all_zero())") with code.indent(): code.writeline(f"return {other_code_vec};") code.writeline("else") with code.indent(): # Create cse variable to reuse kernel.overrides.where body_vec_var = V.kernel.cse.generate( V.kernel.compute, body_code_vec, ) other_vec_var = V.kernel.cse.generate( V.kernel.compute, other_code_vec, ) assert isinstance(body_vec_var, CppCSEVariable), body_vec_var assert isinstance(other_vec_var, CppCSEVariable), other_vec_var body_vec_var.dtype = dtype other_vec_var.dtype = dtype code.writeline( f"return {V.kernel.overrides.where(new_mask, body_vec_var, other_vec_var)};" ) code.writeline("()") csevar = V.kernel.cse.generate( V.kernel.compute, code, ) elif result.is_vec: csevar = V.kernel.cse.generate( V.kernel.compute, f"{mask} ? {body_code_vec} : {other_code_vec}" ) else: csevar = V.kernel.cse.generate( V.kernel.compute, f"{mask} ? {body_code} : {other_code}" ) # `result` is explicitly added to the args for correct propagation # of relevant itervars and vectorization status. csevar.update_on_args("masked", (mask, body, other, result), {}) return csevar @staticmethod def index_expr(expr, dtype): opt_ctx: OptimizationContext = get_current_node_opt_ctx() assert opt_ctx and opt_ctx.dtype is not None dtype = opt_ctx.dtype assert isinstance(V.kernel, CppVecKernel) index = V.kernel.rename_indexing(expr) tiling_var = V.kernel.itervars[V.kernel.tiling_idx] stride = V.kernel._try_get_const_stride(index, tiling_var) if stride == 0: return CppOverrides.index_expr(expr, dtype) elif stride is not None: idx = V.kernel.cse.generate( V.kernel.compute, cexpr(index), bounds=get_bounds_index_expr(expr) ) value = ops.to_dtype(idx, dtype) if isinstance(value, OpsValue): value = value.value csevar = V.kernel.arange(value, stride) else: csevar = V.kernel._load_or_store_non_contiguous( # type: ignore[assignment] None, index, dtype, V.kernel.compute ) csevar.update_on_args("index_expr", (expr, dtype), {}) return csevar CppVecOverrides._initialize_pointwise_overrides("cppvec") class CppTile2DOverrides(CppVecOverrides): @staticmethod def index_expr(expr, dtype): assert isinstance(V.kernel, CppTile2DKernel) expr = V.kernel.transform_indexing(expr) return CppVecOverrides.index_expr(expr, dtype) class CppKernel(Kernel): overrides = CppOverrides # type: ignore[assignment] sexpr = cexpr newvar_prefix = "auto " suffix = ";" def __init__(self, args, num_threads): super().__init__(args) self.call_ranges: Optional[Tuple[sympy.Expr, ...]] = None self.ranges: List[sympy.Expr] = [] self.itervars: List[sympy.Symbol] = [] self.reduction_depth = None self.reduction_prefix = IndentedBuffer() self.reduction_suffix = IndentedBuffer() self.parallel_reduction_prefix = IndentedBuffer() self.parallel_reduction_suffix = IndentedBuffer() self.local_reduction_init = IndentedBuffer() self.local_reduction_stores = IndentedBuffer() self.is_reduction = False self.non_parallel_reduction_prefix = IndentedBuffer() self.reduction_cse = CSE(self.newvar_prefix, self.suffix, name_prefix="tmp_acc") self.preloads = IndentedBuffer() self.poststores = IndentedBuffer() self.num_threads = num_threads # num_threads the kernel specialized for self.reduction_omp_dec: Dict[Tuple[str, str], str] = {} def _gen_parallel_reduction_buffers( self, acc, acc_type, reduction_type, dtype, reduction_combine_fn=reduction_combine, reduction_init_fn=reduction_init, welford_weight_reciprocal_vec_fn=None, ): if config.cpp.dynamic_threads and not self.parallel_reduction_prefix: self.parallel_reduction_prefix.writeline( "int max_threads = omp_get_max_threads();" ) acc_local = f"{acc}_local" num_threads = ( "max_threads" if config.cpp.dynamic_threads else parallel_num_threads() ) acc_per_thread = f"{acc}_arr[{num_threads}]" acc_local_in_array = acc_per_thread.replace(f"[{num_threads}]", "[tid]") self.local_reduction_init.writeline( f"{acc_type} {acc_local} = {reduction_init_fn(reduction_type, dtype)};" ) self.parallel_reduction_prefix.writeline(f"{acc_type} {acc_per_thread};") self.parallel_reduction_prefix.writelines( [ f"for (int tid = 0; tid < {num_threads}; tid++)", "{", f" {acc_local_in_array} = {reduction_init_fn(reduction_type, dtype)};", "}", ], ) self.local_reduction_stores.writelines( [ f"{acc_local_in_array} = {acc_local};", ] ) self.parallel_reduction_suffix.writelines( [ f"for (int tid = 0; tid < {num_threads}; tid++)", "{", f" {acc} = {reduction_combine_fn(reduction_type, acc, acc_local_in_array)};", "}", ], ) if ( reduction_type == "welford_reduce" and welford_weight_reciprocal_vec_fn and hasattr(self, "weight_recp_vec_range") and "vec" in f"{acc_type}" ): self.local_reduction_init.writeline( welford_weight_reciprocal_vec_fn(dtype, num_threads) ) def get_reduction_var_pattern(self, line: str): return re.search("tmp_acc[0-9]+", line) def update_stores_with_parallel_reduction(self): for i, line in enumerate(self.stores._lines): if isinstance(line, str): m = self.get_reduction_var_pattern(line) if m: var_name = m.group(0) self.stores._lines[i] = line.replace(var_name, f"{var_name}_local") @contextlib.contextmanager def masked(self, mask): """Context manager to add an additional mask to loads and stores.""" prior = self._load_mask if prior: mask = ops.and_(mask, prior) if isinstance(mask, OpsValue): mask = mask.value assert isinstance(mask, CppCSEVariable) # see NOTE [dtype of CppCSEVariable] # mask's dtype should be bool mask.dtype = torch.bool self._load_mask = mask try: yield mask finally: self._load_mask = prior def cache_high_prec_cse_var_before_lowp_store(self, var_to_store): """ https://github.com/pytorch/pytorch/issues/115260 For FusedSchedulerNode[node1, node2], the node2 loads what node1 stores and the buffer is in low-precision floating point data type. When the output of node1 also serves as the output of the kernel, the result of nodes would be different from the case when output of node1 is not the output of the kernel (where we don't need to insert `to_dtype` for legalization). To address the problem, on storing the lowp node1 output, we also add the inverse dtype conversion to high precision data type to the cse cache. Example (pseudo code): node1_output = ... node1_output_lowp = to_dtype(node1_output, dtype=torch.bfloat16) store(buf, node1_output_lowp) node2_input_lowp = load(buf) node2_input = to_dtype(node2_input_lowp, dtype=torch.float) Without cse cache trick: node1_output = ... node1_output_lowp = to_dtype(node1_output, dtype=torch.bfloat16) store(buf, node1_output_lowp) node2_input_lowp = node_output_lowp # hit store cache node2_input = to_dtype(node2_input_lowp, dtype=torch.float) With cse cache trick: node1_output = ... node1_output_lowp = to_dtype(node1_output, dtype=torch.bfloat16) # also add `to_dtype(node1_input_lowp, dtype=torch.float)` -> `node1_output` to cse cache store(buf, node1_output_lowp) node2_input_lowp = node_output_lowp # hit store cache node2_input = node1_output # hit cse cache """ if var_to_store.dtype not in DTYPE_LOWP_FP: # only need to cache fp32 cse var while var_to_store is lowp data return def find_high_prec_var(var, cache): high_prec_cse_var = None high_prec_cse_var_name = None for expr, cse_var in cache.items(): if cse_var == var: if is_to_lowp_dtype(expr): m = re.search(r"tmp\d+", expr) if m is not None: high_prec_cse_var_name = m.group() if high_prec_cse_var_name: for cse_var in cache.values(): if cse_var.name == high_prec_cse_var_name: high_prec_cse_var = cse_var break assert high_prec_cse_var is not None return high_prec_cse_var high_prec_var = find_high_prec_var(var_to_store, self.cse.cache) if high_prec_var and high_prec_var.dtype in DTYPE_TO_CPP: cache_key = get_lowp_to_high_prec_expr( var_to_store, high_prec_var.dtype, self ) self.cse.cache[cache_key] = high_prec_var def scale_index_with_offset( self, index: sympy.Expr, scale=1, itervar_idx=-1, offset=0 ): var = self.itervars[itervar_idx] replacement = {var: var * scale + offset} new_index = sympy_subs(index, replacement) return new_index def index_to_str(self, index: sympy.Expr) -> str: """ Convert an index expr to a string that can be used in cpp code. e.g. a sympy expression "s2" may actually appear as "ks1" in the cpp kernel. """ return cexpr(self.rename_indexing(index)) def index_indirect_depends_on(self, index: sympy.Expr, itervar: sympy.Symbol): """ Check if an index has free symbol CppCSEVariable that depends on `itervar`. """ return any( self.cse.varname_map[s.name].depends_on(itervar) # type: ignore[attr-defined] for s in index.free_symbols if s.name in self.cse.varname_map # type: ignore[attr-defined] and isinstance(self.cse.varname_map[s.name], CppCSEVariable) # type: ignore[attr-defined] ) def index_depends_on(self, index: sympy.Expr, itervar: sympy.Symbol): return itervar in index.free_symbols or self.index_indirect_depends_on( index, itervar ) def var_ranges(self): return dict(zip(self.itervars, self.ranges)) def check_bounds( self, expr: sympy.Expr, size: sympy.Expr, lower: bool, upper: bool, ): if not (lower or upper): return indirect = free_symbol_is_type(expr, SymT.TMP) if indirect: # indexing in compute csevar = ops.index_expr(expr, torch.int32).value buffer = V.kernel.compute else: # indexing in loads prior_compute = V.kernel.compute try: V.kernel.compute = self.loads csevar = ops.index_expr(expr, torch.int32).value finally: V.kernel.compute = prior_compute buffer = self.loads size_str = V.kernel.sexpr(self.rename_indexing(size)) if upper else None line = self.indirect_assert(csevar, "0" if lower else None, size_str) self.cse.generate(buffer, line, assignment=False) def load(self, name: str, index: sympy.Expr): var = self.args.input(name) index = self.rename_indexing(index) line = f"{var}[{cexpr_index(index)}]" if V.graph.get_dtype(name) in [torch.float16]: line = f"static_cast({line})" csevar = self.cse.generate(self.loads, line) csevar.update_on_args("load", (name, index), {}) return csevar def store(self, name, index, value, mode=None): assert "buf" in name var = self.args.output(name) self.cache_high_prec_cse_var_before_lowp_store(value) index = self.rename_indexing(index) if mode is None: line = f"{var}[{cexpr_index(index)}] = {value};" elif mode == "atomic_add": if not config.cpp.dynamic_threads and self.num_threads == 1: line = f"{var}[{cexpr_index(index)}] += {value};" else: dtype = V.graph.get_dtype(name) # mirroring static_cast(...) in load: value = f"static_cast<{DTYPE_TO_CPP[dtype]}>({value})" line = f"atomic_add(&{var}[{cexpr_index(index)}], {value});" else: raise NotImplementedError(f"store mode={mode}") self.stores.writeline(DeferredLine(name, line)) def reduction(self, dtype, src_dtype, reduction_type, value): argmax_or_argmin = reduction_type in {"argmax", "argmin"} reduction_key = src_dtype, reduction_type, value if reduction_key in self.reduction_cse.reduction_cache: return self.reduction_cse.reduction_cache[reduction_key] acc = self.reduction_cse.generate( self.loads, f"reduction {reduction_key}", write=False ) self.is_reduction = True if argmax_or_argmin: prefix, parallel_prefix, local_init = argmax_argmin_prefix( reduction_type, src_dtype, acc ) self.local_reduction_init.writelines(local_init) self.reduction_prefix.writelines(prefix) self.parallel_reduction_prefix.writelines(parallel_prefix) compare_op = ( "greater_or_nan" if reduction_type == "argmax" else "less_or_nan" ) assert self.reduction_depth is not None index = self.itervars[self.reduction_depth] for i in range(self.reduction_depth + 1, len(self.itervars)): index = index * self.ranges[i] + self.itervars[i] self.stores.writelines( [ f"if(!({compare_op}({acc}.value, {value}, {acc}.index, {cexpr_index(index)}))) {{", f" {acc}.index = {cexpr_index(index)}; {acc}.value = {value};", "}", ] ) acc_local = f"{acc}_local" num_threads = parallel_num_threads() acc_per_thread = f"{acc}_arr[{num_threads}]" acc_local_in_array = acc_per_thread.replace(f"[{num_threads}]", "[tid]") self.parallel_reduction_suffix.writelines( [ f"for (int tid = 0; tid < {num_threads}; tid++)", "{", f" if(!({compare_op}({acc}.value, {acc_local_in_array}.value, {acc}.index, {acc_local_in_array}.index))) {{", f" {acc}.index = {acc_local_in_array}.index; {acc}.value = {acc_local_in_array}.value;", " }", "}", ], ) self.local_reduction_stores.writelines( [ f"{acc_local_in_array} = {acc_local};", ] ) else: acc_type = reduction_acc_type(reduction_type, dtype) self.reduction_prefix.writeline( f"{acc_type} {acc} = {reduction_init(reduction_type, dtype)};" ) self.stores.writeline( f"{acc} = {reduction_combine(reduction_type, acc, value)};" ) self._gen_parallel_reduction_buffers(acc, acc_type, reduction_type, dtype) result = reduction_project(reduction_type, acc) self.reduction_cse.reduction_cache[reduction_key] = result return result def store_reduction(self, name, index, value): index = self.rename_indexing(index) var = self.args.output(name) self.reduction_suffix.writeline( DeferredLine(name, f"{var}[{cexpr_index(index)}] = {value};") ) def set_ranges(self, lengths, reduction_lengths): if self.call_ranges: assert self.call_ranges == tuple(lengths) + tuple( reduction_lengths ), f"{self.call_ranges} == {tuple(lengths)} + {tuple(reduction_lengths)}" assert self.reduction_depth == len(lengths) else: self.call_ranges = tuple(lengths) + tuple(reduction_lengths) self.ranges = [self.rename_indexing(x) for x in self.call_ranges] self.itervars = [ sympy_index_symbol_with_prefix(SymT.XBLOCK, n) for n in range(len(self.ranges)) ] self.reduction_depth = len(lengths) return ( self.itervars[: self.reduction_depth], self.itervars[self.reduction_depth :], ) def size_hint(self): return V.graph.sizevars.size_hint( sympy_product(self.call_ranges), fallback=8192 ) def codegen_loops_impl(self, loop_nest, code, worksharing): threads = parallel_num_threads() assert self.call_ranges is not None kernels = loop_nest.get_kernels() has_outer_loop_kernel = any( isinstance(kernel, OuterLoopFusedKernel) for kernel in kernels ) if has_outer_loop_kernel: assert len(kernels) == 1 assert isinstance(kernels[0], OuterLoopFusedKernel) par_depth = kernels[0].decide_parallel_depth( loop_nest.max_parallel_depth(), threads ) else: par_depth = self.decide_parallel_depth( loop_nest.max_parallel_depth(), threads ) with contextlib.ExitStack() as stack: if par_depth: if loop_nest.is_reduction_only(): # need to close the worksharing scope to define reduction vars outside it worksharing.close() else: worksharing.parallel(threads) loop_nest.mark_parallel(par_depth) elif threads > 1: if worksharing.single(): stack.enter_context(code.indent()) def gen_loop_kernel(loop: LoopLevel): def is_parallel_reduction(loop): root = loop.get_root() return root.is_reduction and root.parallel kernels = loop.get_kernels() assert len(kernels) == 1 if not isinstance( kernels[0], OuterLoopFusedKernel ) and is_parallel_reduction(loop): kernels[0].update_stores_with_parallel_reduction() gen_kernel(kernels[0]) def gen_kernel(kernel): if isinstance(kernel, OuterLoopFusedKernel): for loop in kernel.inner: if loop.inner: gen_loops(loop.inner, loop.is_reduction) else: with contextlib.ExitStack() as stack: # If there is any kernel existing at the final outer loop fusion level, # the kernel code should be placed within its respective indent to prevent # the duplication of variable definitions. stack.enter_context(code.indent()) gen_loop_kernel(loop) else: with contextlib.ExitStack() as stack: assert kernel if hasattr(kernel, "codegen_inner_loops"): code.splice(kernel.preloads) kernel.codegen_inner_loops(code) stack.enter_context(code.indent()) code.splice(kernel.loads) code.splice(kernel.compute) code.splice(kernel.stores) if hasattr(kernel, "codegen_inner_loops"): code.splice(kernel.poststores) def get_reduction_code_buffer(loops, buffer="prefix"): assert buffer in ("prefix", "suffix", "local") for loop in loops: for kernel in loop.get_kernels(): if buffer == "local": return ( kernel.local_reduction_init, kernel.local_reduction_stores, ) elif buffer == "suffix": suffix = kernel.reduction_suffix if loop.parallel: suffix = kernel.parallel_reduction_suffix + suffix return suffix else: prefix = kernel.reduction_prefix if loop.parallel: prefix = prefix + kernel.parallel_reduction_prefix else: prefix = prefix + kernel.non_parallel_reduction_prefix return prefix def gen_loops(loops: List[LoopLevel], in_reduction=False): with contextlib.ExitStack() as stack_outer: local_reduction_init = local_reduction_stores = None if loops: loop = loops[0] if loop.is_reduction and not in_reduction: reduction_prefix = get_reduction_code_buffer(loops) if reduction_prefix: stack_outer.enter_context(code.indent()) code.splice(reduction_prefix) if loop_nest.is_reduction_only() and loop.parallel: ( local_reduction_init, local_reduction_stores, ) = get_reduction_code_buffer(loops, "local") worksharing.parallel(threads) if local_reduction_init: assert local_reduction_stores code.splice(local_reduction_init) for loop in loops: gen_loop(loop) if loops: loop = loops[0] if loop_nest.is_reduction_only() and loop.parallel: if local_reduction_stores: code.splice(local_reduction_stores) worksharing.close() if loop.is_reduction and not in_reduction: code.splice(get_reduction_code_buffer(loops, "suffix")) def gen_loop(loop: LoopLevel): with contextlib.ExitStack() as stack: loop_lines = loop.lines() if loop_lines is None: return code.writelines(loop_lines) stack.enter_context(code.indent()) # generate inner loops or loop body if loop.inner: gen_loops(loop.inner, loop.is_reduction) else: gen_loop_kernel(loop) stack.enter_context(code.indent()) if loop_nest.root: if ( has_outer_loop_kernel and isinstance(V.local_buffer_context, LocalBufferContext) and V.local_buffer_context.local_buffers ): # Allocate local buffer local_buffers = V.local_buffer_context.local_buffers assert len(local_buffers.items()) == 1 local_buffer = next(iter(local_buffers.items()))[1] # For dynamic size, rename s to ks local_buf_size = sympy_product( [ self.rename_indexing(size_val) for size_val in local_buffer.get_layout().size ] ) local_buf_dtype = DTYPE_TO_CPP[local_buffer.get_layout().dtype] allocate = f"std::make_unique<{local_buf_dtype} []>({cexpr(local_buf_size)})" code.splice( f"std::unique_ptr<{local_buf_dtype} []> local_buffer = {allocate};" ) local_buffer_name = local_buffer.get_name() code.splice( f"{local_buf_dtype}* {local_buffer_name} = local_buffer.get();" ) gen_loops(loop_nest.root) else: gen_kernel(loop_nest.kernel) def codegen_loops(self, code, worksharing): loop_nest = LoopNestWithSplit.build(self) self.codegen_loops_impl(loop_nest, code, worksharing) @property def assert_function(self) -> str: if V.graph.aot_mode: # TODO: Using AOTI_TORCH_CHECK is causing performance drop for some models # compared with JIT Inductor which uses TORCH_CHECK return "AOTI_TORCH_CHECK" else: return "TORCH_CHECK" def decide_parallel_depth(self, max_parallel_depth, threads): assert self.call_ranges is not None ranges = self.call_ranges[:max_parallel_depth] seq = self.size_hint() par = 1 depth = 0 for expr in ranges: hint = V.graph.sizevars.size_hint(expr, fallback=8192) if par >= 2 * threads or par == threads: break if seq // threads < config.cpp.min_chunk_size: # not enough work break depth += 1 par *= hint seq /= hint # if we assume thread number is dynamic, make sure we # have at least one parallel scope and let OMP runtime # to manage the serial vs. parallel. if config.cpp.dynamic_threads and depth == 0 and len(ranges) > 0: depth = 1 return depth @contextlib.contextmanager def write_to_suffix(self): prior = (self.loads, self.compute, self.stores, self.cse) self.loads = IndentedBuffer() self.compute = IndentedBuffer() self.stores = IndentedBuffer() self.cse = self.cse.clone() yield self.reduction_suffix.splice(self.loads) self.reduction_suffix.splice(self.compute) self.reduction_suffix.splice(self.stores) (self.loads, self.compute, self.stores, self.cse) = prior def create_cse_var(self, *args, **kwargs): return CppCSEVariable(*args, **kwargs) class CppVecKernel(CppKernel): overrides = CppVecOverrides # type: ignore[assignment] def __init__( self, args, num_threads, tiling_factor=0, tiling_idx=-1, tiling_dtype=torch.float, ): super().__init__(args, num_threads) self.vec_isa = cpu_vec_isa.pick_vec_isa() assert self.vec_isa if tiling_factor == 0: tiling_factor = self.vec_isa.nelements(dtype=tiling_dtype) self.tiling_factor = tiling_factor self.tiling_idx = tiling_idx def _try_get_const_stride(self, index: sympy.Expr, itervar: sympy.Symbol): if self.index_indirect_depends_on(index, itervar): return None for indirect_var in ( self.cse.varname_map[s.name] # type: ignore[attr-defined] for s in index.free_symbols if symbol_is_type(s, SymT.TMP) ): assert isinstance(indirect_var, CppCSEVariable) if indirect_var.is_vec: return None stride = stride_at_vec_range(index, itervar, self.tiling_factor) return stride if stride.is_number else None def _get_num_vectors(self, dtype: torch.dtype) -> int: num_vectors = math.ceil( self.tiling_factor * dtype.itemsize * 8 / self.vec_isa.bit_width() ) assert num_vectors >= 1 return num_vectors def _get_vec_type(self, dtype: torch.dtype) -> str: num_vectors = self._get_num_vectors(dtype) if num_vectors == 1: return f"at::vec::Vectorized<{DTYPE_TO_CPP[dtype]}>" else: return f"at::vec::VectorizedN<{DTYPE_TO_CPP[dtype]},{num_vectors}>" def _get_mask_type(self, dtype: torch.dtype = torch.float) -> str: if dtype == torch.bool: return "" num_vectors = self._get_num_vectors(dtype) return f"at::vec::VecMask<{DTYPE_TO_CPP[dtype]},{num_vectors}>" def _get_mask_cast(self, mask: CppCSEVariable, dtype: torch.dtype) -> str: assert mask.dtype == torch.bool, repr(mask) num_vectors = self._get_num_vectors(dtype) return f"{mask}.template cast<{DTYPE_TO_CPP[dtype]},{num_vectors}>()" def get_reduction_var_pattern(self, line: str): return re.search("tmp_acc[0-9]+_vec", line) def _get_vec_load_line( self, var: str, index: sympy.Expr, dtype: torch.dtype, load_mask: Optional[CppCSEVariable] = None, ): """ Get a load line str that loads a vector from `var` at `index` of type `dtype`. If `load_mask` is not None, we do a masked load accordingly. Notes on the `dtype`: 1. We always load `self.tiling_factor` number of elements regardless of the `dtype`. It means we load half of the vector lanes for 16-bit data types and quarter of the vector lanes for 8-bit data types. 2. `torch.bool` and `torch.uint8` could mean masks and we load them as float mask vectors. """ opt_ctx: OptimizationContext = get_current_node_opt_ctx() assert opt_ctx is not None cpp_type = DTYPE_TO_CPP[dtype] num_vectors = self._get_num_vectors(dtype) load_mask_str = None if load_mask: if not load_mask.is_vec: # TODO: avoid hard-code torch.float load_mask_str = f"{self._get_mask_type(torch.float)}::from({load_mask})" else: load_mask_str = f"{self._get_mask_cast(load_mask, torch.float)}" loadbuf = f"{var} + {cexpr_index(index)}" if index != 0 else var if dtype == torch.bool: # TODO: should we consider load mask here? line = f"{self._get_mask_type()}::from({loadbuf})" else: line = ( f"{load_mask_str}.template loadu<{cpp_type},{num_vectors}>({loadbuf})" if load_mask_str else f"{self._get_vec_type(dtype)}::loadu({loadbuf}, {self.tiling_factor})" ) return line def _load_or_store_non_contiguous( self, var: Optional[str], index: sympy.Expr, dtype: torch.dtype, buffer: Optional[IndentedBuffer] = None, store_value: Optional[Union[str, CppCSEVariable]] = None, ) -> Optional[CppCSEVariable]: """ Load or store a vector in a non-contiguous way. The vector is initialized from an array that is filled in an inner loop over the tiling factor. :param var: buffer to load from or store to, i.e. `var[transformed(index)]`. If None, we load the index as index expression, i.e. `transformed(index)`. :param index: index into the `var` or the index expression by its own if `var` is None. The `index` could contain indirect indexing or the tiling itervar. When used in the inner loop, the index is transformed as follows: 1. the index is linearized along the tiling dim. 2. the indirect indexing vector variables are transformed into arrays over the tiling dim. :param dtype: data type of `var` or `index` if `var` is None. :param buffer: the code buffer to write the generated code to. If None, we write to `self.loads`. :param store_value: the value to store. If None, we load the vector. :return: a CppCSEVariable that represents the loaded vector or None if it is a store. """ assert not store_value or var is not None, "store var must be provided" if buffer is None: buffer = self.loads def get_result_size(dtype: torch.dtype) -> int: if dtype.itemsize < 4: return self.tiling_factor * (4 // dtype.itemsize) else: return self.tiling_factor def vec_to_array(vec_var: CppCSEVariable) -> CppCSEVariable: assert vec_var.is_vec code = BracesBuffer() code.writeline("[&]") with code.indent(): vec_dtype = vec_var.dtype assert vec_dtype is not None if vec_dtype == torch.bool: vec_dtype = torch.float result_size = get_result_size(vec_dtype) code.writeline( f"__at_align__ std::array<{DTYPE_TO_CPP[vec_dtype]}, {result_size}> tmpbuf;" ) line = f"{vec_var}.store(tmpbuf.data());" code.writeline(line) code.writeline("return tmpbuf;") code.writeline("()") csevar = self.cse.generate(buffer, code) assert isinstance(csevar, CppCSEVariable) return csevar opt_ctx: OptimizationContext = get_current_node_opt_ctx() assert opt_ctx is not None code = BracesBuffer() code.writeline("[&]") with code.indent(): result_size = get_result_size(dtype) result_declare = ( f"__at_align__ std::array<{DTYPE_TO_CPP[dtype]}, {result_size}> tmpbuf;" ) code.writeline(result_declare) if store_value: code.writeline(f"{store_value}.store(tmpbuf.data());") itervar_inner = sympy_index_symbol( f"{self.itervars[self.tiling_idx]}_inner" ) replacements = {} for indirect_var in ( self.cse.varname_map[s.name] # type: ignore[attr-defined] for s in index.free_symbols if symbol_is_type(s, SymT.TMP) ): assert isinstance(indirect_var, CppCSEVariable) if indirect_var.is_vec: array_var = vec_to_array(indirect_var) replacements[indirect_var] = f"{array_var}[{itervar_inner}]" index = self.scale_index_with_offset( index, itervar_idx=self.tiling_idx, offset=itervar_inner ) load_mask = None if self._load_mask is not None: assert not store_value, "unexpected store with load mask" assert isinstance(self._load_mask, CppCSEVariable), self._load_mask if self._load_mask.is_vec: load_mask = f"{self._load_mask}.is_masked({itervar_inner})" else: load_mask = f"{self._load_mask} != 0" if cpp_builder.is_gcc(): code.writeline(f"#pragma GCC unroll {self.tiling_factor}") else: code.writeline(f"#pragma unroll {self.tiling_factor}") code.writeline( f"for (long {itervar_inner} = 0; {itervar_inner} < {self.tiling_factor}; {itervar_inner}++)" ) with code.indent(), contextlib.ExitStack() as stack: index_c = cexpr_index(index) for indirect_var in replacements: index_c = re.sub( r"\b" + f"{indirect_var}" + r"\b", replacements[indirect_var], index_c, ) rhs = f"{var}[{index_c}]" if var is not None else f"{index_c}" if load_mask: code.writeline(f"if ({load_mask})") stack.enter_context(code.indent()) if store_value: code.writeline(f"{rhs} = tmpbuf[{itervar_inner}];") else: code.writeline(f"tmpbuf[{itervar_inner}] = {rhs};") if not store_value: load_line = self._get_vec_load_line("tmpbuf.data()", 0, dtype) # type: ignore[arg-type] code.writeline(f"return {load_line};") code.writeline("()") if store_value: code.writeline(";") buffer.splice(code) return None else: csevar = self.cse.generate(buffer, code) assert isinstance(csevar, CppCSEVariable) csevar.is_vec = True return csevar def load(self, name: str, index: sympy.Expr): opt_ctx: OptimizationContext = get_current_node_opt_ctx() var = self.args.input(name) index = self.rename_indexing(index) dtype = V.graph.get_dtype(name) tiling_var = self.itervars[self.tiling_idx] stride = self._try_get_const_stride(index, tiling_var) if stride == 0: # load scalar and lazily broadcast it on demand return super().load(name, index) elif stride == 1: # load contiguously line = self._get_vec_load_line(var, index, dtype, self._load_mask) csevar = self.cse.generate(self.loads, line) # type: ignore[assignment] else: csevar = self._load_or_store_non_contiguous(var, index, dtype) # type: ignore[assignment] assert isinstance(csevar, CppCSEVariable) csevar.update_on_args("load", (name, index), {}) csevar.is_vec = True return csevar def _get_store_line( self, value: Union[str, CppCSEVariable], var: str, index: sympy.Expr, dtype: torch.dtype, ): """ Get a store line buffer that stores `value` into `var` at `index` of `dtype`. It handles both contiguous and non-contiguous store cases. :param value: Vectorized type templaterized on `dtype`. :param var: buffer to store into. :index: index into the `var`. """ # when value's type is str (e.g., welford reduction), caller should make sure # it is a vector assert isinstance(value, str) or ( isinstance(value, CppCSEVariable) and value.is_vec ), value tiling_var = self.itervars[self.tiling_idx] var_expr = f"{var} + {cexpr_index(index)}" stride = self._try_get_const_stride(index, tiling_var) code = IndentedBuffer() if stride == 1: if dtype == torch.float: code.writeline(f"{value}.store({var_expr});") else: code.writeline(f"{value}.store({var_expr}, {self.tiling_factor});") else: self._load_or_store_non_contiguous( var, index, dtype, buffer=code, store_value=value ) return code def store(self, name, index, value, mode=None): assert "buf" in name assert mode is None assert isinstance(value, CppCSEVariable), value if not value.is_vec: # this happens when we store a scalar into a vectorized buffer like "fill" value = self.broadcast(value) opt_ctx: OptimizationContext = get_current_node_opt_ctx() var = self.args.output(name) self.cache_high_prec_cse_var_before_lowp_store(value) index = self.rename_indexing(index) code = self._get_store_line(value, var, index, V.graph.get_dtype(name)) self.stores.splice(code.map(lambda x: DeferredLine(name, x))) def reduction(self, dtype, src_dtype, reduction_type, value): assert reduction_type in { "max", "min", "sum", "prod", "xor_sum", "welford_reduce", "welford_combine", } assert dtype == src_dtype assert dtype in [torch.float, torch.int64] assert isinstance(value, CppCSEVariable), value if not value.is_vec: value = self.broadcast(value) reduction_key = src_dtype, reduction_type, value if reduction_key in self.reduction_cse.reduction_cache: return self.reduction_cse.reduction_cache[reduction_key] vec_ns = "at::vec" vec = f"{vec_ns}::Vectorized<{DTYPE_TO_CPP[dtype]}>" acc_type = reduction_acc_type(reduction_type, dtype) acc_type_vec = self.reduction_acc_type_vec(reduction_type, dtype) acc = self.reduction_cse.generate( self.loads, f"reduction {reduction_key}", write=False ) acc_vec = f"{acc}_vec" self.is_reduction = True self.reduction_prefix.writeline( f"{acc_type} {acc} = {reduction_init(reduction_type, dtype)};" ) self.reduction_prefix.writeline( f"{acc_type_vec} {acc_vec} = {self.reduction_init_vec(reduction_type, dtype)};" ) # save the reciprocal of weights for welford reduce if using static shape reduction_size = functools.reduce( lambda x, y: x * y, self.ranges[self.reduction_depth :] ) if reduction_type == "welford_reduce": reduction_factor = ( self.tiling_factor if self.tiling_idx >= self.reduction_depth else 1 ) self.weight_recp_vec_range = FloorDiv(reduction_size, reduction_factor) self.non_parallel_reduction_prefix.writeline( self.welford_weight_reciprocal_vec(dtype, None) ) self.stores.writeline( f"{acc_vec} = {self.reduction_combine_vec(reduction_type, acc_vec, value, True)};" ) else: self.stores.writeline( f"{acc_vec} = {self.reduction_combine_vec(reduction_type, acc_vec, value)};" ) self._gen_parallel_reduction_buffers( acc, acc_type, reduction_type, dtype, ) self._gen_parallel_reduction_buffers( acc_vec, acc_type_vec, reduction_type, dtype, reduction_combine_fn=self.reduction_combine_vec, reduction_init_fn=self.reduction_init_vec, welford_weight_reciprocal_vec_fn=self.welford_weight_reciprocal_vec, ) tmpvar: Union[str, CSEVariable] if self.tiling_idx >= self.reduction_depth: # Horizontal reduction if is_welford_reduction(reduction_type): assert ( self._get_num_vectors(dtype) == 1 ), "Welford reduction does not support VectorizedN (N>1)" next_value = f"welford_vec_reduce_all({acc_vec})" else: reduce_all_body = ( "{ return " + self.reduction_combine_vec(reduction_type, "x", "y") + "; }" ) vec = f"at::vec::Vectorized<{DTYPE_TO_CPP[dtype]}>" vec_reduce_all_func = f"at::vec::vec_reduce_all<{DTYPE_TO_CPP[dtype]}>" next_value = f"{vec_reduce_all_func}([]({vec}& x, {vec}& y) {reduce_all_body}, {acc_vec})" self.reduction_suffix.writeline( f"{acc} = {reduction_combine(reduction_type, acc, next_value)};" ) tmpvar = acc else: tmpvar = acc_vec result = reduction_project(reduction_type, tmpvar) self.reduction_cse.reduction_cache[reduction_key] = result return result def store_reduction(self, name, index, value): index = self.rename_indexing(index) var = self.args.output(name) out_dtype = V.graph.get_dtype(name) dtype = torch.float if out_dtype.is_floating_point else torch.int64 code = IndentedBuffer() if self.tiling_idx >= self.reduction_depth: # Horizontal reduction code.writeline( f"{var}[{cexpr_index(index)}] = static_cast<{DTYPE_TO_CPP[out_dtype]}>({value});" ) else: # Vertical reduction if out_dtype != dtype: converted_value = f"{DTYPE_TO_CPP[out_dtype]}_{value}" code.writeline( f"auto {converted_value} = at::vec::convert<{DTYPE_TO_CPP[out_dtype]}>({value});" ) value = converted_value code.splice(self._get_store_line(value, var, index, out_dtype)) self.reduction_suffix.splice(code.map(lambda x: DeferredLine(name, x))) def broadcast(self, scalar_var: CppCSEVariable) -> CppCSEVariable: assert not scalar_var.is_vec if scalar_var.dtype == torch.bool: vec_var = self.cse.generate( self.compute, f"{self._get_mask_type()}::from({scalar_var.name})" ) else: assert scalar_var.dtype is not None vec_var = self.cse.generate( self.compute, f"{self._get_vec_type(scalar_var.dtype)}({scalar_var.name})", ) assert isinstance(vec_var, CppCSEVariable) vec_var.dtype = scalar_var.dtype vec_var.dependent_itervars = scalar_var.dependent_itervars vec_var.is_vec = True return vec_var def arange(self, index: CppCSEVariable, stride: sympy.Symbol) -> CppCSEVariable: assert not index.is_vec assert index.dtype is not None csevar = self.cse.generate( self.compute, f"{self._get_vec_type(index.dtype)}::arange({index}, {stride})", ) assert isinstance(csevar, CppCSEVariable) csevar.dtype = index.dtype csevar.is_vec = True return csevar def reduction_init_vec(self, reduction_type, dtype): scalar_type = DTYPE_TO_COMPUTATION_DTYPE[dtype] vec_type = self._get_vec_type(scalar_type) if is_welford_reduction(reduction_type): return f"Welford<{vec_type}>()" scalar_init = reduction_init(reduction_type, dtype) return f"{vec_type}({scalar_init})" def reduction_acc_type_vec(self, reduction_type, dtype): assert reduction_type not in {"argmin", "argmax"} scalar_type = DTYPE_TO_COMPUTATION_DTYPE[dtype] vec_type = self._get_vec_type(scalar_type) if is_welford_reduction(reduction_type): return f"Welford<{vec_type}>" return vec_type def welford_weight_reciprocal_vec(self, dtype, num_threads=None): vec_num_range_thread = ( CeilDiv(self.weight_recp_vec_range, num_threads) if num_threads else self.weight_recp_vec_range ) vec_num_range_thread_expr = cexpr_index(vec_num_range_thread) return f"static WeightRecp<{self._get_vec_type(dtype)}> weight_recps({vec_num_range_thread_expr});" def reduction_combine_vec( self, reduction_type, var, next_value, use_weight_recps=False ): if reduction_type == "max": return f"at::vec::maximum({var}, {next_value})" elif reduction_type == "min": return f"at::vec::minimum({var}, {next_value})" elif reduction_type == "sum": return f"{var} + {next_value}" elif reduction_type == "prod": return f"{var} * {next_value}" elif reduction_type == "xor_sum": return f"{var} ^ {next_value}" elif reduction_type == "welford_reduce": if use_weight_recps: return f"welford_combine({var}, {next_value}, &weight_recps)" else: return f"welford_combine({var}, {next_value})" elif reduction_type == "welford_combine": if isinstance(next_value, tuple): # When reading a value from Inductor IR we have a tuple of variable names mean, m2, weight = next_value else: # When combining intermediate accumulators we have a Welford struct mean, m2, weight = reduction_project(reduction_type, next_value) return f"welford_combine({var}, {{{mean}, {m2}, {weight}}})" else: raise NotImplementedError def indirect_assert(self, var, lower, upper, mask=None): assert not mask, "do not support mask in indirect_indexing assertion" assert isinstance(var, CppCSEVariable) assert var.dtype is not None if not var.is_vec: return super().indirect_assert(var, lower, upper, mask) lower_scalar = lower upper_scalar = upper if lower: lower = f"{self._get_vec_type(var.dtype)}({lower})" if upper: upper = f"{self._get_vec_type(var.dtype)}({upper})" if lower and upper: cond = f"({lower} <= {var}) & ({var} < {upper})" cond_print = f"{lower_scalar} <= {var} < {upper_scalar}" elif lower: cond = f"{lower} <= {var}" cond_print = f"{lower_scalar} <= {var}" else: assert upper cond = f"{var} < {upper}" cond_print = f"{var} < {upper_scalar}" cond = f"({self._get_mask_type(var.dtype)}({cond})).all_masked()" return f'{self.assert_function}({cond}, "index out of bounds: {cond_print}")' class CppTile2DKernel(CppVecKernel): """ A vector kernel that handles the 2d tiles with the tile size defined in `tiling_factor` on the inner-most loop level and one of the outer loop level (`outer_tiling_idx`). When the data tile is accessed in a contiguous way from the outer loop axis, a transposition is applied on the tile to make the access contiguous from the inner-most loop axis. Then, the same vectorization logic from its parent `CppVecKernel` is leveraged for load/store/compute. The transposed tile load and store are generated into kernel.preloads and kernel.poststores buffers. The loop structure looks like below: for ... for i_outer ... for ... for inner_most ... // generated by CppTile2DKernel float tmp0[16*16]; at::vec::transpose_mxn<...>(tmp0, in_ptr0 + ..., ...); // into kernel.preloads float tmp1[16*16]; // into kernel.preloads for i_inner ... { // the kernel inner loop vectorized loads/compute/stores (e.g., load tmp0, store tmp1) // into kernel.loads/compute/stores } at::vec::transpose_mxn(out_ptr0 + ..., tmp1, ...) // into kernel.poststores for inner_most ... (tail) // generated by CppVecKernel ... for i_outer ... (tail) for ... for ... // generated by CppKernel ... """ overrides = CppTile2DOverrides # type: ignore[assignment] def __init__(self, args, num_threads, tiling_factor, tiling_indices, tiling_dtype): super().__init__( args, num_threads, tiling_factor, tiling_indices[1], tiling_dtype ) self.tiling_indices = tiling_indices def inner_itervar(self): return sympy_index_symbol(f"{self.itervars[self.outer_idx]}_inner") def need_vec_transpose(self, index): outer_var = self.itervars[self.outer_idx] inner_var = self.itervars[self.tiling_idx] outer_stride = stride_at_vec_range(index, outer_var, self.tiling_factor) inner_stride = stride_at_vec_range(index, inner_var, self.tiling_factor) return ( self._load_mask is None # TODO: support transposition with mask and outer_stride == 1 and index.has(inner_var) and not inner_stride.has(inner_var) and not inner_stride.has(outer_var) ) def gen_transposed_tile_load_store(self, name, var, index, is_store): # transposed tile load/store outside the kernel inner loop dtype = V.graph.get_dtype(name) factor = self.tiling_factor src = f"{var} + {cexpr_index(index)}" dst = "__place_holder__" ld_src = f"{cexpr_index(stride_at_vec_range(index, self.itervars[self.tiling_idx], self.tiling_factor))}" ld_dst = f"{factor}" if is_store: src, dst = dst, src ld_src, ld_dst = ld_dst, ld_src need_define = True load_or_store = f"at::vec::transpose_mxn<{DTYPE_TO_CPP[dtype]},{factor},{factor}>({src}, {ld_src}, {dst}, {ld_dst});" if is_store: tile_var = self.cse.newvar() elif load_or_store not in self.cse.cache: tile_var = self.cse.generate(self.preloads, load_or_store, write=False) else: need_define = False tile_var = self.cse.cache[load_or_store] if need_define: define_line = f"{DTYPE_TO_CPP[dtype]} {tile_var}[{factor}*{factor}] __attribute__ ((aligned ({factor})));" self.preloads.writeline(define_line) load_or_store = load_or_store.replace("__place_holder__", str(tile_var)) if is_store: self.poststores.writeline(DeferredLine(name, load_or_store)) else: self.preloads.writeline(load_or_store) return tile_var def load(self, name: str, index: sympy.Expr): opt_ctx: OptimizationContext = get_current_node_opt_ctx() var = self.args.input(name) index = self.rename_indexing(index) inner = self.inner_itervar() if self.need_vec_transpose(index): tile_var = self.gen_transposed_tile_load_store( name, var, index, is_store=False ) # vector load inside the kernel inner loop loadbuf = f"{tile_var} + {cexpr_index(inner * self.tiling_factor)}" dtype = V.graph.get_dtype(name) line = self._get_vec_load_line(loadbuf, 0, dtype) # type: ignore[arg-type] csevar = self.cse.generate(self.loads, line) csevar.update_on_args("load", (name, index), {}) assert isinstance(csevar, CppCSEVariable) csevar.is_vec = True return csevar else: new_index = self.transform_indexing(index) return super().load(name, new_index) def store(self, name, index, value, mode=None): assert "buf" in name opt_ctx: OptimizationContext = get_current_node_opt_ctx() var = self.args.output(name) inner = self.inner_itervar() index = self.rename_indexing(index) assert mode is None if self.need_vec_transpose(index): tile_var = self.gen_transposed_tile_load_store( name, var, index, is_store=True ) # vector store inside the kernel inner loop storebuf = f"{tile_var} + {cexpr_index(inner * self.tiling_factor)}" if V.graph.get_dtype(name) in DTYPE_LOWP_FP: line = f"{value}.store({storebuf}, {self.tiling_factor});" elif V.graph.get_dtype(name) in (torch.uint8, torch.int8): line = f"{value}.store({storebuf}, {self.tiling_factor});" else: line = f"{value}.store({storebuf});" self.stores.writeline(DeferredLine(name, line)) else: new_index = self.transform_indexing(index) super().store(name, new_index, value, mode) def codegen_inner_loops(self, code): inner = self.inner_itervar() code.writeline( f"for (long {inner} = 0; {inner} < {self.tiling_factor}; {inner}++)" ) def set_ranges(self, group, reduction_group): vars = super().set_ranges(group, reduction_group) # do vertical reduction as the tail loop self.outer_idx, self.tiling_idx = ( self.tiling_indices if self.tiling_indices[1] < self.reduction_depth else reversed(self.tiling_indices) ) return vars def transform_indexing(self, index: sympy.Expr) -> sympy.Expr: return self.scale_index_with_offset( index, itervar_idx=self.outer_idx, offset=self.inner_itervar(), ) class CppVecKernelChecker(CppVecKernel): def __init__(self, args, num_threads, tiling_factor, tiling_idx=-1): super().__init__(args, num_threads, tiling_factor, tiling_idx) # Since this kernel is only for checker but does not generate any # code, so we need to decrease the kernel count. metrics.generated_kernel_count -= 1 # Used to record the graph wrapper code as the wrapper_code status could be # changed during graph run. self._orig_wrapper_code = None self.simd_vec = True self.fast_vec_list = [] for k, v in CppVecOverrides.__dict__.items(): if isinstance(v, staticmethod): self.fast_vec_list.append(k) self.exit_stack = contextlib.ExitStack() # Cache all the load result self.supported_dtypes: List[torch.dtype] = [ torch.float, torch.bfloat16, torch.float16, torch.bool, torch.uint8, torch.int8, torch.int32, torch.int64, ] def disable_vec(self, msg=None): if schedule_log.isEnabledFor(logging.DEBUG): schedule_log.debug("Disabled vectorization: %s", msg) self.simd_vec = False def load(self, name: str, index: sympy.Expr): with RecordOptimizationContext(__name__) as node_ctx: load_dtype = V.graph.get_dtype(name) opt_ctx: OptimizationContext = node_ctx.get_opt_ctx() assert opt_ctx opt_ctx.dtype = load_dtype var = self.cse.newvar() if len(self.itervars) == 0: self.disable_vec("not a loop") return var if load_dtype not in self.supported_dtypes and ( index.has(self.itervars[self.tiling_idx]) or free_symbol_is_type(index, SymT.TMP) ): self.disable_vec(f"{load_dtype} not supported by load") return var return var def store(self, name, index, value, mode=None): with RecordOptimizationContext(__name__) as node_ctx: if len(self.itervars) == 0: self.disable_vec("not a loop") return self.simd_vec store_dtype = V.graph.get_dtype(name) opt_ctx: OptimizationContext = node_ctx.get_opt_ctx() assert opt_ctx opt_ctx.dtype = store_dtype if store_dtype not in self.supported_dtypes: self.disable_vec(f"{store_dtype} not supported by store") return self.simd_vec assert "buf" in name index = self.rename_indexing(index) if mode: self.disable_vec(f"store mode: {mode}") return self.simd_vec return self.simd_vec def reduction(self, dtype, src_dtype, reduction_type, value): if not ( (dtype == torch.float and src_dtype == torch.float) or (dtype == torch.int64 and src_dtype == torch.int64) and reduction_type in VECTORIZABLE_RTYPES ): self.disable_vec( f"reduction: dtype {dtype}, src_dtype {src_dtype}, reduction_type {reduction_type}" ) if is_welford_reduction(reduction_type): return tuple([self.simd_vec] * 3) return self.simd_vec def check_bounds( self, expr: sympy.Expr, size: sympy.Expr, lower: bool, upper: bool ): return self.simd_vec def store_reduction(self, name, index, value): return self.simd_vec def __exit__(self, exc_type, exc_val, exc_tb): # Restore the wrapper_code V.graph.wrapper_code = self._orig_wrapper_code # type: ignore[assignment] self.exit_stack.__exit__(exc_type, exc_val, exc_tb) def __enter__(self): # Record the graph wrapper code. The wrapper_code status could be # changed during graph run. Regarding this checker, we also need to # run the graph but we don't expect to change any status that would # impact the code generation. Hence, we record the graph wrapper code # and replace it with a dummy wrapper_code and then restore to the # original one as long as the checker is finished. self._orig_wrapper_code = V.graph.wrapper_code V.graph.wrapper_code = WrapperCodeGen() parent_handler = V.MockHandler() class VecCheckerProxy: @staticmethod def __getattr__(name): # type: ignore[misc] def inner(*args, **kwargs): if name not in self.fast_vec_list: self.disable_vec(f"op: {name}") parent_val = getattr(parent_handler, name)(*args, **kwargs) return pytree.tree_map(lambda _: self.simd_vec, parent_val) return inner @staticmethod def load(name: str, index: sympy.Expr): return self.load(name, index) @staticmethod def store(name, index, value, mode=None): return self.store(name, index, value, mode=mode) @staticmethod def reduction(dtype, src_dtype, reduction_type, value): return self.reduction(dtype, src_dtype, reduction_type, value) @staticmethod def store_reduction(name, index, value): return self.store_reduction(name, index, value) @staticmethod def check_bounds( expr: sympy.Expr, size: sympy.Expr, lower: bool, upper: bool ): return self.check_bounds(expr, size, lower, upper) @staticmethod def constant(val, dtype): with RecordOptimizationContext(__name__) as node_ctx: opt_ctx: OptimizationContext = node_ctx.get_opt_ctx() assert opt_ctx # VecKernel override dtype for constant # Vectorization only support int32/fp32 now # So if dtype = int64/fp64, we will cast it to int32/fp32 if possible i32_iinfo = torch.iinfo(torch.int32) if ( dtype == torch.int64 and val <= i32_iinfo.max and val >= i32_iinfo.min and all( user.target in BIN_CMP_OPS for user in node_ctx.current_node.users ) ): opt_ctx.dtype = torch.int32 f32_iinfo = torch.finfo(torch.float32) if dtype == torch.double: if ( (val <= f32_iinfo.max and val >= f32_iinfo.min) or (val == torch.inf) or (val == -torch.inf) ): opt_ctx.dtype = torch.float32 if opt_ctx.dtype not in self.supported_dtypes: self.disable_vec(f"constant dtype: {opt_ctx.dtype}") return val @staticmethod def index_expr(expr, dtype): assert len(self.ranges) == len(self.itervars) def can_use_int32(): free_symbols = list(expr.free_symbols) sizes = { k: v for k, v in zip(self.itervars, self.ranges) if k in free_symbols } # Trivial case: Range empty if any(v == 0 for v in sizes.values()): return True vars_ranges = { k: ValueRanges(0, v - 1) for k, v in sizes.items() if not isinstance(v, sympy.Expr) or v.is_number } if not vars_ranges or len(vars_ranges) != len(free_symbols): i32_iinfo = torch.iinfo(torch.int32) return ( expr.is_number and expr <= i32_iinfo.max and expr >= i32_iinfo.min ) expr_ranges = bound_sympy(expr, vars_ranges) if math.isinf(expr_ranges.lower) or math.isinf(expr_ranges.upper): # type: ignore[arg-type] return False # If something takes the values 0..7, we will compare in the loop # x < 8. As such, for the loop not to overflow in the last iteration, we want # to check that expr_ranges.upper + 1 is representable as well return range_expressable_in_32_bits( ValueRanges( int(expr_ranges.lower), int(expr_ranges.upper) + 1 # type: ignore[arg-type] ) ) with RecordOptimizationContext(__name__) as node_ctx: assert len(self.ranges) == len(self.itervars) opt_ctx: OptimizationContext = node_ctx.get_opt_ctx() assert opt_ctx if ( dtype == torch.int64 and can_use_int32() and all( user.target in BIN_CMP_OPS for user in node_ctx.current_node.users ) ): opt_ctx.dtype = torch.int32 else: self.disable_vec(f"index_expr: {expr}, dtype {dtype}") tmp_var = self.cse.newvar() return tmp_var @staticmethod def indirect_indexing(index_var, size, check=True): return sympy_index_symbol(str(index_var)) @staticmethod def masked(mask, body, other): body() return self.cse.newvar() @staticmethod def to_dtype(x, dtype, src_dtype=None): if dtype not in self.supported_dtypes: self.disable_vec(f"to_dtype: {dtype}") return x self.exit_stack.enter_context(V.set_ops_handler(VecCheckerProxy())) self.exit_stack.enter_context(V.set_kernel_handler(self)) return self class CppKernelProxy(CppKernel): def __init__(self, kernel_group): super().__init__(kernel_group.args, kernel_group.ws.num_threads) self.kernel_group = kernel_group self.loop_nest = None self.call_ranges = None self.picked_vec_isa: cpu_vec_isa.VecISA = cpu_vec_isa.pick_vec_isa() def data_type_propagation(self, nodes): for _node in nodes: assert isinstance(_node, SchedulerNode) DataTypePropagation.propagate_scheduler_node(_node) # Check if all the nodes of a given fx graph can support BF16/FP16 def is_lowp_fp_scheduler(self, scheduler_node: SchedulerNode): if not isinstance(scheduler_node._body, ir.LoopBody): return True _lowp_fp_type: Optional[torch.dtype] = None # Propagate the dtype to check if all the fx node is bf16/fp16 DataTypePropagation.propagate_scheduler_node(scheduler_node) sub_blocks = [scheduler_node._body.root_block] + list( scheduler_node._body.subblocks.values() ) for sub_block in sub_blocks: for _node in sub_block.graph.nodes: # TODO(Eikan): Regarding get_index and index_expr, we should conclude the # the data type as well. if _node.op == "placeholder" or _node.target in ( "get_index", "index_expr", ): continue # Fast path if all operations can support bf16/fp16 without converting to fp32 if _node.target not in [ "load", "store", "abs", "neg", "output", ]: return False if hasattr(_node, "meta") and _node.meta: assert OptimizationContext.key in _node.meta opt_ctx: OptimizationContext = _node.meta[OptimizationContext.key] if not opt_ctx.dtype or opt_ctx.dtype not in DTYPE_LOWP_FP: return False if _lowp_fp_type: assert ( _lowp_fp_type == opt_ctx.dtype ), "scheduler node do not support bf16/fp16 mix" else: _lowp_fp_type = opt_ctx.dtype else: return False scheduler_node._lowp_fp_type = _lowp_fp_type # type: ignore[attr-defined] return True def legalize_lowp_fp_dtype_loopbody(self, loop_body: ir.LoopBody): def add_to_dtype(sub_graph: torch.fx.Graph): def is_lowp_fp_load(node: torch.fx.Node): if node.target not in ["load"]: return False assert len(node.args) == 3 load_dtype = V.graph.get_dtype(node.args[1]) # type: ignore[arg-type] return load_dtype in DTYPE_LOWP_FP def is_lowp_fp_store(node: torch.fx.Node): if node.target != "store": return False _, store_var, _, _, _ = node.args store_dtype = V.graph.get_dtype(store_var) # type: ignore[arg-type] return store_dtype in DTYPE_LOWP_FP sub_graph_nodes = list(sub_graph.nodes) to_lowp_fp_legalized_nodes = [] for _node in sub_graph_nodes: if is_lowp_fp_load(_node): # No need to promote to float if all users are direct stores if all(user.target == "store" for user in _node.users): continue ops = _node.args[0] with sub_graph.inserting_after(_node): to_type_node = sub_graph.call_method( "to_dtype", args=(ops, _node, torch.float) ) to_type_node_args = to_type_node.args _node.replace_all_uses_with(to_type_node) to_type_node.args = to_type_node_args metrics.cpp_to_dtype_count += 1 elif is_lowp_fp_store(_node): ops, name, _, value_var, _ = _node.args # No need to promote to float if it is a user of a load which are all directly stored if value_var.target == "load" and all( user.target == "store" for user in value_var.users ): continue dtype = V.graph.get_dtype(name) with sub_graph.inserting_before(_node): to_type_node = sub_graph.call_method( "to_dtype", args=(ops, value_var, dtype) ) _node.replace_input_with(value_var, to_type_node) metrics.cpp_to_dtype_count += 1 elif _node.target == "reduction": ( ops, dtype, src_dtype, reduction_type, value, ) = _node.args if src_dtype in DTYPE_LOWP_FP: # Since we always convert the load/store value to float if the tensor is bfloat16/float16. # Therefore, the reduction should never work with bfloat16/float16 value. Hence, we update # the bfloat16/float16 reduction by # 1) updating the src_dtype to float # and 2) updating the dtype to float if it is bfloat16/float16. assert dtype in [ torch.float, torch.bfloat16, torch.float16, torch.int64, ] _node.args = ( ops, torch.float if dtype in DTYPE_LOWP_FP else dtype, torch.float, reduction_type, value, ) elif _node.target == "to_dtype" and _node.args[-1] in DTYPE_LOWP_FP: (ops, x, _) = _node.args # The legalization always loads the BF16/FP16 tensor as FP32 for computation # and converts back to BF16/FP16 after the computation. # Hence, there should be no computation w/ BF16/FP16. # Therefore, we update the to_dtype by replacing the bf16/fp16 dtype with fp32. # Save the legalized to_dtype node for the elimination(eliminate_to_dtype step): # 1) Eliminate the redundant to_dtype node if we have a pattern as follows: # graph(): # %lowp_fp_legalized = call_method[target=to_dtype](args = (%ops, %input, torch.float)) # %to_dtype2 = call_method[target=to_dtype](args = (%ops, %lowp_fp_legalized, torch.bfloat16/float16)) # Regarding the first to_dtype, it is redundant because # the second to_type also converts to the torch.bfloat16/torch.float16. # Hence, we remove the first to_type. to_lowp_fp_legalized_nodes.append(_node) _node.args = (ops, x, torch.float) else: pass def eliminate_to_dtype(sub_graph: torch.fx.Graph): def _eliminate_duplicate_to_node(sub_graph: torch.fx.Graph): # Eliminate the redundant to_dtype node. Let's consider a pattern as follows: # graph(): # %to_dtype1 = call_method[target=to_dtype](args = (%ops, %input, torch.float), kwargs = {}) # %to_dtype2 = call_method[target=to_dtype](args = (%ops, %to_dtype1, torch.float), kwargs = {}) # Regarding the first to_dtype, it is redundant because the second to_type also converts to the # torch.float. Hence, we remove the first to_type def _used_by_to(to_node: torch.fx.Node): return all(usr.target == "to_dtype" for usr in to_node.users) all_to_nodes = [ node for node in sub_graph.nodes if node.target == "to_dtype" ] all_to_nodes_and_users = [ {node: node.users} for node in all_to_nodes if _used_by_to(node) ] for node_users in all_to_nodes_and_users: for node, users in node_users.items(): if node in sub_graph.nodes and ( all(usr.args[-1] == node.args[-1] for usr in users) or ( node in to_lowp_fp_legalized_nodes and all( usr.args[-1] in DTYPE_LOWP_FP for usr in users ) ) ): val_node = node.all_input_nodes[-1] node.replace_all_uses_with(val_node) sub_graph.erase_node(node) # For debug mode, the graph of LoopBody will attach a new GraphModule as # owning_module for debugging while the release mode will not. The lint will # check whether the graph has owning_module to decide if it needs to check # call_module. LoopBody might contain get_index as a module call. But it # is just a function. Hence, it cannot pass the lint check for debug mode. # We bypass the check if the owning_module is None. Eventually, we should call # get_index via call_function but not call_module. if sub_graph.owning_module is None: sub_graph.lint() _eliminate_duplicate_to_node(sub_graph) eliminate_to_dtype(sub_graph) sub_blocks = [loop_body.root_block] + list(loop_body.subblocks.values()) for sub_block in sub_blocks: add_to_dtype(sub_block.graph) def legalize_lowp_fp_dtype(self, nodes): if all( isinstance(_node, SchedulerNode) and self.is_lowp_fp_scheduler(_node) for _node in nodes ): # Mark the load node to load bf16/fp16 for _node in nodes: sub_blocks = [_node._body.root_block] + list( _node._body.subblocks.values() ) for sub_block in sub_blocks: for fx_node in sub_block.graph.nodes: if fx_node.target in ["load", "store"]: assert fx_node.meta assert OptimizationContext.key in fx_node.meta opt_ctx: OptimizationContext = fx_node.meta[ OptimizationContext.key ] assert opt_ctx.dtype in DTYPE_LOWP_FP # Bypass the legalization as the kernel can run with bf16/fp16 directly return for _node in nodes: assert isinstance(_node, SchedulerNode) assert isinstance(_node._body, ir.LoopBody) node: SchedulerNode = _node def is_memory_copy_scheduler_node(node: SchedulerNode): op_counts = node.read_writes.op_counts return ( len(op_counts) == 2 and "load" in op_counts and "store" in op_counts ) should_legalize = not is_memory_copy_scheduler_node(node) if should_legalize: body: ir.LoopBody = node._body self.legalize_lowp_fp_dtype_loopbody(body) def codegen_functions(self, fn_list, var_sizes_list, vec_dtype=torch.float): # TODO(jgong5): remove vec_dtype arg with alternative tiling factors for various dtypes assert len(fn_list) == len(var_sizes_list) kernel_group = self.kernel_group group, reduction_group = max(var_sizes_list, key=lambda sizes: len(sizes[1])) self.set_ranges(group, reduction_group) def codegen_kernel(cls, *args): with kernel_group.new_kernel(cls, *args) as kernel: # Ugly hack to maintain the metrics kernel count since # we only count in CppKernelProxy, not those contained in it metrics.generated_kernel_count -= 1 run(kernel) return kernel def run(kernel): vars, reduction_vars = kernel.set_ranges(group, reduction_group) in_suffix = False for fn, var_sizes in zip(fn_list, var_sizes_list): if var_sizes in [ (group, reduction_group), (tuple(itertools.chain(group, reduction_group)), ()), ]: assert not in_suffix fn(vars, reduction_vars) else: in_suffix = True assert var_sizes == ( group, (), ), f"unexpected group: {var_sizes} != {group}, {reduction_group}" # we can fuse in some extra pointwise into the suffix with kernel.write_to_suffix(): fn(vars, ()) scalar_kernel = codegen_kernel(CppKernel) V.graph.removed_buffers |= scalar_kernel.removed_buffers V.graph.inplaced_to_remove |= scalar_kernel.inplaced_to_remove self.loop_nest = LoopNestWithSplit.build(scalar_kernel) if not self.picked_vec_isa: return def select_tiling_indices(tiling_factor): all_index = [] for fn, var_sizes in zip(fn_list, var_sizes_list): rw = dependencies.extract_read_writes(fn, *var_sizes) all_index += [dep.index for dep in itertools.chain(rw.reads, rw.writes)] contig_vars = set() contig_vars_list = [] non_contig_stride_const = set() non_contig_stride_other = set() for index in all_index: for var in index.free_symbols: if not re.search(r"^d\d+$", var.name): continue stride = stride_at_vec_range(index, var, tiling_factor) if stride == 0: continue elif stride == 1: contig_vars.add(int(var.name[1:])) contig_vars_list.append(int(var.name[1:])) elif all(symbol_is_type(s, SymT.SIZE) for s in stride.free_symbols): non_contig_stride_const.add(int(var.name[1:])) else: non_contig_stride_other.add(int(var.name[1:])) contig_only = ( contig_vars - non_contig_stride_const - non_contig_stride_other ) if len(contig_vars) == 0: # no contiguous vars return [len(self.itervars) - 1] if contig_only: return sorted(contig_only)[-1:] contig_and_const_stride = ( contig_vars & non_contig_stride_const ) - non_contig_stride_other contig_vars_sorted = sorted(contig_vars) if ( len(contig_vars_sorted) == 2 and contig_vars_sorted[-1] in contig_and_const_stride and contig_vars_sorted[-1] == len(self.itervars) - 1 ): return contig_vars_sorted return sorted(contig_vars_sorted, key=contig_vars_list.count)[-1:] def select_tiling(dtype: torch.dtype = torch.float): # TODO(jgong5): support alternative tiling factors and data types tiling_factor = self.picked_vec_isa.nelements(dtype=dtype) tiling_indices = select_tiling_indices(tiling_factor) if tiling_indices: could_vec = True for tiling_indice in tiling_indices: with CppVecKernelChecker( deepcopy(self.kernel_group.args), parallel_num_threads(), tiling_factor, tiling_indice, ) as vec_checker: run(vec_checker) could_vec = could_vec and vec_checker.simd_vec if not could_vec: break if could_vec: if len(tiling_indices) == 1: return [tiling_factor], tiling_indices if len(tiling_indices) == 2: return [tiling_factor, tiling_factor], tiling_indices return [], [] # Kernels share the same global contexts like V.graph.wrapper_code, V.kernel.args. # But the generated scalar kernel has updated these global contexts. Hence, the other kernels # should not do this again to avoid context conflict. By now, we only control the # config.inplace_buffers. In the future, we could maintain more contexts. with torch._inductor.config.patch(inplace_buffers=False): tiling_factors, tiling_indices = select_tiling(vec_dtype) assert len(tiling_factors) == len(tiling_indices) if len(tiling_indices) == 1: vec_kernel = codegen_kernel( CppVecKernel, tiling_factors[0], tiling_indices[0], vec_dtype ) metrics.generated_cpp_vec_kernel_count += 1 main_loop, tail_loop = self.loop_nest.split_with_tiling( tiling_indices[0], factor=tiling_factors[0] ) main_loop.set_kernel(vec_kernel) tail_loop.set_kernel(scalar_kernel) main_loop.simd_vec = True tail_loop.simd_omp = True # We chop the loop into two cubes by the nelements - main loop and tail loop. # Regarding the main loop, it is straightforward that it could be vectorized with # nelements. But for the tail loop, it still could be vectorized. For example, # if the nelements is 8(256bits), then the tail loop still could be vectorized # as 4(128bits). tail_loop.simd_nelements = tiling_factors[0] // 2 elif len(tiling_indices) == 2: assert ( tiling_indices[1] == len(self.itervars) - 1 and tiling_factors[0] == tiling_factors[1] ) tile2d_kernel = codegen_kernel( CppTile2DKernel, tiling_factors[0], tiling_indices, vec_dtype ) vec_kernel = codegen_kernel( CppVecKernel, tiling_factors[0], tiling_indices[0], vec_dtype ) metrics.generated_cpp_vec_kernel_count += 2 outer_main_loop, outer_tail_loop = self.loop_nest.split_with_tiling( tiling_indices[0], factor=tiling_factors[0] ) outer_tail_loop.set_kernel(scalar_kernel) ( inner_main_loop, inner_tail_loop, ) = outer_main_loop.split_with_tiling( tiling_indices[1] - tiling_indices[0], factor=tiling_factors[0] ) inner_main_loop.set_kernel(tile2d_kernel) inner_tail_loop.set_kernel(vec_kernel) def codegen_loop_bodies(self, loop_bodies, var_sizes_list): for body in loop_bodies: self.legalize_lowp_fp_dtype_loopbody(body) DataTypePropagation.propagate_loopbody(body) self.codegen_functions(loop_bodies, var_sizes_list) def codegen_nodes(self, nodes: List[SchedulerNode]): # Legalize BF16 node by adding to_dtype explicitly self.legalize_lowp_fp_dtype(nodes) self.data_type_propagation(nodes) assert len(nodes) >= 1 first_node = nodes[0] vec_dtype = ( first_node._lowp_fp_type # type: ignore[attr-defined] if all( hasattr(_node, "_lowp_fp_type") and _node._lowp_fp_type == first_node._lowp_fp_type # type: ignore[attr-defined] for _node in nodes ) else torch.float ) def fn(node, *index_vars): node.decide_inplace_update() node.mark_run() if isinstance(V.kernel, NullKernelHandler): return node._body(*index_vars) else: return node.codegen(index_vars) fn_list = [functools.partial(fn, node) for node in nodes] if ( isinstance(V.local_buffer_context, LocalBufferContext) and V.local_buffer_context.local_buffers ): fn_list = [ V.local_buffer_context.localize_function( fn, ) for fn in fn_list ] var_sizes_list = [node.group[1] for node in nodes] self.codegen_functions(fn_list, var_sizes_list, vec_dtype) def codegen_loops(self, code, worksharing): self.codegen_loops_impl(self.loop_nest, code, worksharing) class OuterLoopFusedKernel(CppKernel): def __init__(self, kernel_group): super().__init__(kernel_group.args, kernel_group.ws.num_threads) self.inner: List[LoopLevel] = [] def decide_parallel_depth(self, max_parallel_depth, threads) -> int: kernels_parallel_depth = [] nested_kernels: List[List[CppKernel]] = [ loop.get_kernels() for loop in self.inner ] for kernels in nested_kernels: # For any ScalarKernel, VecKernel, or Tile2DKernel, # they should all have the same call_ranges call_ranges = kernels[0].call_ranges assert call_ranges is not None assert all(kernel.call_ranges == call_ranges for kernel in kernels) kernels_parallel_depth.append( kernels[0].decide_parallel_depth(len(call_ranges), threads) ) return min( max_parallel_depth, max(kernels_parallel_depth), ) class ReasonFusedNodes(Enum): SAME_VARS_REDUCE = "same_vars_reduce" COMPATIBLE_REDUCTION = "compatible_reduction" COMPATIBLE_RANGES_NO_REDUCTION = "compatible_ranges_no_reduction" class CppScheduling(BaseScheduling): # ctypes limits the number of args to 1024, refer to: # https://github.com/python/cpython/commit/a285af7e626d1b81cf09f8b2bf7656f100bc1237 # We set a conservative threshold here. MAX_FUSED_KERNEL_ARGS_NUM = 500 backend_features = dict.fromkeys( [ BackendFeature.INPLACE_BUFFERS, BackendFeature.REDUCE_TO_SINGLE_ELEMENT, ] ) @classmethod def get_backend_features(cls, device: torch.device): return cls.backend_features def __init__(self, scheduler): super().__init__() self.scheduler = scheduler if scheduler: self.reset_kernel_group() self._ready_to_flush = False def _set_flush_status(self, status: bool): self._ready_to_flush = status def group_fn(self, sizes): return tuple(tuple(map(V.graph.sizevars.simplify, s)) for s in sizes) def reset_kernel_group(self): from .cpp_wrapper_cpu import CppWrapperCpu self.kernel_group: Union[CppWrapperKernelGroup, KernelGroup] if isinstance(V.graph.wrapper_code, CppWrapperCpu): self.kernel_group = CppWrapperKernelGroup() else: self.kernel_group = KernelGroup() def fuse(self, node1, node2): if node1.is_foreach() or node2.is_foreach(): return ForeachKernelSchedulerNode.fuse(node1, node2) elif node1.is_template(): assert not node2.is_template() return FusedSchedulerNode.fuse(node1, node2) else: if ( self._why_fuse_nodes(node1, node2) == ReasonFusedNodes.COMPATIBLE_RANGES_NO_REDUCTION ): assert isinstance(node1, (SchedulerNode, FusedSchedulerNode)) assert isinstance(node2, (SchedulerNode, FusedSchedulerNode)) _, (vars1, reduce1) = node1.group _, (vars2, reduce2) = node2.group assert reduce1 == () and reduce2 == (), (reduce1, reduce2) def get_indexing_ranges_exprs(node): if isinstance(node, FusedSchedulerNode): assert len(node.snodes) > 0, node.snodes var_ranges = None indexing_exprs = set() for snode in node.snodes: v, exprs = get_indexing_ranges_exprs(snode) if var_ranges is None: var_ranges = v assert var_ranges == v, (var_ranges, v, node.snodes) indexing_exprs.update(exprs) return var_ranges, list(indexing_exprs) else: assert isinstance(node, SchedulerNode) comp_buffer = node.node assert isinstance(comp_buffer, ir.ComputedBuffer) _, body, _ = comp_buffer.get_default_sizes_body() return body.var_ranges, list(body.indexing_exprs.values()) node_to_recomp = node1 if len(vars1) < len(vars2) else node2 assert isinstance(node_to_recomp, SchedulerNode) ref_node = node2 if len(vars1) < len(vars2) else node1 extra_indexing_constraints = get_indexing_ranges_exprs(ref_node) node_to_recomp.recompute_size_and_body( extra_indexing_constraints=extra_indexing_constraints ) _, (vars1, _) = node1.group _, (vars2, _) = node2.group assert vars1 == vars2, (vars1, vars2) return FusedSchedulerNode.fuse(node1, node2) elif self.can_fuse_vertical_outer_loop(node1, node2): return OuterLoopFusedSchedulerNode.fuse( node1, node2, self._get_outer_loop_fusion_depth(node1, node2) ) else: return FusedSchedulerNode.fuse(node1, node2) def _why_fuse_nodes(self, node1, node2) -> Optional[ReasonFusedNodes]: _, (vars1, reduce1) = node1.group _, (vars2, reduce2) = node2.group if vars1 == vars2 and reduce1 == reduce2: return ReasonFusedNodes.SAME_VARS_REDUCE if reduce1 == () and vars1 == vars2 + reduce2: return ReasonFusedNodes.COMPATIBLE_REDUCTION if self._can_fuse_nodes_with_compatible_ranges(node1, node2): return ReasonFusedNodes.COMPATIBLE_RANGES_NO_REDUCTION # TODO(jansel): allow fusion pointwise (vars1, ()) suffix? return None def _can_fuse_nodes_with_compatible_ranges(self, node1, node2): # Here we try to fuse SchedulerNode/FusedSchedulerNode with compatible ranges # e.g. (s0, s1, s2) and (s0 * s1 * s2) _, (vars1, reduce1) = node1.group _, (vars2, reduce2) = node2.group c1 = reduce1 == () and reduce2 == () c2 = math.prod(vars1) == math.prod(vars2) c3 = len(vars1) == 1 or len(vars2) == 1 if not (c1 and c2 and c3): return False node_to_recomp = node1 if len(vars1) < len(vars2) else node2 ref_node = node2 if len(vars1) < len(vars2) else node1 # We can not recompute sizes and body for nodes other than SchedulerNode # TODO: we can extend fusion support with compatible ranges for FusedSchedulerNode if isinstance(node_to_recomp, FusedSchedulerNode): return False # It may happen that node1 and node2 compatible number of elements # but different original ranges, for example: # {d0: s0, d1: s1, d2: s2} vs {d0: s0*s1*s2} # See https://github.com/pytorch/pytorch/pull/120077/files#r1500427848 for more details # TODO: we can fix if it allows us to CSE at least one of the variables assert isinstance(node_to_recomp, SchedulerNode) if isinstance(node_to_recomp.node, ir.TemplateBuffer): return False assert isinstance(node_to_recomp.node, ir.ComputedBuffer) # node.data.get_size() is a cheaper version of node.get_read_writes().var_ranges # but without variable name ranges2 = node_to_recomp.node.data.get_size() ranges1 = None if isinstance(ref_node, FusedSchedulerNode): ranges_set = set() for snode in ref_node.snodes: if isinstance(snode.node, ir.TemplateBuffer): break assert isinstance(snode.node, ir.ComputedBuffer) ranges_set.add(tuple(snode.node.data.get_size())) if len(ranges_set) != 1: return False ranges1 = list(next(iter(ranges_set))) else: assert isinstance(ref_node, SchedulerNode) assert isinstance(ref_node.node, ir.ComputedBuffer) ranges1 = ref_node.node.data.get_size() if ranges1 != ranges2: return False return True def _can_fuse_horizontal_impl(self, node1, node2): assert isinstance(node1, (FusedSchedulerNode, SchedulerNode)) assert isinstance(node2, (FusedSchedulerNode, SchedulerNode)) if any( isinstance(node, OuterLoopFusedSchedulerNode) for node in (node1, node2) ): return False return self._why_fuse_nodes(node1, node2) is not None def can_fuse_horizontal(self, node1, node2): if node1.is_template() or node2.is_template(): return False if ( len(node1.get_nodes()) + len(node2.get_nodes()) > config.cpp.max_horizontal_fusion_size ): return False return self._can_fuse_horizontal_impl(node1, node2) def _get_outer_loop_fusion_depth(self, node1, node2): DISABLE_OUTER_LOOP_FUSION = 0 if not all( type(node) in (OuterLoopFusedSchedulerNode, FusedSchedulerNode, SchedulerNode) for node in (node1, node2) ): return DISABLE_OUTER_LOOP_FUSION _node1 = ( node1.get_outer_nodes()[-1] if isinstance(node1, OuterLoopFusedSchedulerNode) else node1 ) assert isinstance(_node1, (FusedSchedulerNode, SchedulerNode)) _node2 = ( node2.get_outer_nodes()[0] if isinstance(node2, OuterLoopFusedSchedulerNode) else node2 ) assert isinstance(_node2, (FusedSchedulerNode, SchedulerNode)) _, (vars1, reduce1) = _node1.group _, (vars2, reduce2) = _node2.group if vars1 == () and vars2 == () and reduce1 != () and reduce2 != (): # Reduction only return DISABLE_OUTER_LOOP_FUSION if all(type(node) is OuterLoopFusedSchedulerNode for node in (node1, node2)): return ( node1.outer_loop_fusion_depth if node1.outer_loop_fusion_depth == node2.outer_loop_fusion_depth else DISABLE_OUTER_LOOP_FUSION ) outer_loop_fusion_depth = min(len(vars1), len(vars2)) if ( outer_loop_fusion_depth >= 1 and vars1[:outer_loop_fusion_depth] == vars2[:outer_loop_fusion_depth] ): if any( type(node) is OuterLoopFusedSchedulerNode for node in (node1, node2) ): _compare_node = ( node1 if type(node1) is OuterLoopFusedSchedulerNode else node2 ) if _compare_node.outer_loop_fusion_depth == outer_loop_fusion_depth: # Same outer loop fusion depth as prev nodes in OuterLoopFusedSchedulerNode return outer_loop_fusion_depth else: return DISABLE_OUTER_LOOP_FUSION else: # First 2 nodes to generate OuterLoopFusedSchedulerNode return outer_loop_fusion_depth return DISABLE_OUTER_LOOP_FUSION def can_fuse_vertical_outer_loop(self, node1, node2): return ( not node1.is_template() and not node2.is_template() and node1.get_names() & node2.ancestors and not ( self._can_fuse_horizontal_impl(node1, node2) and not node1.is_reduction() ) and self._get_outer_loop_fusion_depth(node1, node2) >= 1 ) def get_fusion_pair_priority(self, node1, node2): if self.can_fuse_vertical_outer_loop(node1, node2): # Outer loop fusion with lower priority return 1 else: return 0 def can_fuse_vertical(self, node1, node2): if node2.is_template(): # TODO(jgong5): support pre-op fusion with template return False if node1.is_template(): return not node2.is_reduction() return ( self._can_fuse_horizontal_impl(node1, node2) and not node1.is_reduction() ) or self.can_fuse_vertical_outer_loop(node1, node2) def codegen_outer_loop_node( self, node: OuterLoopFusedSchedulerNode, ): """ Generate the code for the outer loop fused scheduler node. 1. Codegen with fused outer loop: depends on the analysis of the outer loop fused scheduler node, with or without the local buffer. 2. If failed, fallback to standard codegen. """ kernel_group = self.kernel_group generated_cpp_vec_kernel_count = metrics.generated_cpp_vec_kernel_count cpp_kernel_proxy_list: List[CppKernelProxy] = [] nodes_list: List[List[SchedulerNode]] = [] assert isinstance(node, OuterLoopFusedSchedulerNode) def try_outer_loop_fusion_with_local_buf(node: OuterLoopFusedSchedulerNode): """ Codegen code with fused outer loop and local Buffer. """ assert isinstance(node, OuterLoopFusedSchedulerNode) cpp_kernel_proxy_list.clear() nodes_list.clear() def get_call_ranges(node: BaseSchedulerNode): assert isinstance(node, (SchedulerNode, FusedSchedulerNode)) nodes: List[SchedulerNode] = node.get_nodes() # type: ignore[assignment] _, (group, reduction_group) = max( nodes, key=lambda x: int(x.is_reduction()) ).group call_ranges = tuple(group) + tuple(reduction_group) return call_ranges LocalBuffer = namedtuple("LocalBuffer", ["local_buf", "global_buf"]) local_buffers: List[LocalBuffer] = [] if all( len(get_call_ranges(_node)) == node.outer_loop_fusion_depth + 1 for _node in node.get_outer_nodes() ): # Ref to the typical case of local buffer # in https://github.com/pytorch/pytorch/blob/ # 1115a25c36340554442f28f9570abd42f0aface2/aten/src/ATen/native/cpu/SoftMaxKernel.cpp#L159 # where the buffer is with size of last dim and contiguous. # Only support this typical case at first. for scheduler_node in node.get_nodes(): # all users inside same OuterLoopFusedSchedulerNode if not scheduler_node.is_reduction() and all( user.node in node.get_nodes() for user in scheduler_node.users ): global_buffer = scheduler_node.node assert isinstance(global_buffer, ir.ComputedBuffer) global_buffer_layout = global_buffer.get_layout() size_offset = node.outer_loop_fusion_depth - len( get_call_ranges(scheduler_node) ) def is_all_write_read_contiguous(scheduler_node): contiguous_index_expr = 0 stride = 1 for var, range in reversed( scheduler_node._body.var_ranges.items() ): contiguous_index_expr += stride * var stride *= range write_index_expr = scheduler_node._body.writes_name2expr[ scheduler_node.get_name() ] def is_contiguous_index(x): return x == contiguous_index_expr return is_contiguous_index(write_index_expr) and all( is_contiguous_index( user.node._body.reads_name2expr[ scheduler_node.get_name() ], ) for user in scheduler_node.users ) if not ( global_buffer_layout.is_contiguous() and not scheduler_node.is_reduction() and is_all_write_read_contiguous(scheduler_node) ): continue # Local Buffer is a view of global buffer local_buffer_layout = ir.FixedLayout( global_buffer_layout.device, global_buffer_layout.dtype, global_buffer_layout.size[size_offset:], global_buffer_layout.stride[size_offset:], ) local_buffers.append( LocalBuffer( local_buf=ir.Buffer( "local_buffer_data", local_buffer_layout ), global_buf=global_buffer, ) ) # At most 1 node with local buf for each OuterLoopFusedSchedulerNode break assert len(local_buffers) in [0, 1] with LocalBufferContext(kernel_group.args) as scope: if len(local_buffers) > 0: scope.add_local_buffer( local_buffers[0].local_buf, local_buffers[0].global_buf ) for _node in node.get_outer_nodes(): assert isinstance(_node, (FusedSchedulerNode, SchedulerNode)) cpp_kernel_proxy = CppKernelProxy(kernel_group) cpp_kernel_proxy.codegen_nodes(_node.get_nodes()) # type: ignore[arg-type] cpp_kernel_proxy_list.append(cpp_kernel_proxy) nodes_list.append(_node.get_nodes()) # type: ignore[arg-type] if not node.check_outer_fusion_loop_level_attr( cpp_kernel_proxy_list, node.outer_loop_fusion_depth ): return False metrics.cpp_outer_loop_fused_inner_counts.append( metrics.CppOuterLoopFusedCount( len(cpp_kernel_proxy_list), local_buffer_number=len(local_buffers), ) ) outer_fusion_cpp_kernel_proxy = node.merge_outer_fusion_kernels( cpp_kernel_proxy_list, ) kernel_group.finalize_kernel( outer_fusion_cpp_kernel_proxy, [_node for _nodes in nodes_list for _node in _nodes], ) return True if not try_outer_loop_fusion_with_local_buf(node): # Reset generated_cpp_vec_kernel_count to codegen again metrics.generated_cpp_vec_kernel_count = generated_cpp_vec_kernel_count cpp_kernel_proxy_list.clear() nodes_list.clear() # Similar as comment in # https://github.com/pytorch/pytorch/blob/469383755fe416eb1c41fa724762ad3eaecdff07/torch/_inductor/codegen/cpp.py#L3269-L3272 # Kernels share the same global contexts like V.graph.wrapper_code, V.kernel.args. with torch._inductor.config.patch(inplace_buffers=False): for _node in node.get_outer_nodes(): assert isinstance(_node, (FusedSchedulerNode, SchedulerNode)) _nodes: List[SchedulerNode] = _node.get_nodes() # type: ignore[assignment] cpp_kernel_proxy = CppKernelProxy(kernel_group) cpp_kernel_proxy.codegen_nodes(_nodes) kernel_group.finalize_kernel(cpp_kernel_proxy, _nodes) def codegen_node( self, node: Union[OuterLoopFusedSchedulerNode, FusedSchedulerNode, SchedulerNode], ): """ Turn an set of pre-fused nodes into a C++ kernel. """ kernel_group = self.kernel_group if isinstance(node, OuterLoopFusedSchedulerNode): self.codegen_outer_loop_node(node) else: nodes: List[SchedulerNode] = node.get_nodes() # type: ignore[assignment] cpp_kernel_proxy = CppKernelProxy(kernel_group) cpp_kernel_proxy.codegen_nodes(nodes) kernel_group.finalize_kernel(cpp_kernel_proxy, nodes) args_num = self._get_scheduled_num_args() if args_num > CppScheduling.MAX_FUSED_KERNEL_ARGS_NUM: self._set_flush_status(True) def is_cpp_template(self, node: BaseSchedulerNode) -> bool: return isinstance(node, SchedulerNode) and isinstance( node.node, ir.CppTemplateBuffer ) def codegen_template( self, template_node: BaseSchedulerNode, epilogue_nodes: Sequence[BaseSchedulerNode], ): """ Codegen a CPP template, possibly with fused epilogues """ counters["inductor"]["cpp_epilogue_fusion_counter"] += len(epilogue_nodes) assert self.is_cpp_template( template_node ), "Template node passed to CppScheduler.codegen_template must be a SchedulerNode that wraps a CppTemplateBuffer" template_node = cast(SchedulerNode, template_node) _, (_, rnumel) = template_node.group assert rnumel == () ctb: ir.CppTemplateBuffer = cast(ir.CppTemplateBuffer, template_node.node) epilogue_ir_nodes: List[Optional[ir.Buffer]] = [n.node for n in epilogue_nodes] assert all( isinstance(n, ir.ComputedBuffer) for n in epilogue_ir_nodes ), "Epilogue nodes must all be instances of ir.ComputedBuffer" kernel, render = ctb.make_kernel_render(ctb, epilogue_nodes=epilogue_ir_nodes) with kernel: for node in [template_node, *epilogue_nodes]: node.mark_run() # type: ignore[attr-defined] src_code = render() with V.set_kernel_handler(kernel): node_schedule = [template_node, *epilogue_nodes] kernel_name = self.define_kernel(src_code, node_schedule, kernel.args) kernel.call_kernel(kernel_name, ctb) V.graph.removed_buffers |= kernel.removed_buffers self.scheduler.free_buffers() def _get_scheduled_num_args(self): return self.kernel_group.get_num_args() def ready_to_flush(self): return self._ready_to_flush def codegen_sync(self): pass def define_kernel(self, src_code, nodes, kernel_args=None): wrapper = V.graph.wrapper_code fused_name = ( get_fused_kernel_name(nodes, config.cpp.descriptive_names) if config.cpp.descriptive_names else "" ) kernel_name = "_".join(["cpp", fused_name, wrapper.next_kernel_suffix()]) kernel_decl_name = kernel_name if V.graph.cpp_wrapper else "kernel" src_code = src_code.replace(str(Placeholder.KERNEL_NAME), kernel_decl_name) src_code = src_code.replace(str(Placeholder.DESCRIPTIVE_NAME), kernel_name) # TODO(voz): Ostensibly, we should not need this. But there are cases where C++ codegen does # not use BracesBuffer, so we have no good indicator of a C++ buffer atm. src_code = src_code.replace("#pragma CMT", "//") compile_wrapper = IndentedBuffer() args = self.kernel_group.args if kernel_args is None else kernel_args _, _, arg_types = args.cpp_argdefs() if not V.graph.cpp_wrapper: compile_wrapper.writeline(f"async_compile.cpp_pybinding({arg_types!r}, '''") compile_wrapper.splice(src_code, strip=True) if not V.graph.cpp_wrapper: compile_wrapper.writeline("''')") wrapper.define_kernel(kernel_name, compile_wrapper.getvalue(), cuda=False) return kernel_name def flush(self): src_code = self.kernel_group.codegen_group() if src_code: kernel_name = self.define_kernel( src_code, self.kernel_group.scheduled_nodes ) self.kernel_group.call_kernel(V.graph.wrapper_code, kernel_name) self.reset_kernel_group() self._set_flush_status(False) class KernelGroup: def __init__(self): super().__init__() self.args = KernelArgs() self.loops_code = BracesBuffer() self.ws = WorkSharing(self.loops_code) self.stack = contextlib.ExitStack() self.stack.enter_context(self.ws) self.scheduled_nodes = [] def new_kernel(self, cls, *args): return cls(self.args, parallel_num_threads(), *args) def finalize_kernel(self, new_kernel, nodes): self.scheduled_nodes += nodes code = self.loops_code ws = self.ws new_kernel.codegen_loops(code, ws) def get_num_args(self): arg_defs, call_args, arg_types = self.args.cpp_argdefs() args_num = len(arg_defs) return args_num def get_export_declaration(self): return "__declspec(dllexport)" if _IS_WINDOWS else "" def codegen_group(self, name=None) -> str: self.stack.close() if not self.scheduled_nodes: return "" code = BracesBuffer() # 1. Include header files # TODO: support kernel profile on other platforms enable_kernel_profile = ( config.cpp.enable_kernel_profile and sys.platform == "linux" ) if enable_kernel_profile: code.writelines(["#include "]) code.writeline(codecache.cpp_prefix()) # 2. Function definition kernel_decl_name = str(Placeholder.KERNEL_NAME) if name is None else name kernel_name = str(Placeholder.DESCRIPTIVE_NAME) if name is None else name arg_defs, _, _ = self.args.cpp_argdefs() arg_defs = ",\n".ljust(25).join(arg_defs) func_export_decl = self.get_export_declaration() code.writeline( f'extern "C" {func_export_decl} void {kernel_decl_name}({arg_defs})' ) # 3. Function body with code.indent(): if enable_kernel_profile: graph_id = V.graph.graph_id prefix = "graph_" + str(graph_id) + "_" if graph_id is not None else "" code.writelines( [ f'RECORD_FUNCTION("{prefix + kernel_name}", c10::ArrayRef({{}}));' ] ) for old, new in self.args.aliases(): code.writeline(f"auto {old} = {new};") code.splice(self.loops_code) return code.getvalue() def call_kernel(self, wrapper, kernel_name): _, call_args, arg_types = self.args.cpp_argdefs() wrapper.generate_kernel_call( kernel_name, call_args, cuda=False, arg_types=arg_types ) class CppWrapperKernelGroup(KernelGroup): def __init__(self): super().__init__() self.args = CppWrapperKernelArgs() class WorkSharing: def __init__(self, code): self.code = code self.in_parallel = False self.num_threads = None self.stack = contextlib.ExitStack() def parallel(self, threads): if self.in_parallel and threads != self.num_threads: # wrong number of threads self.close() if not self.in_parallel: self.num_threads = threads self.in_parallel = True if config.cpp.dynamic_threads: self.code.writeline("#pragma omp parallel") else: self.code.writeline(f"#pragma omp parallel num_threads({threads})") self.stack.enter_context(self.code.indent()) self.code.writeline( "int tid = omp_get_thread_num();", ) def single(self): if self.in_parallel: self.code.writeline("#pragma omp single") return self.in_parallel def close(self): self.stack.close() self.in_parallel = False def __enter__(self): self.stack.__enter__() return self def __exit__(self, exc_type, exc_val, exc_tb): self.stack.__exit__(exc_type, exc_val, exc_tb) @dataclasses.dataclass class LoopLevel: var: Optional[sympy.Expr] = None size: Optional[sympy.Expr] = None offset: sympy.Expr = sympy.Integer(0) steps: sympy.Expr = sympy.Integer(1) parallel: int = 0 simd_omp: bool = False simd_vec: bool = False collapsed: bool = False is_reduction: bool = False parent: Optional["LoopLevel"] = None # the next inner level of the loop, empty if it is inner-most # contains >1 LoopLevel if the inner level of loop is split inner: List["LoopLevel"] = dataclasses.field(default_factory=list) # kernel assigned to this loop level, only valid when it is a leaf kernel: Optional[CppKernel] = None def __post_init__(self): # Regarding the C++/OpenMP backend, `cpu_vec_isa.pick_vec_isa()` to check # vectorization ISA is a time-consuming and one-shot operation. It leads # to taking a longer time to import `codegen.cpp` package because the # `LoopLevel` of the package is decorated by `@dataclasses.dataclass` while # the decorator will invoke `cpu_vec_isa.pick_vec_isa()` to initialize the # `simd_nelements` of the `LoopLevel`. It might introduce additional compilation # overhead to the Triton backend. Therefore, we moved the `simd_nelements` to # `__post_init__` picked_vec_isa: cpu_vec_isa.VecISA = cpu_vec_isa.pick_vec_isa() self.simd_nelements: int = picked_vec_isa.nelements() if picked_vec_isa else 0 def get_kernels(self) -> List[CppKernel]: """Get all kernel objects under this loop level""" if self.kernel: return [self.kernel] kernels = [] for loop in self.inner: kernels += loop.get_kernels() return kernels def get_root(self): """Get all kernel objects under this loop level""" root = self while root.parent: root = root.parent return root def set_kernel(self, kernel: CppKernel): """ Set the kernel under this loop level. No split is allowed under this loop level. """ if not self.inner: self.kernel = kernel loop: Optional[LoopLevel] = self assert loop is not None return assert len(self.inner) == 1 self.inner[0].set_kernel(kernel) def get_loops_at(self, depth) -> List["LoopLevel"]: if depth == 0: return [self] else: loops = [] for loop in self.inner: loops += loop.get_loops_at(depth - 1) return loops def split_with_tiling(self, depth, factor): def clone_inner(): inner = [] if self.inner: for loop in self.inner: inner.append(loop.clone()) return inner def do_split_with_tiling(): sympy_factor = sympy.Integer(factor) offset = FloorDiv(self.size, sympy_factor) * sympy_factor main_loop = LoopLevel(self.var, offset) main_loop.steps = sympy_factor main_loop.parallel = self.parallel main_loop.collapsed = False main_loop.is_reduction = self.is_reduction main_loop.inner = clone_inner() if main_loop.inner: for loop in main_loop.inner: loop.parent = main_loop tail_loop = LoopLevel(self.var, self.size) tail_loop.offset = offset tail_loop.parallel = self.parallel tail_loop.collapsed = False tail_loop.is_reduction = self.is_reduction tail_loop.inner = clone_inner() if tail_loop.inner: for loop in tail_loop.inner: loop.parent = tail_loop return main_loop, tail_loop if depth == 0: main_loop, tail_loop = do_split_with_tiling() parent = self.parent if parent: parent.inner = [main_loop, tail_loop] main_loop.parent = parent tail_loop.parent = parent return main_loop, tail_loop else: assert len(self.inner) == 1 return self.inner[0].split_with_tiling(depth - 1, factor) def clone(self): loop = copy(self) loop.inner = [] if self.inner: for inner_loop in self.inner: inner_loop_clone = inner_loop.clone() inner_loop_clone.parent = loop loop.inner.append(inner_loop_clone) loop.kernel = deepcopy(self.kernel) return loop def lines(self): offset_expr = cexpr_index(self.offset) size_expr = cexpr_index(self.size) if config.cpp.no_redundant_loops and offset_expr == size_expr: return None simd = ( f"simd simdlen({self.simd_nelements}) " if self.simd_omp and self.simd_nelements > 1 else "" ) if self.parallel: # TODO(jansel): look into chunk size and other schedules line1 = "#pragma omp for" if self.parallel > 1: line1 += f" collapse({self.parallel})" if self.simd_omp: line1 = line1.replace(" for ", f" for {simd}") elif self.simd_vec: line1 = "" elif self.simd_omp: line1 = f"#pragma omp {simd}" elif not self.is_reduction and cpp_builder.is_gcc(): line1 = "#pragma GCC ivdep" else: line1 = "" offset_str = f"{INDEX_TYPE} {self.var}={offset_expr}" size_str = f"{self.var}<{size_expr}" steps_str = f"{self.var}+={cexpr_index(self.steps)}" line2 = f"for({offset_str}; {size_str}; {steps_str})" if self.collapsed or not line1: return [line2] return [line1, line2] @dataclasses.dataclass class LoopNestWithSplit: """ A loop-nest like structure but with some loop level split along the loop range into the main tiling loop and the tail. It is built with the `build` method as a loop nest and then split with `split_with_tiling` at some depth. A typical case is for vectorization where we typically split at the inner-most loop level. A more complicated case is 2D tiling where we split at both inner-most and outer levels. """ root: Optional[List[LoopLevel]] = None kernel: Optional[CppKernel] = None @staticmethod def build(kernel: CppKernel): """Build a LoopNest with the given `kernel` as the leaf""" itervars = kernel.itervars ranges = kernel.ranges reduction_depth = kernel.reduction_depth assert reduction_depth is not None root: List[LoopLevel] = [] levels: List[LoopLevel] = root loop: Optional[LoopLevel] = None for loop_idx, (var, size) in enumerate(zip(itervars, ranges)): loop = LoopLevel(var, size, parent=loop) if loop_idx >= reduction_depth: loop.is_reduction = kernel.is_reduction levels.append(loop) levels = loop.inner loop_nest = LoopNestWithSplit(root) if loop: loop.kernel = kernel else: loop_nest.kernel = kernel return loop_nest def __bool__(self): return bool(self.root) def get_loops_at(self, depth) -> List[LoopLevel]: """Get all the loop levels at the given `depth` (most outer loop has depth 0)""" loops: List[LoopLevel] = [] assert self.root is not None for loop in self.root: loops += loop.get_loops_at(depth) return loops @cache_on_self def max_parallel_depth(self): """ Maximal allowed depth for parallelism: 1) Levels without splitting and 2) All reduction or non-reduction levels When the loop is split at the top level, the max depth is 1. """ max_depth = 0 assert self.root is not None loops = self.root if len(loops) > 1: return 1 is_reduction = loops[0].is_reduction if loops else False while len(loops) == 1 and loops[0].is_reduction == is_reduction: max_depth += 1 loops = loops[0].inner return max_depth def is_reduction_only(self): """ Whether all the loops are for reduction. Reduction loops are always the inner most ones. """ return ( self.root is not None and len(self.root) > 0 and self.root[0].is_reduction ) def mark_parallel(self, par_depth): assert ( par_depth <= self.max_parallel_depth() ), "Parallel depth cannot exceed the maximal allowed parallel depth" assert self.root is not None loops = self.root for loop in loops: loop.parallel = par_depth for i in range(1, par_depth): loops = loops[0].inner loops[0].collapsed = True def split_with_tiling(self, depth, factor): """ Split the loop into main and tail loops at given `depth` so that the range of the main loop has range `floor_div(range, factor) * factor` and the tail loop handles the remainder. The main loop is tiled according to the `factor`. """ loops = self.get_loops_at(depth) assert len(loops) == 1 split_loops = loops[0].split_with_tiling(0, factor) if depth == 0: self.root = split_loops return split_loops def get_kernels(self) -> List[CppKernel]: """Get all kernel objects under this loop nest""" if self.kernel: return [self.kernel] kernels: List[CppKernel] = [] assert self.root is not None for loop in self.root: kernels += loop.get_kernels() return kernels