#include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include namespace torch { namespace jit { namespace { Node* findNode(std::shared_ptr& g, Symbol k) { DepthFirstGraphNodeIterator graph_it(g); for (auto node = graph_it.next(); node != nullptr; node = graph_it.next()) { if (node->kind() == k) { return node; } } TORCH_INTERNAL_ASSERT(false, "Couldn't find node"); } } // namespace TEST(ShapeAnalysisTest, DynamicShapesFusion) { // Test Generalizing shapes to symbolic dimensions, guarding those symbolic // dimensions and passing in runtime computed symbolic dimensions via inlined // shape functions std::shared_ptr subgraph = std::make_shared(); const auto graph_string = R"IR( graph(%x.1 : Tensor, %y.1 : Tensor, %z: Tensor): %11 : int = prim::Constant[value=0]() %3 : Tensor = aten::tanh(%x.1) %out1.1 : Tensor = aten::erf(%3) %out2.1 : Tensor = aten::relu(%y.1) %10 : Tensor[] = prim::ListConstruct(%out1.1, %out2.1) %25 : Tensor = aten::cat(%10, %11) %28 : Tensor = aten::hardswish(%25) %29 : Tensor = aten::mul(%28, %z) return (%28))IR"; torch::jit::parseIR(graph_string, subgraph.get()); /* set up fused TensorExprGroup */ std::shared_ptr g = std::make_shared(); auto x_inp = g->addInput("x_inp"); auto y_inp = g->addInput("y_inp"); auto z_inp = g->addInput("z_inp"); auto x_type = TensorType::create(at::rand({10, 5})); auto y_type = TensorType::create(at::rand({4, 5})); auto z_type = TensorType::create(at::rand({1, 1})); x_inp->setType(x_type); y_inp->setType(y_type); z_inp->setType(z_type); subgraph->inputs().at(0)->setType(x_type); subgraph->inputs().at(1)->setType(y_type); subgraph->inputs().at(2)->setType(z_type); subgraph->outputs().at(0)->setType(TensorType::create(at::rand({14, 5}))); auto output = g->insertNode(g->create(prim::TensorExprGroup))->output(); subgraph->outputs().at(0)->setType(TensorType::create(at::rand({14, 5}))); output->node()->addInput(x_inp); output->node()->addInput(y_inp); output->node()->addInput(z_inp); output->node()->g_(attr::Subgraph, subgraph); auto success = GenerateGuard(output->node()); TORCH_INTERNAL_ASSERT(success); testing::FileCheck() .check("TensorExprDynamicGuard") ->check_next("prim::If") ->check("aten::add") ->check("TensorExprGroup") ->check_same("symbolic_shape_inputs") ->check("block1") ->check("aten::cat") ->run(*g); // clang-format off /* Graph Should Look Something like: (note: strides not yet handled) graph(%x_inp : Float(10, 5, strides=[5, 1], requires_grad=0, device=cpu), %y_inp : Float(4, 5, strides=[5, 1], requires_grad=0, device=cpu), %z_inp : Float(1, 1, strides=[1, 1], requires_grad=0, device=cpu)): %4 : bool = prim::TensorExprDynamicGuard[types=[Float(SS(-2), SS(-3), strides=[5, 1], requires_grad=0, device=cpu), Float(SS(-4), SS(-3), strides=[5, 1], requires_grad=0, device=cpu), Float(1, 1, strides=[1, 1], requires_grad=0, device=cpu)]](%x_inp, %y_inp, %z_inp) %5 : Tensor = prim::If(%4) block0(): %15 : int[] = aten::size(%x_inp) %16 : int[] = aten::size(%y_inp) %17 : int = prim::Constant[value=1]() %18 : int = prim::Constant[value=0]() %elem.3 : int = aten::__getitem__(%15, %18) # :40:10 %elem.5 : int = aten::__getitem__(%15, %17) # :40:10 %elem.11 : int = aten::__getitem__(%16, %18) # :40:10 %cat_dim_size.48 : int = aten::add(%elem.3, %elem.11) # :321:29 %3 : Tensor = prim::TensorExprGroup_0[symbolic_shape_inputs=[-5, -4, -3, -2]](%x_inp, %y_inp, %z_inp, %cat_dim_size.48, %elem.11, %elem.5, %elem.3) -> (%3) block1(): // FallbackGraph is inlined %14 : Tensor = prim::FallbackGraph_1(%x_inp, %y_inp, %z_inp) -> (%14) return () with prim::TensorExprGroup_0 = graph(%x.1 : Float(SS(-2), SS(-3), strides=[5, 1], requires_grad=0, device=cpu), %y.1 : Float(SS(-4), SS(-3), strides=[5, 1], requires_grad=0, device=cpu), %z : Float(1, 1, strides=[1, 1], requires_grad=0, device=cpu), %SS_5 : int, %SS_4 : int, %SS_3 : int, %SS_2 : int): %3 : int = prim::Constant[value=0]() %4 : Tensor(SS(-2), SS(-3)) = aten::tanh(%x.1) %5 : Tensor(SS(-2), SS(-3)) = aten::erf(%4) %6 : Tensor(SS(-4), SS(-3)) = aten::relu(%y.1) %7 : Tensor[] = prim::ListConstruct(%5, %6) %8 : Tensor(SS(-5), SS(-3)) = aten::cat(%7, %3) %9 : Tensor(SS(-5), SS(-3)) = aten::hardswish(%8) %10 : Tensor(SS(-5), SS(-3)) = aten::mul(%9, %z) return (%9) */ // clang-format on DepthFirstGraphNodeIterator graph_it(g); Node* te_group = findNode(g, prim::TensorExprGroup); /* Test that input to the kernel - (10, 5), (4, 5), (1, 1) - are correctly generalized to sym dimensions, and that the output - (10 + 4, 5) correctly preserves non-catted dim as sym shape and catted dim as new sym shape */ auto tensorexpr_graph = te_group->g(attr::Subgraph); auto inp1 = tensorexpr_graph->inputs().at(0)->type()->expect(); auto inp2 = tensorexpr_graph->inputs().at(1)->type()->expect(); auto inp3 = tensorexpr_graph->inputs().at(2)->type()->expect(); auto out = tensorexpr_graph->outputs().at(0)->type()->expect(); // 1 dims are preserved auto inp3_sizes = inp3->sizes().concrete_sizes(); TORCH_INTERNAL_ASSERT(inp3_sizes); TORCH_INTERNAL_ASSERT( inp3_sizes->size() == 2 && inp3_sizes->at(0) == 1 && inp3_sizes->at(1) == 1); // 5 made into sym shape ASSERT_EQ( inp1->symbolic_sizes()[1].value(), inp2->symbolic_sizes()[1].value()); ASSERT_EQ( out->symbolic_sizes()[1].value(), inp2->symbolic_sizes()[1].value()); // 4, 10, 14 are different sym shapes ASSERT_NE( inp1->symbolic_sizes()[0].value(), inp2->symbolic_sizes()[0].value()); ASSERT_NE( out->symbolic_sizes()[0].value(), inp1->symbolic_sizes()[0].value()); ASSERT_NE( out->symbolic_sizes()[0].value(), inp2->symbolic_sizes()[0].value()); /* Test guard behaves correctly at runtime and symbolic shapes are computed correctly. As we don't have TE Kernel support for dynamic shapes we're going to return all of the computed runtime symbolic dimensions as outputs of the graph on guard success, and return None on guard failure */ // Setting up guard to return sym shapes on guard success and None on failure Node* if_node = findNode(g, prim::If); IfView if_v(if_node); if_node->eraseOutput(0); if_v.thenBlock()->eraseOutput(0); if_v.elseBlock()->eraseOutput(0); WithInsertPoint guard(if_node); auto none_val = g->insertConstant(IValue()); auto sym_shapes = te_group->is(Symbol::attr("symbolic_shape_inputs")); auto offset = te_group->inputs().size() - sym_shapes.size(); for (size_t i = 0; i < sym_shapes.size(); ++i) { if_v.thenBlock()->insertOutput(i, te_group->inputs().at(offset + i)); if_v.elseBlock()->insertOutput(i, none_val); if_node->insertOutput(i)->setType(OptionalType::create(IntType::get())); } auto new_outputs = g->createTuple(if_node->outputs())->insertAfter(if_node); g->registerOutput(new_outputs->output()); te_group->destroy(); findNode(g, prim::FallbackGraph)->destroy(); // Testing bad inputs auto first_inp = at::rand({2, 5}); std::vector> second_inps = { {at::rand({3, 4}), at::rand({1, 1})}, // sym shape mismatch {at::rand({5, 2}).transpose(0, 1), at::rand({1, 1})}, // discontiguous {at::zeros({2, 5}).to(at::ScalarType::Int), at::rand({1, 1})}, // wrong dtype {at::rand({2, 5, 1}), at::rand({1, 1})}, // wrong # dims {at::rand({2, 5}).requires_grad_(true), at::rand({1, 1})}, // requires grad {at::rand({2, 5}), at::rand({1, 12})}, // concrete dim mismatch (1) }; if (torch::cuda::is_available()) { second_inps.push_back({at::rand({2, 5}).cuda(), at::rand({1, 1})}); } for (const auto& last_inps : second_inps) { // todo - reusing interpreter across iters gave error Code code(g, ""); InterpreterState interp(code); auto stack = createStack({at::rand({2, 5}), last_inps[0], last_inps[1]}); interp.run(stack); TORCH_INTERNAL_ASSERT(pop(stack).toTuple()->elements().at(0).isNone()); } // Test good inputs Code code(g, ""); InterpreterState interp(code); std::vector inps = { at::rand({2, 5}), at::rand({4, 5}), at::rand({1, 1})}; Stack stack(inps.begin(), inps.end()); interp.run(stack); auto tuple = pop(stack).toTuple(); TORCH_INTERNAL_ASSERT(tuple->elements().at(0).isInt()); // Testing that the sym shape calculation was correct for (size_t i = 0; i < sym_shapes.size(); ++i) { auto sym_shape = sym_shapes[i]; auto computed_value = tuple->elements().at(i).toInt(); if (sym_shape == inp1->symbolic_sizes().at(0).value()) { ASSERT_EQ(computed_value, 2); } else if (sym_shape == inp1->symbolic_sizes().at(1).value()) { ASSERT_EQ(computed_value, 5); } else if (sym_shape == inp2->symbolic_sizes().at(0).value()) { ASSERT_EQ(computed_value, 4); } else if (sym_shape == out->symbolic_sizes().at(0).value()) { ASSERT_EQ(computed_value, 6); } else { TORCH_INTERNAL_ASSERT(false); } } } TEST(ShapeAnalysisTest, MovingConstantOutOfFusionGroups) { std::shared_ptr subgraph = std::make_shared(); const auto graph_string = R"IR( graph(%x.1 : Tensor): %none : NoneType = prim::Constant() %size1 : int = prim::Constant[value=1]() %size10 : int = prim::Constant[value=10]() %sizes : int[] = prim::ListConstruct(%size10, %size1) %device : Device = prim::Constant[value="cpu"]() %10 : Tensor = aten::ones(%sizes, %none, %none, %device, %none) %3 : Tensor = aten::tanh(%x.1) %29 : Tensor = aten::mul(%3, %10) return (%29))IR"; torch::jit::parseIR(graph_string, subgraph.get()); ConstantPropagation(subgraph); std::shared_ptr g = std::make_shared(); auto x_inp = g->addInput("x_inp"); auto x_type = TensorType::create(at::rand({10, 5})); x_inp->setType(x_type); subgraph->inputs().at(0)->setType(x_type); subgraph->outputs().at(0)->setType(x_type); auto output = g->insertNode(g->create(prim::TensorExprGroup))->output(); output->node()->addInput(x_inp); output->node()->g_(attr::Subgraph, subgraph); auto success = GenerateGuard(output->node()); TORCH_INTERNAL_ASSERT(success); // Check that the constants have been moved out of the fused graph. // This should result in not have any conditionals other than the one // checking the result of TensorExprDynamicGuard. testing::FileCheck() .check("TensorExprDynamicGuard") ->check_next("prim::If") ->check_not("prim::If") // no other IFs due to constants. ->check("TensorExprGroup") ->check("block1") ->check("FallbackGraph") ->run(*g); } namespace { void assertShapeEqual( c10::optional>& actual, std::vector> expected) { ASSERT_TRUE(actual.has_value()); ASSERT_EQ(actual->size(), 1); auto a_canonical = CanonicalizedSymbolicShape(actual->at(0)); auto symb_expected = c10::SymbolicShape(expected); auto b_canonical = CanonicalizedSymbolicShape(symb_expected); ASSERT_EQ(a_canonical, b_canonical); } } // namespace TEST(ShapeAnalysisTest, SymbolicShapeAPI) { // Figure out how to fetch a function schema // Ask someone else how to create a function schema / operator in C++ std::shared_ptr op = getOperatorForLiteral( "aten::sub.Tensor(Tensor self, Tensor other, *, Scalar alpha=1) -> Tensor"); const FunctionSchema* schema = &(op->schema()); c10::IValue const_size_1 = std::vector{64, 56, 56}; c10::IValue const_size_2 = std::vector{1, 56, 56}; // Check vector initializer list syntax c10::optional sym_dim = c10::nullopt; c10::SymbolicShape ss_concrete = std::vector>{1, 56, 56}; c10::SymbolicShape ss1 = std::vector>{sym_dim, 56, 56}; c10::SymbolicShape ss2 = std::vector>{64, sym_dim, sym_dim}; c10::SymbolicShape ss3 = std::vector>{sym_dim, sym_dim, sym_dim, sym_dim}; auto res = calculateSymbolicShapesOnOp( schema, std::vector{const_size_1, const_size_1}); assertShapeEqual(res, {64, 56, 56}); res = calculateSymbolicShapesOnOp( schema, std::vector{const_size_1, const_size_2}); assertShapeEqual(res, {64, 56, 56}); res = calculateSymbolicShapesOnOp( schema, std::vector{const_size_1, ss1}); assertShapeEqual(res, {64, 56, 56}); res = calculateSymbolicShapesOnOp( schema, std::vector{const_size_2, ss1}); assertShapeEqual(res, {sym_dim, 56, 56}); res = calculateSymbolicShapesOnOp( schema, std::vector{ss_concrete, ss2}); assertShapeEqual(res, {64, 56, 56}); res = calculateSymbolicShapesOnOp(schema, std::vector{ss2, ss3}); assertShapeEqual(res, {sym_dim, 64, sym_dim, sym_dim}); } } // namespace jit } // namespace torch