"""Adds docstrings to Tensor functions""" import torch._C from torch._C import _add_docstr as add_docstr add_docstr(torch._C.FloatTensorBase.abs, """ abs(out=None) -> Tensor See :func:`torch.abs` """) add_docstr(torch._C.FloatTensorBase.abs_, """ abs_(out=None) -> Tensor In-place version of :meth:`~Tensor.abs` """) add_docstr(torch._C.FloatTensorBase.acos, """ acos(out=None) -> Tensor See :func:`torch.acos` """) add_docstr(torch._C.FloatTensorBase.acos_, """ acos_(out=None) -> Tensor In-place version of :meth:`~Tensor.acos` """) add_docstr(torch._C.FloatTensorBase.add, """ add(value, out=None) See :func:`torch.add` """) add_docstr(torch._C.FloatTensorBase.add_, """ add_(value, out=None) In-place version of :meth:`~Tensor.add` """) add_docstr(torch._C.FloatTensorBase.addbmm, """ addbmm(beta=1, mat, alpha=1, batch1, batch2, out=None) -> Tensor See :func:`torch.addbmm` """) add_docstr(torch._C.FloatTensorBase.addbmm_, """ addbmm_(beta=1, mat, alpha=1, batch1, batch2, out=None) -> Tensor In-place version of :meth:`~Tensor.addbmm` """) add_docstr(torch._C.FloatTensorBase.addcdiv, """ addcdiv(value=1, tensor1, tensor2, out=None) -> Tensor See :func:`torch.addcdiv` """) add_docstr(torch._C.FloatTensorBase.addcdiv_, """ addcdiv_(value=1, tensor1, tensor2, out=None) -> Tensor In-place version of :meth:`~Tensor.addcdiv` """) add_docstr(torch._C.FloatTensorBase.addcmul, """ addcmul(value=1, tensor1, tensor2, out=None) -> Tensor See :func:`torch.addcmul` """) add_docstr(torch._C.FloatTensorBase.addcmul_, """ addcmul_(value=1, tensor1, tensor2, out=None) -> Tensor In-place version of :meth:`~Tensor.addcmul` """) add_docstr(torch._C.FloatTensorBase.addmm, """ addmm(beta=1, mat, alpha=1, mat1, mat2, out=None) -> Tensor See :func:`torch.addmm` """) add_docstr(torch._C.FloatTensorBase.addmm_, """ addmm_(beta=1, mat, alpha=1, mat1, mat2, out=None) -> Tensor In-place version of :meth:`~Tensor.addmm` """) add_docstr(torch._C.FloatTensorBase.addmv, """ addmv(beta=1, tensor, alpha=1, mat, vec, out=None) -> Tensor See :func:`torch.addmv` """) add_docstr(torch._C.FloatTensorBase.addmv_, """ addmv_(beta=1, tensor, alpha=1, mat, vec, out=None) -> Tensor In-place version of :meth:`~Tensor.addmv` """) add_docstr(torch._C.FloatTensorBase.addr, """ addr(beta=1, alpha=1, vec1, vec2, out=None) -> Tensor See :func:`torch.addr` """) add_docstr(torch._C.FloatTensorBase.addr_, """ addr_(beta=1, alpha=1, vec1, vec2, out=None) -> Tensor In-place version of :meth:`~Tensor.addr` """) add_docstr(torch._C.FloatTensorBase.apply_, """ apply_(callable) -> Tensor Applies the function :attr:`callable` to each element in the tensor, replacing each element with the value returned by :attr:`callable`. """) add_docstr(torch._C.FloatTensorBase.asin, """ asin(out=None) -> Tensor See :func:`torch.asin` """) add_docstr(torch._C.FloatTensorBase.asin_, """ asin_(out=None) -> Tensor In-place version of :meth:`~Tensor.asin` """) add_docstr(torch._C.FloatTensorBase.atan, """ atan(out=None) -> Tensor See :func:`torch.atan` """) add_docstr(torch._C.FloatTensorBase.atan2, """ atan2(other, out=None) -> Tensor See :func:`torch.atan2` """) add_docstr(torch._C.FloatTensorBase.atan2_, """ atan2_(other, out=None) -> Tensor In-place version of :meth:`~Tensor.atan2` """) add_docstr(torch._C.FloatTensorBase.atan_, """ atan_(out=None) -> Tensor In-place version of :meth:`~Tensor.atan` """) add_docstr(torch._C.FloatTensorBase.baddbmm, """ baddbmm(beta=1, alpha=1, batch1, batch2, out=None) -> Tensor See :func:`torch.baddbmm` """) add_docstr(torch._C.FloatTensorBase.baddbmm_, """ baddbmm_(beta=1, alpha=1, batch1, batch2, out=None) -> Tensor In-place version of :meth:`~Tensor.baddbmm` """) add_docstr(torch._C.FloatTensorBase.bernoulli, """ bernoulli(out=None) -> Tensor See :func:`torch.bernoulli` """) add_docstr(torch._C.FloatTensorBase.bernoulli_, """ bernoulli_(out=None) -> Tensor In-place version of :meth:`~Tensor.bernoulli` """) add_docstr(torch._C.FloatTensorBase.bmm, """ bmm(batch2, out=None) -> Tensor See :func:`torch.bmm` """) add_docstr(torch._C.FloatTensorBase.cauchy_, """ cauchy_(generator=None, median=0, sigma=1) -> Tensor Fills the tensor with numbers drawn from the Cauchy distribution: .. math:: P(x) = \dfrac{1}{\pi} \dfrac{\sigma}{(x - median)^2 + \sigma^2} """) add_docstr(torch._C.FloatTensorBase.ceil, """ ceil(out=None) -> Tensor See :func:`torch.ceil` """) add_docstr(torch._C.FloatTensorBase.ceil_, """ ceil_(out=None) -> Tensor In-place version of :meth:`~Tensor.ceil` """) add_docstr(torch._C.FloatTensorBase.clamp, """ clamp(min, max, out=None) -> Tensor See :func:`torch.clamp` """) add_docstr(torch._C.FloatTensorBase.clamp_, """ clamp_(min, max, out=None) -> Tensor In-place version of :meth:`~Tensor.clamp` """) add_docstr(torch._C.FloatTensorBase.clone, """ clone() -> Tensor Returns a copy of the tensor. The copy has the same size and data type as the original tensor. """) add_docstr(torch._C.FloatTensorBase.contiguous, """ contiguous() -> Tensor Returns a contiguous Tensor containing the same data as this tensor. If this tensor is contiguous, this function returns the original tensor. """) add_docstr(torch._C.FloatTensorBase.copy_, """ copy_(src, async=False) -> Tensor Copies the elements from :attr:`src` into this tensor and returns this tensor. The source tensor should have the same number of elements as this tensor. It may be of a different data type or reside on a different device. Args: src (Tensor): Source tensor to copy async (bool): If True and this copy is between CPU and GPU, then the copy may occur asynchronously with respect to the host. For other copies, this argument has no effect. """) add_docstr(torch._C.FloatTensorBase.cos, """ cos(out=None) -> Tensor See :func:`torch.cos` """) add_docstr(torch._C.FloatTensorBase.cos_, """ cos_(out=None) -> Tensor In-place version of :meth:`~Tensor.cos` """) add_docstr(torch._C.FloatTensorBase.cosh, """ cosh(out=None) -> Tensor See :func:`torch.cosh` """) add_docstr(torch._C.FloatTensorBase.cosh_, """ cosh_(out=None) -> Tensor In-place version of :meth:`~Tensor.cosh` """) add_docstr(torch._C.FloatTensorBase.cross, """ cross(other, dim=-1, out=None) -> Tensor See :func:`torch.cross` """) add_docstr(torch._C.FloatTensorBase.cumprod, """ cumprod(dim, out=None) -> Tensor See :func:`torch.cumprod` """) add_docstr(torch._C.FloatTensorBase.cumsum, """ cumsum(dim, out=None) -> Tensor See :func:`torch.cumsum` """) add_docstr(torch._C.FloatTensorBase.data_ptr, """ data_ptr() -> int Returns the address of the first element of this tensor. """) add_docstr(torch._C.FloatTensorBase.diag, """ diag(diagonal=0, out=None) -> Tensor See :func:`torch.diag` """) add_docstr(torch._C.FloatTensorBase.dim, """ dim() -> int Returns the number of dimensions of this tensor. """) add_docstr(torch._C.FloatTensorBase.dist, """ dist(other, p=2, out=None) -> Tensor See :func:`torch.dist` """) add_docstr(torch._C.FloatTensorBase.div, """ div(value, out=None) See :func:`torch.div` """) add_docstr(torch._C.FloatTensorBase.div_, """ div_(value, out=None) In-place version of :meth:`~Tensor.div` """) add_docstr(torch._C.FloatTensorBase.dot, """ dot(tensor2) -> float See :func:`torch.dot` """) add_docstr(torch._C.FloatTensorBase.eig, """ eig(eigenvectors=False, out=None) -> (Tensor, Tensor) See :func:`torch.eig` """) add_docstr(torch._C.FloatTensorBase.element_size, """ element_size() -> int Returns the size in bytes of an individual element. Example: >>> torch.FloatTensor().element_size() 4 >>> torch.ByteTensor().element_size() 1 """) add_docstr(torch._C.FloatTensorBase.eq, """ eq(other, out=None) -> Tensor See :func:`torch.eq` """) add_docstr(torch._C.FloatTensorBase.eq_, """ eq_(other, out=None) -> Tensor In-place version of :meth:`~Tensor.eq` """) add_docstr(torch._C.FloatTensorBase.equal, """ equal(other) -> bool See :func:`torch.equal` """) add_docstr(torch._C.FloatTensorBase.exp, """ exp(out=None) -> Tensor See :func:`torch.exp` """) add_docstr(torch._C.FloatTensorBase.exp_, """ exp_(out=None) -> Tensor In-place version of :meth:`~Tensor.exp` """) add_docstr(torch._C.FloatTensorBase.exponential_, """ exponential_(generator=None, lambd=1) -> Tensor Fills this tensor with elements drawn from the exponential distribution: .. math:: P(x) = \lambda e^{-\lambda x} """) add_docstr(torch._C.FloatTensorBase.fill_, """ fill_(value) -> Tensor Fills this tensor with the specified value. """) add_docstr(torch._C.FloatTensorBase.floor, """ floor(out=None) -> Tensor See :func:`torch.floor` """) add_docstr(torch._C.FloatTensorBase.floor_, """ floor_(out=None) -> Tensor In-place version of :meth:`~Tensor.floor` """) add_docstr(torch._C.FloatTensorBase.fmod, """ fmod(divisor, out=None) -> Tensor See :func:`torch.fmod` """) add_docstr(torch._C.FloatTensorBase.fmod_, """ fmod_(divisor, out=None) -> Tensor In-place version of :meth:`~Tensor.fmod` """) add_docstr(torch._C.FloatTensorBase.frac, """ frac(out=None) -> Tensor See :func:`torch.frac` """) add_docstr(torch._C.FloatTensorBase.frac_, """ frac_(out=None) -> Tensor In-place version of :meth:`~Tensor.frac` """) add_docstr(torch._C.FloatTensorBase.gather, """ gather(dim, index, out=None) -> Tensor See :func:`torch.gather` """) add_docstr(torch._C.FloatTensorBase.ge, """ ge(other, out=None) -> Tensor See :func:`torch.ge` """) add_docstr(torch._C.FloatTensorBase.ge_, """ ge_(other, out=None) -> Tensor In-place version of :meth:`~Tensor.ge` """) add_docstr(torch._C.FloatTensorBase.gels, """ gels(A, out=None) -> Tensor See :func:`torch.gels` """) add_docstr(torch._C.FloatTensorBase.geometric_, """ geometric_(generator=None, p) -> Tensor Fills this tensor with elements drawn from the geometric distribution: .. math:: P(X=k) = (1 - p)^{k - 1} p """) add_docstr(torch._C.FloatTensorBase.geqrf, """ geqrf() -> (Tensor, Tensor) See :func:`torch.geqrf` """) add_docstr(torch._C.FloatTensorBase.ger, """ ger(vec2) -> Tensor See :func:`torch.ger` """) add_docstr(torch._C.FloatTensorBase.gesv, """ gesv(A) -> Tensor, Tensor See :func:`torch.gesv` """) add_docstr(torch._C.FloatTensorBase.gt, """ gt(other, out=None) -> Tensor See :func:`torch.gt` """) add_docstr(torch._C.FloatTensorBase.gt_, """ gt_(other, out=None) -> Tensor In-place version of :meth:`~Tensor.gt` """) add_docstr(torch._C.FloatTensorBase.histc, """ histc(bins=100, min=0, max=0, out=None) -> Tensor See :func:`torch.histc` """) add_docstr(torch._C.FloatTensorBase.index, """ index(m) -> Tensor Selects elements from this tensor using a binary mask or along a given dimension. The expression ``tensor.index(m)`` is equivalent to ``tensor[m]``. Args: m (int or ByteTensor or slice): The dimension or mask used to select elements """) add_docstr(torch._C.FloatTensorBase.index_add_, """ index_add_(dim, index, tensor) -> Tensor Accumulate the elements of tensor into the original tensor by adding to the indices in the order given in index. The shape of tensor must exactly match the elements indexed or an error will be raised. Args: dim (int): Dimension along which to index index (LongTensor): Indices to select from tensor tensor (Tensor): Tensor containing values to add Example: >>> x = torch.Tensor([[1, 1, 1], [1, 1, 1], [1, 1, 1]]) >>> t = torch.Tensor([[1, 2, 3], [4, 5, 6], [7, 8, 9]]) >>> index = torch.LongTensor([0, 2, 1]) >>> x.index_add_(0, index, t) >>> x 2 3 4 8 9 10 5 6 7 [torch.FloatTensor of size 3x3] """) add_docstr(torch._C.FloatTensorBase.index_copy_, """ index_copy_(dim, index, tensor) -> Tensor Copies the elements of tensor into the original tensor by selecting the indices in the order given in index. The shape of tensor must exactly match the elements indexed or an error will be raised. Args: dim (int): Dimension along which to index index (LongTensor): Indices to select from tensor tensor (Tensor): Tensor containing values to copy Example: >>> x = torch.Tensor(3, 3) >>> t = torch.Tensor([[1, 2, 3], [4, 5, 6], [7, 8, 9]]) >>> index = torch.LongTensor([0, 2, 1]) >>> x.index_copy_(0, index, t) >>> x 1 2 3 7 8 9 4 5 6 [torch.FloatTensor of size 3x3] """) add_docstr(torch._C.FloatTensorBase.index_fill_, """ index_fill_(dim, index, tensor) -> Tensor Fills the elements of the original tensor with value :attr:`val` by selecting the indices in the order given in index. Args: dim (int): Dimension along which to index index (LongTensor): Indices val (float): Value to fill Example: >>> x = torch.Tensor([[1, 2, 3], [4, 5, 6], [7, 8, 9]]) >>> index = torch.LongTensor([0, 2]) >>> x.index_fill_(1, index, -1) >>> x -1 2 -1 -1 5 -1 -1 8 -1 [torch.FloatTensor of size 3x3] """) add_docstr(torch._C.FloatTensorBase.index_select, """ index_select(dim, index, out=None) -> Tensor See :func:`torch.index_select` """) add_docstr(torch._C.FloatTensorBase.inverse, """ inverse() -> Tensor See :func:`torch.inverse` """) add_docstr(torch._C.FloatTensorBase.is_contiguous, """ is_contiguous() -> bool Returns True if this tensor is contiguous in memory in C order. """) add_docstr(torch._C.FloatTensorBase.is_set_to, """ """) add_docstr(torch._C.FloatTensorBase.kthvalue, """ kthvalue(k, dim=None, out=None) -> (Tensor, LongTensor) See :func:`torch.kthvalue` """) add_docstr(torch._C.FloatTensorBase.le, """ le(other, out=None) -> Tensor See :func:`torch.le` """) add_docstr(torch._C.FloatTensorBase.le_, """ le_(other, out=None) -> Tensor In-place version of :meth:`~Tensor.le` """) add_docstr(torch._C.FloatTensorBase.lerp, """ lerp(start, end, weight, out=None) See :func:`torch.lerp` """) add_docstr(torch._C.FloatTensorBase.lerp_, """ lerp_(start, end, weight, out=None) In-place version of :meth:`~Tensor.lerp` """) add_docstr(torch._C.FloatTensorBase.log, """ log(out=None) -> Tensor See :func:`torch.log` """) add_docstr(torch._C.FloatTensorBase.log1p, """ log1p(out=None) -> Tensor See :func:`torch.log1p` """) add_docstr(torch._C.FloatTensorBase.log1p_, """ log1p_(out=None) -> Tensor In-place version of :meth:`~Tensor.log1p` """) add_docstr(torch._C.FloatTensorBase.log_, """ log_(out=None) -> Tensor In-place version of :meth:`~Tensor.log` """) add_docstr(torch._C.FloatTensorBase.log_normal_, """ """) add_docstr(torch._C.FloatTensorBase.lt, """ lt(other, out=None) -> Tensor See :func:`torch.lt` """) add_docstr(torch._C.FloatTensorBase.lt_, """ lt_(other, out=None) -> Tensor In-place version of :meth:`~Tensor.lt` """) add_docstr(torch._C.FloatTensorBase.map2_, """ """) add_docstr(torch._C.FloatTensorBase.map_, """ """) add_docstr(torch._C.FloatTensorBase.masked_copy_, """ """) add_docstr(torch._C.FloatTensorBase.masked_fill_, """ """) add_docstr(torch._C.FloatTensorBase.masked_select, """ masked_select(mask, out=None) -> Tensor See :func:`torch.masked_select` """) add_docstr(torch._C.FloatTensorBase.max, """ max() -> float See :func:`torch.max` """) add_docstr(torch._C.FloatTensorBase.mean, """ mean() -> float See :func:`torch.mean` """) add_docstr(torch._C.FloatTensorBase.median, """ median(dim=-1, values=None, indices=None) -> (Tensor, LongTensor) See :func:`torch.median` """) add_docstr(torch._C.FloatTensorBase.min, """ min() -> float See :func:`torch.min` """) add_docstr(torch._C.FloatTensorBase.mm, """ mm(mat2, out=None) -> Tensor See :func:`torch.mm` """) add_docstr(torch._C.FloatTensorBase.mode, """ mode(dim=-1, values=None, indices=None) -> (Tensor, LongTensor) See :func:`torch.mode` """) add_docstr(torch._C.FloatTensorBase.mul, """ mul(value, out=None) See :func:`torch.mul` """) add_docstr(torch._C.FloatTensorBase.mul_, """ mul_(value, out=None) In-place version of :meth:`~Tensor.mul` """) add_docstr(torch._C.FloatTensorBase.multinomial, """ See :func:`torch.multinomial` """) add_docstr(torch._C.FloatTensorBase.mv, """ mv(vec, out=None) -> Tensor See :func:`torch.mv` """) add_docstr(torch._C.FloatTensorBase.narrow, """ """) add_docstr(torch._C.FloatTensorBase.ndimension, """ """) add_docstr(torch._C.FloatTensorBase.ne, """ ne(other, out=None) -> Tensor See :func:`torch.ne` """) add_docstr(torch._C.FloatTensorBase.ne_, """ ne_(other, out=None) -> Tensor In-place version of :meth:`~Tensor.ne` """) add_docstr(torch._C.FloatTensorBase.neg, """ neg(out=None) -> Tensor See :func:`torch.neg` """) add_docstr(torch._C.FloatTensorBase.neg_, """ neg_(out=None) -> Tensor In-place version of :meth:`~Tensor.neg` """) add_docstr(torch._C.FloatTensorBase.nelement, """ """) add_docstr(torch._C.FloatTensorBase.nonzero, """ nonzero(out=None) -> LongTensor See :func:`torch.nonzero` """) add_docstr(torch._C.FloatTensorBase.norm, """ norm(p=2) -> float See :func:`torch.norm` """) add_docstr(torch._C.FloatTensorBase.normal_, """ """) add_docstr(torch._C.FloatTensorBase.numel, """ numel() -> int See :func:`torch.numel` """) add_docstr(torch._C.FloatTensorBase.numpy, """ """) add_docstr(torch._C.FloatTensorBase.ones_, """ """) add_docstr(torch._C.FloatTensorBase.orgqr, """ See :func:`torch.orgqr` """) add_docstr(torch._C.FloatTensorBase.ormqr, """ See :func:`torch.ormqr` """) add_docstr(torch._C.FloatTensorBase.potrf, """ See :func:`torch.potrf` """) add_docstr(torch._C.FloatTensorBase.potri, """ See :func:`torch.potri` """) add_docstr(torch._C.FloatTensorBase.potrs, """ See :func:`torch.potrs` """) add_docstr(torch._C.FloatTensorBase.pow, """ pow(exponent, out=None) See :func:`torch.pow` """) add_docstr(torch._C.FloatTensorBase.pow_, """ pow_(exponent, out=None) In-place version of :meth:`~Tensor.pow` """) add_docstr(torch._C.FloatTensorBase.prod, """ prod() -> float See :func:`torch.prod` """) add_docstr(torch._C.FloatTensorBase.pstrf, """ See :func:`torch.pstrf` """) add_docstr(torch._C.FloatTensorBase.qr, """ See :func:`torch.qr` """) add_docstr(torch._C.FloatTensorBase.random_, """ """) add_docstr(torch._C.FloatTensorBase.reciprocal, """ reciprocal(out=None) -> Tensor See :func:`torch.reciprocal` """) add_docstr(torch._C.FloatTensorBase.reciprocal_, """ reciprocal_(out=None) -> Tensor In-place version of :meth:`~Tensor.reciprocal` """) add_docstr(torch._C.FloatTensorBase.remainder, """ remainder(divisor, out=None) -> Tensor See :func:`torch.remainder` """) add_docstr(torch._C.FloatTensorBase.remainder_, """ remainder_(divisor, out=None) -> Tensor In-place version of :meth:`~Tensor.remainder` """) add_docstr(torch._C.FloatTensorBase.renorm, """ renorm(p, dim, maxnorm, out=None) -> Tensor See :func:`torch.renorm` """) add_docstr(torch._C.FloatTensorBase.renorm_, """ renorm_(p, dim, maxnorm, out=None) -> Tensor In-place version of :meth:`~Tensor.renorm` """) add_docstr(torch._C.FloatTensorBase.resize_, """ """) add_docstr(torch._C.FloatTensorBase.resize_as_, """ """) add_docstr(torch._C.FloatTensorBase.round, """ round(out=None) -> Tensor See :func:`torch.round` """) add_docstr(torch._C.FloatTensorBase.round_, """ round_(out=None) -> Tensor In-place version of :meth:`~Tensor.round` """) add_docstr(torch._C.FloatTensorBase.rsqrt, """ rsqrt(out=None) -> Tensor See :func:`torch.rsqrt` """) add_docstr(torch._C.FloatTensorBase.rsqrt_, """ rsqrt_(out=None) -> Tensor In-place version of :meth:`~Tensor.rsqrt` """) add_docstr(torch._C.FloatTensorBase.scatter_, """ """) add_docstr(torch._C.FloatTensorBase.select, """ """) add_docstr(torch._C.FloatTensorBase.set_, """ """) add_docstr(torch._C.FloatTensorBase.set_index, """ """) add_docstr(torch._C.FloatTensorBase.sigmoid, """ sigmoid(out=None) -> Tensor See :func:`torch.sigmoid` """) add_docstr(torch._C.FloatTensorBase.sigmoid_, """ sigmoid_(out=None) -> Tensor In-place version of :meth:`~Tensor.sigmoid` """) add_docstr(torch._C.FloatTensorBase.sign, """ sign(out=None) -> Tensor See :func:`torch.sign` """) add_docstr(torch._C.FloatTensorBase.sign_, """ sign_(out=None) -> Tensor In-place version of :meth:`~Tensor.sign` """) add_docstr(torch._C.FloatTensorBase.sin, """ sin(out=None) -> Tensor See :func:`torch.sin` """) add_docstr(torch._C.FloatTensorBase.sin_, """ sin_(out=None) -> Tensor In-place version of :meth:`~Tensor.sin` """) add_docstr(torch._C.FloatTensorBase.sinh, """ sinh(out=None) -> Tensor See :func:`torch.sinh` """) add_docstr(torch._C.FloatTensorBase.sinh_, """ sinh_(out=None) -> Tensor In-place version of :meth:`~Tensor.sinh` """) add_docstr(torch._C.FloatTensorBase.size, """ """) add_docstr(torch._C.FloatTensorBase.sort, """ sort(dim=None, descending=False, out=None) -> (Tensor, LongTensor) See :func:`torch.sort` """) add_docstr(torch._C.FloatTensorBase.sqrt, """ sqrt(out=None) -> Tensor See :func:`torch.sqrt` """) add_docstr(torch._C.FloatTensorBase.sqrt_, """ sqrt_(out=None) -> Tensor In-place version of :meth:`~Tensor.sqrt` """) add_docstr(torch._C.FloatTensorBase.squeeze, """ squeeze(dim=None, out=None) See :func:`torch.squeeze` """) add_docstr(torch._C.FloatTensorBase.squeeze_, """ squeeze_(dim=None, out=None) In-place version of :meth:`~Tensor.squeeze` """) add_docstr(torch._C.FloatTensorBase.std, """ std() -> float See :func:`torch.std` """) add_docstr(torch._C.FloatTensorBase.storage, """ """) add_docstr(torch._C.FloatTensorBase.storage_offset, """ """) add_docstr(torch._C.FloatTensorBase.stride, """ stride() -> tuple Returns the stride of the tensor. """) add_docstr(torch._C.FloatTensorBase.sub, """ """) add_docstr(torch._C.FloatTensorBase.sub_, """ sub_(x) -> Tensor In-place version of :meth:`~Tensor.sub` """) add_docstr(torch._C.FloatTensorBase.sum, """ sum(dim=None) -> float See :func:`torch.sum` """) add_docstr(torch._C.FloatTensorBase.svd, """ svd(some=True) -> (Tensor, Tensor, Tensor) See :func:`torch.svd` """) add_docstr(torch._C.FloatTensorBase.symeig, """ symeig(eigenvectors=False, upper=True) -> (Tensor, Tensor) See :func:`torch.symeig` """) add_docstr(torch._C.FloatTensorBase.t, """ t(out=None) -> Tensor See :func:`torch.t` """) add_docstr(torch._C.FloatTensorBase.t_, """ t_(out=None) -> Tensor In-place version of :meth:`~Tensor.t` """) add_docstr(torch._C.FloatTensorBase.tan, """ tan(out=None) -> Tensor See :func:`torch.tan` """) add_docstr(torch._C.FloatTensorBase.tan_, """ tan_(out=None) -> Tensor In-place version of :meth:`~Tensor.tan` """) add_docstr(torch._C.FloatTensorBase.tanh, """ tanh(out=None) -> Tensor See :func:`torch.tanh` """) add_docstr(torch._C.FloatTensorBase.tanh_, """ tanh_(out=None) -> Tensor In-place version of :meth:`~Tensor.tanh` """) add_docstr(torch._C.FloatTensorBase.topk, """ topk(k, dim=None, largest=True, sorted=True, out=None) -> (Tensor, LongTensor) See :func:`torch.topk` """) add_docstr(torch._C.FloatTensorBase.trace, """ trace() -> float See :func:`torch.trace` """) add_docstr(torch._C.FloatTensorBase.transpose, """ transpose(dim0, dim1, out=None) -> Tensor See :func:`torch.transpose` """) add_docstr(torch._C.FloatTensorBase.transpose_, """ transpose_(dim0, dim1, out=None) -> Tensor In-place version of :meth:`~Tensor.transpose` """) add_docstr(torch._C.FloatTensorBase.tril, """ tril(k=0, out=None) -> Tensor See :func:`torch.tril` """) add_docstr(torch._C.FloatTensorBase.tril_, """ tril_(k=0, out=None) -> Tensor In-place version of :meth:`~Tensor.tril` """) add_docstr(torch._C.FloatTensorBase.triu, """ triu(k=0, out=None) -> Tensor See :func:`torch.triu` """) add_docstr(torch._C.FloatTensorBase.triu_, """ triu_(k=0, out=None) -> Tensor In-place version of :meth:`~Tensor.triu` """) add_docstr(torch._C.FloatTensorBase.trtrs, """ trtrs(A, upper=True, transpose=False, unitriangular=False) -> (Tensor, Tensor) See :func:`torch.trtrs` """) add_docstr(torch._C.FloatTensorBase.trunc, """ trunc(out=None) -> Tensor See :func:`torch.trunc` """) add_docstr(torch._C.FloatTensorBase.trunc_, """ trunc_(out=None) -> Tensor In-place version of :meth:`~Tensor.trunc` """) add_docstr(torch._C.FloatTensorBase.unfold, """ unfold(dim, size, step) -> Tensor See :func:`torch.unfold` """) add_docstr(torch._C.FloatTensorBase.uniform_, """ uniform_(from=0, to=1) -> Tensor Fills this tensor with numbers sampled from the uniform distribution: .. math: P(x) = \dfrac{1}{to - from} """) add_docstr(torch._C.FloatTensorBase.var, """ var() -> float See :func:`torch.var` """) add_docstr(torch._C.FloatTensorBase.zero_, """ zero_() Fills this tensor with zeros. """)