# @package parallel_workers # Module caffe2.python.parallel_workers from __future__ import absolute_import from __future__ import division from __future__ import print_function from __future__ import unicode_literals ''' This module provides a python-land multithreaded mechanism for executing work. Basic usage is as follows: coordinator = parallel_workers.init_workers( my_worker_fun, worker_name="train" ) ... coordinator.start() First argument is the function to run in a loop on potentially multiple threads. It has the call signature worker_fun(worker_id) Argument 'worker_name' is used to distinguish different workers, such as workers processing train data or workers processing test data. Optionally, one can define an "init function" that is called once before threads start, and has call signature: my_init_fun(worker_coordinator, global_coordinator) Note that for data_parallel_models, init_workers will be called for each GPU. Note that the 'coordinator' returned by the function is same each time. ''' import logging import threading import atexit import time import collections import six import traceback from abc import ABCMeta, abstractmethod log = logging.getLogger("parallel_workers") log.setLevel(logging.INFO) LOG_INT_SECS = 60 def init_workers( worker_fun, num_worker_threads=2, worker_name="train", init_fun=None, external_loggers=None, shutdown_fun=None, ): global global_coordinator metrics = Metrics(external_loggers) worker_ids = [ global_coordinator.get_new_worker_id() for i in range(num_worker_threads) ] # Create coordinator object coordinator = WorkerCoordinator( worker_name, worker_ids, init_fun, shutdown_fun=shutdown_fun) # Launch fetch worker threads workers = [ threading.Thread( target=run_worker, name="parallel_workers worker id {}".format(worker_id), args=[coordinator, Worker(coordinator, worker_id, worker_fun, metrics)], ) for worker_id in worker_ids ] coordinator._workers = workers global_coordinator.add(coordinator) return global_coordinator class Metrics(object): def __init__(self, external_loggers): self._metrics = collections.defaultdict(lambda: 0) self._external_loggers = external_loggers def reset_metrics(self): self._metrics = collections.defaultdict(lambda: 0) def log_metrics(self): if not self._external_loggers: return for logger in self._external_loggers: try: logger.log(self._metrics) except Exception as e: print("Failed to call ExternalLogger: {}".format(e)) def put_metric(self, key, value, count=True): self._metrics[key] += value if count: count_key = '{}_count'.format(key) self._metrics[count_key] += 1 class State(): six.add_metaclass(ABCMeta) @abstractmethod def start(self): pass @abstractmethod def stop(self): pass @abstractmethod def cleanup(self): pass class WorkerCoordinator(object): def __init__( self, worker_name, worker_ids, init_fun, state=None, shutdown_fun=None ): self._active = True self._started = False self._workers = [] self._worker_name = worker_name self._worker_ids = worker_ids self._init_fun = init_fun self._state = state self._shutdown_fun = shutdown_fun def is_active(self): return self._active def init(self, global_coordinator): if self._init_fun and not self._started: data_coordinator = self self._init_fun(data_coordinator, global_coordinator) def _start(self): if self._started: return self._active = True self._started = True if self._state: self._state.start() for w in self._workers: w.daemon = True w.start() def _stop(self, reason=None): self._active = False if reason is not None: log.error("Data input failed due to an error: {}".format(reason)) if self._shutdown_fun and self._started: self._shutdown_fun() if self._state: self._state.stop() self._started = False def _wait_finish(self, cleanup=None): print("Wait for workers to die: {}".format(self._worker_name)) for w in self._workers: if w != threading.current_thread(): w.join(5.0) # don't wait forever, thread may be blocked in i/o success = True for w in self._workers: if w.isAlive(): print("Worker {} failed to close while waiting".format(w)) success = False # Release memory for the scratch blobs if success and self._state: self._state.cleanup() print("All workers terminated: {}".format(success)) return success def get_worker_ids(self): return self._worker_ids class GlobalWorkerCoordinator(object): def __init__(self): self._coordinators = [] self._fetcher_id_seq = 0 self._worker_ids = [] self.register_shutdown_handler() def add(self, coordinator): self._coordinators.append(coordinator) def get_new_worker_id(self): worker_id = self._fetcher_id_seq self._worker_ids.append(worker_id) self._fetcher_id_seq += 1 return worker_id def get_worker_ids(self): return self._worker_ids def start(self): # run init and start in separate for loop to # ensure init happens serially before threads are spawn. for c in self._coordinators: c.init(self) for c in self._coordinators: c._start() def stop(self): all_success = True for c in self._coordinators: c._stop() for c in self._coordinators: success = c._wait_finish() all_success = all_success and success self._coordinators = [] return all_success def stop_coordinator(self, worker_name): ''' Stop a specific coordinator ''' for c in self._coordinators: if c._worker_name == worker_name: c._stop() c._wait_finish() self._coordinators = [ c for c in self._coordinators if c._worker_name != worker_name ] def register_shutdown_handler(self): def cleanup(): self.stop() atexit.register(cleanup) class Worker(object): def __init__( self, coordinator, worker_id, worker_fun=None, metrics=None ): self._coordinator = coordinator self._worker_id = worker_id self._worker_fun = worker_fun self._metrics = metrics def start(self): self._start_time = time.time() def run(self): self._worker_fun(self._worker_id) def handle_exception(self, e): traceback.print_exc() logging.exception("Exception in worker", e) self._coordinator._stop("Exception in worker {}: {}".format( self._worker_id, e )) def finish(self): self._metrics.put_metric( 'worker_time', time.time() - self._start_time) self._metrics.log_metrics() global_coordinator = GlobalWorkerCoordinator() def run_worker(coordinator, worker): while coordinator.is_active(): worker.start() try: worker.run() except Exception as e: worker.handle_exception(e) finally: worker.finish()