import sys import io import inspect import math import random import re import copy import torch import torch.cuda import torch.backends.cuda import tempfile import unittest import warnings import types import pickle import textwrap from torch.utils.dlpack import from_dlpack, to_dlpack from torch._six import inf, nan, string_classes, istuple from itertools import product, combinations, combinations_with_replacement, permutations from functools import reduce from random import randrange from torch import multiprocessing as mp from torch.testing._internal.common_methods_invocations import tri_tests_args, run_additional_tri_tests, \ _compare_trilu_indices from torch.testing._internal.common_utils import TestCase, iter_indices, TEST_NUMPY, TEST_SCIPY, TEST_MKL, \ TEST_LIBROSA, TEST_WITH_ROCM, run_tests, skipIfNoLapack, suppress_warnings, \ IS_WINDOWS, PY3, NO_MULTIPROCESSING_SPAWN, do_test_dtypes, do_test_empty_full, \ IS_SANDCASTLE, load_tests, slowTest, skipCUDANonDefaultStreamIf, skipCUDAMemoryLeakCheckIf, \ BytesIOContext, skipIfRocm from multiprocessing.reduction import ForkingPickler from torch.testing._internal.common_device_type import instantiate_device_type_tests, \ skipCPUIfNoLapack, skipCUDAIfNoMagma, skipCUDAIfRocm, skipCUDAIfNotRocm, onlyCUDA, onlyCPU, \ dtypes, dtypesIfCUDA, deviceCountAtLeast, skipCUDAIf, precisionOverride, \ PYTORCH_CUDA_MEMCHECK, largeCUDATensorTest, onlyOnCPUAndCUDA import torch.backends.quantized import torch.testing._internal.data # load_tests from torch.testing._internal.common_utils is used to automatically filter tests for # sharding on sandcastle. This line silences flake warnings load_tests = load_tests if TEST_NUMPY: import numpy as np if TEST_SCIPY: import scipy from scipy import signal if TEST_LIBROSA: import librosa SIZE = 100 # This is intentionally prefixed by an underscore. Otherwise pytest will try to # run its methods as test cases. class _TestTorchMixin(object): def _make_tensors(self, shape, val_range=(-100, 100), use_floating=True, use_integral=True): float_types = [torch.double, torch.float] int_types = [torch.int64, torch.int32, torch.int16] def make_contiguous(shape, dtype): if dtype in float_types: val = torch.randn(shape, dtype=dtype) val = val * ((val_range[1] - val_range[0]) / (math.pi * 2.0)) val = val + ((val_range[1] - val_range[0]) / 2.0) val = torch.clamp(val, min=val_range[0], max=val_range[1]) return val result = torch.zeros(shape, dtype=dtype) result.apply_(lambda x: random.randint(val_range[0], val_range[1])) return result def make_non_contiguous(shape, dtype): contig = make_contiguous(shape, dtype) non_contig = torch.empty(shape + (2, 2), dtype=dtype)[..., 0] non_contig = non_contig.select(-1, -1) non_contig.copy_(contig) self.assertFalse(non_contig.is_contiguous()) return non_contig def make_contiguous_slice(size, dtype): contig = make_contiguous((1, size), dtype) non_contig = contig[:1, 1:size - 1] self.assertTrue(non_contig.is_contiguous()) return contig types = [] if use_floating: types += float_types if use_integral: types += int_types tensors = {"cont": [], "noncont": [], "slice": []} for dtype in types: tensors["cont"].append(make_contiguous(shape, dtype)) tensors["noncont"].append(make_non_contiguous(shape, dtype)) tensors["slice"].append(make_contiguous_slice(sum(list(shape)), dtype)) return tensors def test_dir(self): dir(torch) def test_type_conversion_via_dtype_name(self): x = torch.tensor([1]) self.assertEqual(x.byte().dtype, torch.uint8) self.assertEqual(x.bool().dtype, torch.bool) self.assertEqual(x.char().dtype, torch.int8) self.assertEqual(x.double().dtype, torch.float64) self.assertEqual(x.float().dtype, torch.float32) self.assertEqual(x.half().dtype, torch.float16) self.assertEqual(x.int().dtype, torch.int32) self.assertEqual(x.bfloat16().dtype, torch.bfloat16) def test_doc_template(self): from torch._torch_docs import __file__ as doc_file from torch._torch_docs import multi_dim_common, single_dim_common, factory_common_args, factory_like_common_args with open(doc_file, "r") as f: doc_strs = f.read() for doc_str in re.findall(r'add_docstr\((.*?),.*?("""|\'\'\')(.*?)("""|\'\'\')\)', doc_strs, re.MULTILINE | re.DOTALL): for common_args in [multi_dim_common, single_dim_common, factory_common_args, factory_like_common_args]: for k, v in common_args.items(): self.assertNotIn(v, doc_str[2], 'The argument description "{}" in {} can be ' 'replaced by {{{}}}'.format(v, doc_str[0], k)) def test_doc(self): checked_types = (types.MethodType, types.FunctionType, types.BuiltinFunctionType, types.BuiltinMethodType) def test_namespace(ns, *skips): if isinstance(ns, object): ns_name = ns.__class__.__name__ else: ns_name = ns.__name__ skip_regexes = [] for r in skips: if isinstance(r, string_classes): skip_regexes.append(re.compile('^{}$'.format(re.escape(r)))) else: skip_regexes.append(r) for name in dir(ns): if name.startswith('_'): continue var = getattr(ns, name) if not isinstance(var, checked_types): continue doc = var.__doc__ has_doc = doc is not None and len(doc.strip()) > 0 full_name = ns_name + '.' + name if any(r.match(name) for r in skip_regexes): self.assertFalse(has_doc, 'New docs have been added for {}, please remove ' 'it from the skipped list in TestTorch.test_doc'.format(full_name)) else: self.assertTrue(has_doc, '{} is missing documentation'.format(full_name)) # FIXME: All of the following should be marked as expected failures # so that it is easier to tell when missing has been added. # FIXME: fix all the skipped ones below! test_namespace(torch.randn(1), 'as_strided_', re.compile('^clamp_(min|max)_?$'), 'coalesce', 'is_coalesced', 'is_distributed', 'is_nonzero', 'is_same_size', 'isclose', 'log_softmax', 'map2_', 'new', 'reinforce', 'relu', 'relu_', 'prelu', 'resize', 'resize_as', 'smm', 'softmax', 'split_with_sizes', 'sspaddmm', 'to_dense', 'sparse_resize_', 'sparse_resize_and_clear_', ) test_namespace(torch.nn) test_namespace(torch.nn.functional, 'assert_int_or_pair', 'feature_alpha_dropout') # TODO: add torch.* tests when we have proper namespacing on ATen functions # test_namespace(torch) def test_allclose(self): x = torch.tensor([1.0, 2.0, 3.0]) y = torch.tensor([1.01, 2.01, 3.01]) self.assertTrue(torch.allclose(x, y, rtol=0, atol=0.02)) self.assertTrue(torch.allclose(x, y, rtol=0.01, atol=0.0)) self.assertFalse(torch.allclose(x, y)) self.assertTrue(torch.allclose(torch.tensor([0.0]), torch.tensor([1e-8]))) x = torch.tensor([2.0, 3.0, nan]) y = torch.tensor([2.01, 3.01, nan]) self.assertFalse(torch.allclose(x, y, rtol=1e-2)) self.assertTrue(torch.allclose(x, y, rtol=1e-2, equal_nan=True)) self.assertFalse(torch.allclose(x, y, rtol=1e-3, equal_nan=True)) inf_t = torch.tensor([inf]) self.assertTrue(torch.allclose(inf_t, inf_t)) self.assertTrue(torch.allclose(-inf_t, -inf_t)) self.assertFalse(torch.allclose(inf_t, -inf_t)) self.assertFalse(torch.allclose(inf_t, torch.tensor([1e20]))) self.assertFalse(torch.allclose(-inf_t, torch.tensor([-1e20]))) def test_linear_algebra_scalar_raises(self): m = torch.randn(5, 5) v = torch.randn(5) s = torch.tensor(7) self.assertRaises(RuntimeError, lambda: torch.mv(m, s)) self.assertRaises(RuntimeError, lambda: torch.addmv(v, m, s)) self.assertRaises(RuntimeError, lambda: torch.ger(v, s)) self.assertRaises(RuntimeError, lambda: torch.ger(s, v)) self.assertRaises(RuntimeError, lambda: torch.addr(m, v, s)) self.assertRaises(RuntimeError, lambda: torch.addr(m, s, v)) def _test_math(self, torchfn, mathfn, input=None, test_expand=False, rtol=None, atol=None): if input is None: input = [] input.append(list(range(-5, 5))) input.append([0 for x in range(-5, 5)]) input.append([x + 1e-6 for x in range(-5, 5)]) # Some vectorized implementations don't support large ranges input.append([x + 1e10 for x in range(-5, 5)]) input.append([x - 1e10 for x in range(-5, 5)]) input.append(torch.randn(10).tolist()) input.append((torch.randn(10) + 1e6).tolist()) input.append([math.pi * (x / 2) for x in range(-5, 5)]) def compare_reference(input, dtype): input = torch.tensor(input, dtype=dtype) res1 = torchfn(input.clone()) res2 = input.clone().apply_(mathfn) torch.testing.assert_allclose(res1, res2, rtol=rtol, atol=atol) # compare against the reference math function compare_reference(input, torch.double) compare_reference(input, torch.float) def check_non_contiguous(shape, dtype): contig = torch.randn(shape, dtype=dtype) non_contig = torch.empty(shape + (2,), dtype=dtype)[..., 0] non_contig.copy_(contig) self.assertFalse(non_contig.is_contiguous()) self.assertEqual(torchfn(contig), torchfn(non_contig), 'non-contiguous') # compare application against contiguous vs. non-contiguous check_non_contiguous((5, 7), torch.double) check_non_contiguous((1024,), torch.double) check_non_contiguous((5, 7), torch.float) check_non_contiguous((1024,), torch.float) def check_non_contiguous_index(dtype): contig = torch.randn((2, 2, 1, 2), dtype=dtype) non_contig = contig[:, 1, ...] contig = non_contig.clone() self.assertFalse(non_contig.is_contiguous()) self.assertEqual(torchfn(contig), torchfn(non_contig), 'non-contiguous index') check_non_contiguous_index(torch.float) check_non_contiguous_index(torch.double) def check_non_contiguous_expand(shape, dtype): contig = torch.randn(shape, dtype=dtype) non_contig = contig.clone().expand(3, -1, -1) self.assertFalse(non_contig.is_contiguous()) contig = torchfn(contig) non_contig = torchfn(non_contig) for i in range(3): self.assertEqual(contig, non_contig[i], 'non-contiguous expand[' + str(i) + ']') # Expand is not defined for in-place operations if test_expand: # The size 1 case is special as it leads to 0 stride and needs to persists check_non_contiguous_expand((1, 3), torch.double) check_non_contiguous_expand((1, 7), torch.double) check_non_contiguous_expand((5, 7), torch.float) # If size(dim) == 1, stride(dim) is not defined. # The code needs to be able to handle this def check_contiguous_size1(dtype): contig = torch.randn((5, 100), dtype=dtype) contig = contig[:1, :50] contig2 = torch.empty(contig.size(), dtype=dtype) contig2.copy_(contig) self.assertTrue(contig.is_contiguous()) self.assertTrue(contig2.is_contiguous()) self.assertEqual(torchfn(contig), torchfn(contig2), 'contiguous size1') check_contiguous_size1(torch.double) check_contiguous_size1(torch.float) def check_contiguous_size1_largedim(dtype): contig = torch.randn((5, 2, 3, 1, 4, 5, 3, 2, 1, 2, 3, 4), dtype=dtype) contig = contig[:1, :, :, :, :, :, :, :, :, :, :, :] contig2 = torch.empty(contig.size(), dtype=dtype) contig2.copy_(contig) self.assertTrue(contig.is_contiguous()) self.assertTrue(contig2.is_contiguous()) self.assertEqual(torchfn(contig), torchfn(contig2), 'contiguous size1') check_contiguous_size1_largedim(torch.double) check_contiguous_size1_largedim(torch.float) def check_large(dtype): input = torch.randn(1024, 512, dtype=dtype) actual = torchfn(input) expected = torch.stack([torchfn(slice) for slice in input]) self.assertEqual(actual, expected, 'large') # compare large tensor vs. repeated small applications to expose # possible parallelism bugs. check_large(torch.double) check_large(torch.float) def __test_math_by_name(self, function_name, mathfn, selffn): mathfn = getattr(math, mathfn) if selffn: def torchfn(x): return getattr(x, function_name)() else: torchfn = getattr(torch, function_name) self._test_math(torchfn, mathfn, test_expand=(not selffn)) def _test_math_by_name(self, function_name, test_self=True): if test_self: self.__test_math_by_name(function_name + "_", function_name, True) self.__test_math_by_name(function_name, function_name, False) def test_sin(self): self._test_math_by_name('sin') def test_sinh(self): def sinh(x): try: return math.sinh(x) except OverflowError: return inf if x > 0 else -inf self._test_math(torch.sinh, sinh) def test_lgamma(self): def lgamma(x): if x <= 0 and x == int(x): return inf return math.lgamma(x) self._test_math(torch.lgamma, lgamma) @unittest.skipIf(not TEST_SCIPY, "Scipy not found") def test_mvlgamma(self): from scipy.special import multigammaln for d in range(1, 5): input = torch.empty(10).uniform_(d, 10) res_torch = torch.mvlgamma(input, d) res_scipy = multigammaln(input.numpy(), d) self.assertEqual(res_torch.numpy(), res_scipy) def test_mvlgamma_argcheck(self): def run_test(d): input = torch.linspace((d - 2) / 2, 10, 10) torch.mvlgamma(input, d) with self.assertRaisesRegex(RuntimeError, r"All elements must be greater than \(p-1\)/2"): run_test(3) def test_msnpu_error(self): with self.assertRaisesRegex(RuntimeError, "support for msnpu"): torch.zeros(1, device=torch.device('msnpu')) def _digamma_input(self, test_poles=True): input = [] input.append((torch.randn(10).abs() + 1e-4).tolist()) input.append((torch.randn(10).abs() + 1e6).tolist()) zeros = torch.linspace(-9.5, -0.5, 10) input.append(zeros.tolist()) input.append((zeros - 0.49).tolist()) input.append((zeros + 0.49).tolist()) input.append((zeros + (torch.rand(10) * 0.99) - 0.5).tolist()) if test_poles: input.append([-0.999999994, -1.999999994, -2.0000000111, -100.99999994, -1931.99999994, 0.000000111, -0.000000111, 0, -2, -329]) return input @unittest.skipIf(not TEST_SCIPY, "Scipy not found") def test_digamma(self): from scipy.special import digamma # scipy 1.1.0 changed when it returns +/-inf vs. NaN def torch_digamma_without_inf(inp): res = torch.digamma(inp) res[(res == -inf) | (res == inf)] = nan return res def scipy_digamma_without_inf(inp): res = digamma(inp) if np.isscalar(res): return res if np.isfinite(res) else nan res[np.isinf(res)] = nan return res self._test_math(torch_digamma_without_inf, scipy_digamma_without_inf, self._digamma_input()) @unittest.skipIf(not TEST_SCIPY, "Scipy not found") def test_polygamma(self): from scipy.special import polygamma for n in [0, 1]: self._test_math(lambda x: torch.polygamma(n, x), lambda x: polygamma(n, x).item(), self._digamma_input(test_poles=False)) with self.assertRaisesRegex(RuntimeError, r'polygamma\(n, x\) does not support negative n\.'): torch.polygamma(-1, torch.tensor([1.0, 2.0])) def test_asin(self): self._test_math(torch.asin, lambda x: math.asin(x) if abs(x) <= 1 else nan) def test_cos(self): self._test_math_by_name('cos') def test_cosh(self): def cosh(x): try: return math.cosh(x) except OverflowError: # Return inf on overflow. # See http://en.cppreference.com/w/cpp/numeric/math/cosh return inf self._test_math(torch.cosh, cosh) def test_acos(self): self._test_math(torch.acos, lambda x: math.acos(x) if abs(x) <= 1 else nan) def test_tan(self): self._test_math_by_name('tan') def test_tanh(self): self._test_math_by_name('tanh') def test_atan(self): self._test_math_by_name('atan') def test_log(self): def log(x): if x == 0: return -inf elif x < 0: return nan return math.log(x) self._test_math(torch.log, log) def test_log10(self): def log10(x): if x == 0: return -inf elif x < 0: return nan return math.log10(x) self._test_math(torch.log10, log10) def test_log1p(self): def log1p(x): if x == -1: return -inf elif x < -1: return nan return math.log1p(x) self._test_math(torch.log1p, log1p) def test_log2(self): def log2(x): if x == 0: return -inf elif x < 0: return nan try: return math.log2(x) except AttributeError: return math.log(x, 2) self._test_math(torch.log2, log2) def test_sqrt(self): self._test_math(torch.sqrt, lambda x: math.sqrt(x) if x >= 0 else nan) def test_erf(self): self._test_math_by_name('erf') def test_erfc(self): self._test_math_by_name('erfc') def test_exp(self): def exp(x): try: return math.exp(x) except OverflowError: return inf self._test_math(torch.exp, exp) def test_expm1(self): def expm1(x): try: return math.expm1(x) except OverflowError: return inf self._test_math(torch.expm1, expm1) def test_floor(self): self._test_math_by_name('floor') def test_ceil(self): self._test_math_by_name('ceil') def test_rsqrt(self): def rsqrt(x): if x == 0: return inf elif x < 0: return nan return 1.0 / math.sqrt(x) self._test_math(torch.rsqrt, rsqrt) def test_frac(self): self._test_math(torch.frac, lambda x: math.fmod(x, 1)) def test_trunc(self): self._test_math(torch.trunc, lambda x: x - math.fmod(x, 1)) def test_round(self): self._test_math(torch.round, round) def test_has_storage(self): self.assertIsNotNone(torch.Tensor().storage()) self.assertIsNotNone(torch.Tensor(0).storage()) self.assertIsNotNone(torch.Tensor([]).storage()) self.assertIsNotNone(torch.Tensor().clone().storage()) self.assertIsNotNone(torch.Tensor([0, 0, 0]).nonzero().storage()) self.assertIsNotNone(torch.Tensor().new().storage()) def _testSelection(self, torchfn, mathfn): # contiguous m1 = torch.randn(100, 100) res1 = torchfn(m1) res2 = m1[0, 0] for i, j in iter_indices(m1): res2 = mathfn(res2, m1[i, j]) self.assertEqual(res1, res2) # non-contiguous m1 = torch.randn(10, 10, 10) m2 = m1[:, 4] res1 = torchfn(m2) res2 = m2[0, 0] for i, j in iter_indices(m2): res2 = mathfn(res2, m2[i][j]) self.assertEqual(res1, res2) # with indices m1 = torch.randn(100, 100) res1val, res1ind = torchfn(m1, 1, False) res2val = m1[:, 0:1].clone().squeeze() res2ind = res1ind.clone().fill_(0) for i, j in iter_indices(m1): if mathfn(res2val[i], m1[i, j]) != res2val[i]: res2val[i] = m1[i, j] res2ind[i] = j maxerr = 0 for i in range(res1val.size(0)): maxerr = max(maxerr, abs(res1val[i] - res2val[i])) self.assertEqual(res1ind[i], res2ind[i]) self.assertLessEqual(abs(maxerr), 1e-5) # NaNs for index in (0, 4, 99): m1 = torch.randn(100) m1[index] = nan res1val, res1ind = torch.max(m1, 0) self.assertTrue(math.isnan(res1val)) self.assertEqual(res1ind, index) res1val = torchfn(m1) self.assertTrue(math.isnan(res1val)) # Bool m1 = torch.tensor([True, False, True], dtype=torch.bool) res1 = torchfn(m1) res2 = m1[0] for i in iter_indices(m1): res2 = mathfn(res2, m1[i]) self.assertEqual(res1, res2) def test_max(self): self._testSelection(torch.max, max) def test_min(self): self._testSelection(torch.min, min) def test_dim_reduction_uint8_overflow(self): example = [[-1, 2, 1], [5, 3, 6]] x = torch.tensor(example, dtype=torch.uint8) self.assertEqual(x.sum(dtype=torch.uint8).item(), 16) self.assertEqual(x.sum(0, dtype=torch.uint8), torch.tensor([4, 5, 7], dtype=torch.uint8)) self.assertEqual(x.sum(1, dtype=torch.uint8), torch.tensor([2, 14], dtype=torch.uint8)) y = torch.tensor(example, dtype=torch.uint8) torch.sum(x, 0, out=y) self.assertEqual(x.sum(0, dtype=torch.uint8), y) def test_dim_reduction_less_than_64(self): sizes = [1] * 65 x = torch.randn(sizes) with self.assertRaisesRegex(RuntimeError, "PyTorch doesn't support reduction operations for dim>=64"): torch.sum(x, 64) with self.assertRaisesRegex(RuntimeError, "PyTorch doesn't support reduction operations for dim>=64"): torch.sum(x, -1) @unittest.skipIf(not TEST_SCIPY, "Scipy not found") def test_logsumexp(self): from scipy.special import logsumexp a = torch.randn(5, 4) a[0, 0] = inf a[1, :] = -inf actual = a.logsumexp(1) expected = logsumexp(a.numpy(), 1) self.assertEqual(expected.shape, actual.shape) self.assertTrue(np.allclose(expected, actual.numpy())) # check that out is actually inplace b = torch.zeros(5, 2) c = b[:, 0] torch.logsumexp(a, 1, out=c) self.assertTrue(np.allclose(expected, b[:, 0].numpy())) @unittest.skipIf(not TEST_NUMPY, "Numpy not found") def test_cpu_parallel(self): # To use parallel branches we'll need to compare on tensors # that are relatively large. Even if this is run on a single # core machine these tests will still give you signal on # the correctness def _run_test(size): for dim in range(len(size) + 1): nv = np.round(np.random.rand(*size)) # 0s and 1s tv = torch.from_numpy(nv) # Parallelisim is only used if numel is # larger than grainsize defined in Parallel.h self.assertTrue(tv.numel() > 32768) if dim == len(size): nvs = nv.sum() tvs = tv.sum() else: nvs = nv.sum(dim) tvs = tv.sum(dim) diff = np.abs(nvs - tvs.numpy()).sum() self.assertEqual(diff, 0) _run_test([2, 3, 3, 3, 3, 2, 2, 3, 2, 3, 2, 3, 3]) _run_test([4, 4, 4, 4, 4, 4, 4, 4, 4, 4]) _run_test([1, 32 * 8 * 32 * 8]) _run_test([1, 32770]) def _testCSelection(self, torchfn, mathfn): # Two tensors size = (100, 100) a = torch.rand(*size) b = torch.rand(*size) c = torchfn(a, b) expected_c = torch.zeros(*size) expected_c.map2_(a, b, lambda _, a, b: mathfn(a, b)) self.assertEqual(expected_c, c, 0) def test_max_elementwise(self): self._testCSelection(torch.max, max) def test_min_elementwise(self): self._testCSelection(torch.min, min) def test_all_any(self): def test(size): x = torch.ones(*size).byte() self.assertTrue(x.all()) self.assertTrue(x.any()) x[3] = 0 self.assertFalse(x.all()) self.assertTrue(x.any()) x.zero_() self.assertFalse(x.all()) self.assertFalse(x.any()) x.fill_(2) self.assertTrue(x.all()) self.assertTrue(x.any()) x = torch.ones(*size).bool() self.assertTrue(x.all()) self.assertTrue(x.any()) x[3] = False self.assertFalse(x.all()) self.assertTrue(x.any()) test((10,)) test((5, 5)) def test_where_invalid_device(self): if torch.cuda.is_available(): for devices in [('cpu', 'cuda', 'cuda'), ('cuda', 'cpu', 'cpu'), ('cuda', 'cpu', 'cuda'), ('cpu', 'cuda', 'cpu')]: condition = torch.rand(16, device=devices[0]) x = torch.rand(16, device=devices[1]) y = torch.rand(16, device=devices[2]) with self.assertRaisesRegex(RuntimeError, "expected condition, x and y to be on the same device"): torch.where(condition, x, y) def test_where_bool_tensor(self): for d in torch.testing.get_all_device_types(): a = torch.tensor([True, False], device=d) res = torch.where(a > 0) self.assertEqual(1, len(res)) def test_where_tensor(self): def rand_tensor(size, dtype, device): if dtype.is_floating_point: return torch.rand(size=size, dtype=dtype, device=device) elif dtype == torch.uint8: return torch.randint(1, 5, size=size, dtype=dtype, device=device) elif dtype == torch.bool: return torch.randint(0, 1, size=size, dtype=dtype, device=device).bool() else: return torch.randint(-5, 5, size=size, dtype=dtype, device=device) def get_tensor(size, dtype, device, contiguous): if not contiguous and len(size) < 2: raise RuntimeError("Unable to generate non contiguous tensor with size < 2") t = rand_tensor(size, dtype, device) if contiguous: return t else: return t.transpose(0, 1) height = 5 width = 5 for device in torch.testing.get_all_device_types(): for dt1 in torch.testing.get_all_math_dtypes(device): for dt2 in torch.testing.get_all_math_dtypes(device): for contiguous in [True, False]: x1 = get_tensor((height, width), dt1, device, contiguous) x2 = get_tensor((height, width), dt2, device, contiguous) if dt1 != dt2: self.assertRaisesRegex(RuntimeError, "expected scalar type", lambda: torch.where(x1 == 1, x1, x2)) else: if x1.is_floating_point(): condition = (x1 < 0.5) else: condition = (x1 == 1) expected = condition.to(x1.dtype) * x1 + (~condition).to(x2.dtype) * x2 result = torch.where(condition, x1, x2) self.assertEqual(expected, result) def test_all_any_with_dim(self): def test(x): r1 = x.prod(dim=0, keepdim=False).byte() r2 = x.all(dim=0, keepdim=False) self.assertEqual(r1.shape, r2.shape) self.assertTrue((r1 == r2).all()) r3 = x.sum(dim=1, keepdim=True).clamp(0, 1).byte() r4 = x.any(dim=1, keepdim=True) self.assertEqual(r3.shape, r4.shape) self.assertTrue((r3 == r4).all()) test(torch.ByteTensor([[0, 0, 0], [0, 0, 1], [0, 1, 1], [1, 1, 1]])) @slowTest def test_mv(self): def _test_mv(m1, v1): res1 = torch.mv(m1, v1) res2 = res1.clone().zero_() for i, j in iter_indices(m1): res2[i] += m1[i][j] * v1[j] self.assertEqual(res1, res2) _test_mv(torch.randn(100, 100, dtype=torch.float32), torch.randn(100, dtype=torch.float32)) _test_mv(torch.randn(100, 100, dtype=torch.float64), torch.randn(100, dtype=torch.float64)) _test_mv(torch.randint(0, 100, (100, 100), dtype=torch.int32), torch.randint(0, 100, (100, ), dtype=torch.int32)) _test_mv(torch.randint(0, 100, (100, 100), dtype=torch.int64), torch.randint(0, 100, (100, ), dtype=torch.int64)) _test_mv(torch.randn(100, 100, dtype=torch.float32).bfloat16(), torch.randn(100, dtype=torch.float32).bfloat16()) def test_numpy_args(self): x1 = torch.randn(10) x2 = torch.randn(10) res1 = torch.add(input=x1, other=x2) res2 = torch.add(x1=x1, x2=x2) self.assertEqual(res1, res2) x1 = torch.randn(10, 10, 10) res1 = x1.sum(dim=(0, 2), keepdim=True) res2 = x1.sum(axis=(0, 2), keepdims=True) self.assertEqual(res1, res2) def _assert_matches_numpy(self, t, n): self.assertEqual(n.shape, t.shape) if t.dtype == torch.float: self.assertTrue(np.allclose(n, t.numpy(), rtol=1e-03, atol=1e-05, equal_nan=True)) else: self.assertTrue(np.allclose(n, t.numpy(), equal_nan=True)) def _test_dim_ops(self, pytorch_op, numpy_op, use_floating=True, use_integral=True): def do_one(tensors_dict, dim): for category, tensors in tensors_dict.items(): if category == "slice": dim = 0 for tensor in tensors: # we have no control over NumPy warnings... with warnings.catch_warnings(): warnings.simplefilter("ignore") expected = numpy_op(tensor.numpy(), dim) actual = pytorch_op(tensor, dim) self._assert_matches_numpy(actual, expected) if torch.cuda.is_available(): self._assert_matches_numpy(pytorch_op(tensor.cuda(), dim).cpu(), expected) do_one(self._make_tensors((5, 400000), use_floating=use_floating, use_integral=use_integral), 1) do_one(self._make_tensors((3, 5, 7), use_floating=use_floating, use_integral=use_integral), 0) do_one(self._make_tensors((3, 5, 7), use_floating=use_floating, use_integral=use_integral), 1) do_one(self._make_tensors((3, 5, 7), use_floating=use_floating, use_integral=use_integral), 2) do_one(self._make_tensors((100000, ), use_floating=use_floating, use_integral=use_integral), -1) do_one(self._make_tensors((50, 50, 50), use_floating=use_floating, use_integral=use_integral), 0) do_one(self._make_tensors((50, 50, 50), use_floating=use_floating, use_integral=use_integral), 1) do_one(self._make_tensors((50, 50, 50), use_floating=use_floating, use_integral=use_integral), 2) do_one(self._make_tensors((50, 50, 50), use_floating=use_floating, use_integral=use_integral), (1, 2)) do_one(self._make_tensors((50, 50, 50), use_floating=use_floating, use_integral=use_integral), (1, -1)) do_one(self._make_tensors((50, 50, 50), use_floating=use_floating, use_integral=use_integral), (0, 2)) do_one(self._make_tensors((50, 50, 50), use_floating=use_floating, use_integral=use_integral), (0, 2, 1)) @slowTest @unittest.skipIf(not TEST_NUMPY, 'Numpy not found') def test_sum_dim(self): self._test_dim_ops( lambda t, d: t.sum(d), lambda n, d: n.sum(d)) @unittest.skipIf(not TEST_NUMPY, 'Numpy not found') def test_mean_dim(self): self._test_dim_ops( lambda t, d: t.mean(d), lambda n, d: n.mean(d), use_integral=False) @unittest.skipIf(not TEST_NUMPY, 'Numpy not found') def test_std_dim(self): for unbiased in [False, True]: self._test_dim_ops( lambda t, d: t.std(d, unbiased=unbiased), lambda n, d: n.std(d, ddof=1 if unbiased else 0), use_integral=False) @unittest.skipIf(not TEST_NUMPY, 'Numpy not found') def test_var_dim(self): for unbiased in [False, True]: self._test_dim_ops( lambda t, d: t.var(d, unbiased=unbiased), lambda n, d: n.var(d, ddof=1 if unbiased else 0), use_integral=False) @unittest.skipIf(not TEST_NUMPY, 'Numpy not found') @unittest.skipIf(not TEST_SCIPY, 'Scipy not found') def test_logsumexp_dim(self): from scipy.special import logsumexp self._test_dim_ops( lambda t, d: t.logsumexp(d), lambda n, d: logsumexp(n, d), use_integral=False) def _test_reduce_integer_upcast(self, fn, has_out=True): shape = (3, 4, 5) reduced_shape = fn(torch.ones(shape)).shape def _test_out(dtype, other_dtype): out = torch.ones(reduced_shape, dtype=dtype) result = fn(x, out=out) self.assertIs(out.dtype, result.dtype) self.assertEqual(fn(x.type(dtype)), result, exact_dtype=False) result = fn(x, out=out, dtype=dtype) self.assertIs(out.dtype, result.dtype) self.assertEqual(fn(x.type(dtype)), result, exact_dtype=False) # 'out' is favored over dtype, check error self.assertRaises(RuntimeError, lambda: fn(x, out=out, dtype=other_dtype)) for dtype in [dtype for dtype in torch.testing.get_all_math_dtypes('cpu') if dtype != torch.float16]: x = torch.ones(shape, dtype=dtype) expected_dtype = dtype if dtype.is_floating_point else torch.int64 self.assertIs(expected_dtype, fn(x).dtype) self.assertEqual(fn(x.type(expected_dtype)), fn(x)) if dtype.is_floating_point: other_dtype = torch.float32 if dtype == torch.float64 else torch.float64 else: other_dtype = torch.int32 if dtype != torch.int32 else torch.int16 self.assertIs(other_dtype, fn(x, dtype=other_dtype).dtype) self.assertEqual(fn(x.type(other_dtype)), fn(x, dtype=other_dtype), exact_dtype=False) # test mixed int/float mixed_dtype = torch.int32 if dtype.is_floating_point else torch.float32 self.assertIs(mixed_dtype, fn(x, dtype=mixed_dtype).dtype) self.assertEqual(fn(x.type(mixed_dtype)), fn(x, dtype=mixed_dtype), exact_dtype=False) if has_out: _test_out(dtype, other_dtype) _test_out(dtype, mixed_dtype) def test_sum_integer_upcast(self): self._test_reduce_integer_upcast(lambda x, **kwargs: torch.sum(x, **kwargs), False) self._test_reduce_integer_upcast(lambda x, **kwargs: torch.sum(x, 0, **kwargs)) def test_prod_integer_upcast(self): self._test_reduce_integer_upcast(lambda x, **kwargs: torch.prod(x, **kwargs), False) self._test_reduce_integer_upcast(lambda x, **kwargs: torch.prod(x, 0, **kwargs)) def test_cumsum_integer_upcast(self): self._test_reduce_integer_upcast(lambda x, **kwargs: torch.cumsum(x, 0, **kwargs)) def test_cumprod_integer_upcast(self): self._test_reduce_integer_upcast(lambda x, **kwargs: torch.cumprod(x, 0, **kwargs)) def test_cross_validation(self): self.assertRaisesRegex( RuntimeError, "inconsistent tensors dimensions", lambda: torch.cross(torch.rand(100, 3), torch.rand(100, 3, 10))) self.assertRaisesRegex( RuntimeError, "inconsistent tensors sizes", lambda: torch.cross(torch.rand(5, 3), torch.rand(3, 5))) self.assertRaisesRegex( RuntimeError, "no dimension of size 3 in input", lambda: torch.cross(torch.rand(5, 4), torch.rand(5, 4))) self.assertRaisesRegex( RuntimeError, "dimension 0 does not have size 3", lambda: torch.cross(torch.rand(5, 4, 3), torch.rand(5, 4, 3), dim=0)) self.assertRaisesRegex( RuntimeError, "dimension -1 does not have size 3", lambda: torch.cross(torch.rand(5, 3, 4), torch.rand(5, 3, 4), dim=-1)) self.assertRaisesRegex( IndexError, "Dimension out of range", lambda: torch.cross(torch.rand(5, 3, 4), torch.rand(5, 3, 4), dim=-5)) def test_zeros(self): res1 = torch.zeros(100, 100) res2 = torch.Tensor() torch.zeros(100, 100, out=res2) self.assertEqual(res1, res2) boolTensor = torch.zeros(2, 2, dtype=torch.bool) expected = torch.tensor([[False, False], [False, False]], dtype=torch.bool) self.assertEqual(boolTensor, expected) halfTensor = torch.zeros(1, 1, dtype=torch.half) expected = torch.tensor([[0.]], dtype=torch.float16) self.assertEqual(halfTensor, expected) bfloat16Tensor = torch.zeros(1, 1, dtype=torch.bfloat16) expected = torch.tensor([[0.]], dtype=torch.bfloat16) self.assertEqual(bfloat16Tensor, expected) complexTensor = torch.zeros(2, 2, dtype=torch.complex64) expected = torch.tensor([[0., 0.], [0., 0.]], dtype=torch.complex64) self.assertEqual(complexTensor, expected) def test_zeros_out(self): shape = (3, 4) out = torch.zeros(shape) torch.zeros(shape, out=out) # change the dtype, layout, device self.assertRaises(RuntimeError, lambda: torch.zeros(shape, dtype=torch.int64, out=out)) self.assertRaises(RuntimeError, lambda: torch.zeros(shape, layout=torch.sparse_coo, out=out)) if torch.cuda.is_available(): self.assertRaises(RuntimeError, lambda: torch.zeros(shape, device='cuda', out=out)) # leave them the same self.assertEqual(torch.zeros(shape), torch.zeros(shape, dtype=out.dtype, out=out)) self.assertEqual(torch.zeros(shape), torch.zeros(shape, layout=torch.strided, out=out)) self.assertEqual(torch.zeros(shape), torch.zeros(shape, device='cpu', out=out)) def test_ones(self): res1 = torch.ones(100, 100) res2 = torch.Tensor() torch.ones(100, 100, out=res2) self.assertEqual(res1, res2) # test boolean tensor res1 = torch.ones(1, 2, dtype=torch.bool) expected = torch.tensor([[True, True]], dtype=torch.bool) self.assertEqual(res1, expected) def test_ones_like(self): expected = torch.ones(100, 100) res1 = torch.ones_like(expected) self.assertEqual(res1, expected) # test boolean tensor expected = torch.tensor([True, True], dtype=torch.bool) res1 = torch.ones_like(expected) self.assertEqual(res1, expected) def test_dtypes(self): all_dtypes = torch.testing.get_all_dtypes() do_test_dtypes(self, all_dtypes, torch.strided, torch.device('cpu')) if torch.cuda.is_available(): all_dtypes.remove(torch.bfloat16) # Remove once _th_zero_ is enabled on cuda for bfloat16 do_test_dtypes(self, all_dtypes, torch.strided, torch.device('cuda:0')) def test_copy_dtypes(self): all_dtypes = torch.testing.get_all_dtypes() for dtype in all_dtypes: copied_dtype = copy.deepcopy(dtype) self.assertIs(dtype, copied_dtype) def test_copy_transpose(self): x = torch.arange(100 * 100, dtype=torch.float).reshape(100, 100).t() y = torch.empty(100, 100, dtype=torch.float) y.copy_(x) self.assertEqual(y[:, 0], range(100)) self.assertEqual(y[:, 40], range(4000, 4100)) y = torch.empty(100, 100, dtype=torch.double) y.copy_(x) self.assertEqual(y[:, 0], range(100)) self.assertEqual(y[:, 40], range(4000, 4100)) def test_device(self): cpu = torch.device('cpu') self.assertEqual('cpu', str(cpu)) self.assertEqual('cpu', cpu.type) self.assertEqual(None, cpu.index) cpu0 = torch.device('cpu:0') self.assertEqual('cpu:0', str(cpu0)) self.assertEqual('cpu', cpu0.type) self.assertEqual(0, cpu0.index) cpu0 = torch.device('cpu', 0) self.assertEqual('cpu:0', str(cpu0)) self.assertEqual('cpu', cpu0.type) self.assertEqual(0, cpu0.index) cuda = torch.device('cuda') self.assertEqual('cuda', str(cuda)) self.assertEqual('cuda', cuda.type) self.assertEqual(None, cuda.index) cuda1 = torch.device('cuda:1') self.assertEqual('cuda:1', str(cuda1)) self.assertEqual('cuda', cuda1.type) self.assertEqual(1, cuda1.index) cuda1 = torch.device('cuda', 1) self.assertEqual('cuda:1', str(cuda1)) self.assertEqual('cuda', cuda1.type) self.assertEqual(1, cuda1.index) self.assertRaises(RuntimeError, lambda: torch.device('cpu:-1')) self.assertRaises(RuntimeError, lambda: torch.device('cpu:1')) self.assertRaises(RuntimeError, lambda: torch.device('cpu', -1)) self.assertRaises(RuntimeError, lambda: torch.device('cpu', 1)) self.assertRaises(RuntimeError, lambda: torch.device('cuda:-1')) self.assertRaises(RuntimeError, lambda: torch.device('cuda', -1)) self.assertRaises(RuntimeError, lambda: torch.device(-1)) self.assertRaises(RuntimeError, lambda: torch.device('other')) self.assertRaises(RuntimeError, lambda: torch.device('other:0')) device_set = {'cpu', 'cpu:0', 'cuda', 'cuda:0', 'cuda:1', 'cuda:10', 'cuda:100'} device_hash_set = set() for device in list(device_set): device_hash_set.add(hash(torch.device(device))) self.assertEqual(len(device_set), len(device_hash_set)) def test_tensor_device(self): def assertEqual(device_str, fn): self.assertEqual(torch.device(device_str), fn().device) self.assertEqual(device_str, str(fn().device)) assertEqual('cpu', lambda: torch.tensor(5)) assertEqual('cpu', lambda: torch.ones((2, 3), dtype=torch.float32, device='cpu')) # NOTE: 'cpu' is the canonical representation of 'cpu:0', but 'cuda:X' is the canonical # representation of cuda devices. assertEqual('cpu', lambda: torch.ones((2, 3), dtype=torch.float32, device='cpu:0')) assertEqual('cpu', lambda: torch.tensor(torch.ones((2, 3), dtype=torch.float32), device='cpu:0')) if TEST_NUMPY: assertEqual('cpu', lambda: torch.tensor(np.random.randn(2, 3), device='cpu')) if torch.cuda.is_available(): assertEqual('cuda:0', lambda: torch.tensor(5).cuda(0)) assertEqual('cuda:0', lambda: torch.tensor(5).cuda('cuda:0')) self.assertRaises(RuntimeError, lambda: torch.tensor(5).cuda('cpu')) self.assertRaises(RuntimeError, lambda: torch.tensor(5).cuda('cpu:0')) assertEqual('cuda:0', lambda: torch.tensor(5, dtype=torch.int64, device=0)) assertEqual('cuda:0', lambda: torch.tensor(5, dtype=torch.int64, device='cuda:0')) assertEqual('cuda:' + str(torch.cuda.current_device()), lambda: torch.tensor(5, dtype=torch.int64, device='cuda')) assertEqual('cuda:0', lambda: torch.tensor(torch.ones((2, 3), dtype=torch.float32), device='cuda:0')) if TEST_NUMPY: assertEqual('cuda:0', lambda: torch.tensor(np.random.randn(2, 3), device='cuda:0')) if torch.cuda.device_count() > 1: assertEqual('cuda:1', lambda: torch.tensor(5).cuda(1)) assertEqual('cuda:1', lambda: torch.tensor(5).cuda('cuda:1')) assertEqual('cuda:1', lambda: torch.tensor(5, dtype=torch.int64, device=1)) assertEqual('cuda:1', lambda: torch.tensor(5, dtype=torch.int64, device='cuda:1')) assertEqual('cuda:1', lambda: torch.tensor(torch.ones((2, 3), dtype=torch.float32), device='cuda:1')) if TEST_NUMPY: assertEqual('cuda:1', lambda: torch.tensor(np.random.randn(2, 3), device='cuda:1')) def test_to(self): def test_copy_behavior(t, non_blocking=False): self.assertIs(t, t.to(t, non_blocking=non_blocking)) self.assertIs(t, t.to(t.dtype, non_blocking=non_blocking)) self.assertIs(t, t.to(torch.empty_like(t), non_blocking=non_blocking)) self.assertIsNot(t, t.to(t, non_blocking=non_blocking, copy=True)) self.assertIsNot(t, t.to(t.dtype, non_blocking=non_blocking, copy=True)) self.assertIsNot(t, t.to(torch.empty_like(t), non_blocking=non_blocking, copy=True)) devices = [t.device] if t.device.type == 'cuda': if t.device.index == -1: devices.append('cuda:{}'.format(torch.cuda.current_device())) elif t.device.index == torch.cuda.current_device(): devices.append('cuda') for device in devices: self.assertIs(t, t.to(device, non_blocking=non_blocking)) self.assertIs(t, t.to(device, t.dtype, non_blocking=non_blocking)) self.assertIsNot(t, t.to(device, non_blocking=non_blocking, copy=True)) self.assertIsNot(t, t.to(device, t.dtype, non_blocking=non_blocking, copy=True)) a = torch.tensor(5) test_copy_behavior(a) self.assertEqual(a.device, a.to('cpu').device) self.assertEqual(a.device, a.to('cpu', dtype=torch.float32).device) self.assertIs(torch.float32, a.to('cpu', dtype=torch.float32).dtype) self.assertEqual(a.device, a.to(torch.float32).device) self.assertIs(torch.float32, a.to(dtype=torch.float32).dtype) self.assertEqual(a.data_ptr(), a.to('cpu').data_ptr()) self.assertEqual(a.data_ptr(), a.to(dtype=a.dtype, device=a.device, copy=False).data_ptr()) self.assertEqual(a.data_ptr(), a.to('cpu', copy=False).data_ptr()) self.assertNotEqual(a.data_ptr(), a.to('cpu', copy=True).data_ptr()) if torch.cuda.is_available(): for non_blocking in [True, False]: for cuda in ['cuda', 'cuda:0' if torch.cuda.device_count() == 1 else 'cuda:1']: b = torch.tensor(5., device=cuda) test_copy_behavior(b, non_blocking) self.assertEqual(b.device, b.to(cuda, non_blocking=non_blocking).device) self.assertEqual(a.device, b.to('cpu', non_blocking=non_blocking).device) self.assertEqual(b.device, a.to(cuda, non_blocking=non_blocking).device) self.assertIs(torch.int32, b.to('cpu', dtype=torch.int32, non_blocking=non_blocking).dtype) self.assertEqual(a.device, b.to('cpu', dtype=torch.int32, non_blocking=non_blocking).device) self.assertIs(torch.int32, b.to(dtype=torch.int32).dtype) self.assertEqual(b.device, b.to(dtype=torch.int32).device) def test_to_with_tensor(self): a = torch.tensor(5) self.assertEqual(a.device, a.to(a).device) if torch.cuda.is_available(): for non_blocking in [True, False]: for cuda in ['cuda', 'cuda:0' if torch.cuda.device_count() == 1 else 'cuda:1']: b = torch.tensor(5., device=cuda) self.assertEqual(b.device, b.to(b, non_blocking=non_blocking).device) self.assertEqual(a.device, b.to(a, non_blocking=non_blocking).device) self.assertEqual(b.device, a.to(b, non_blocking=non_blocking).device) def test_empty_full(self): do_test_empty_full(self, torch.testing.get_all_math_dtypes('cpu'), torch.strided, torch.device('cpu')) if torch.cuda.device_count() > 0: do_test_empty_full(self, torch.testing.get_all_math_dtypes('cpu'), torch.strided, None) do_test_empty_full(self, torch.testing.get_all_math_dtypes('cpu'), torch.strided, torch.device('cuda:0')) def test_dtype_out_match(self): d = torch.autograd.Variable(torch.DoubleTensor(2, 3)) self.assertRaises(RuntimeError, lambda: torch.zeros((2, 3), out=d, dtype=torch.float32)) def test_constructor_dtypes(self): default_type = torch.Tensor().type() self.assertIs(torch.Tensor().dtype, torch.get_default_dtype()) self.assertIs(torch.uint8, torch.ByteTensor.dtype) self.assertIs(torch.float32, torch.FloatTensor.dtype) self.assertIs(torch.float64, torch.DoubleTensor.dtype) torch.set_default_tensor_type('torch.FloatTensor') self.assertIs(torch.float32, torch.get_default_dtype()) self.assertIs(torch.FloatStorage, torch.Storage) torch.set_default_dtype(torch.float64) self.assertIs(torch.float64, torch.get_default_dtype()) self.assertIs(torch.DoubleStorage, torch.Storage) torch.set_default_tensor_type(torch.FloatTensor) self.assertIs(torch.float32, torch.get_default_dtype()) self.assertIs(torch.FloatStorage, torch.Storage) if torch.cuda.is_available(): torch.set_default_tensor_type(torch.cuda.FloatTensor) self.assertIs(torch.float32, torch.get_default_dtype()) self.assertIs(torch.float32, torch.cuda.FloatTensor.dtype) self.assertIs(torch.cuda.FloatStorage, torch.Storage) torch.set_default_dtype(torch.float64) self.assertIs(torch.float64, torch.get_default_dtype()) self.assertIs(torch.cuda.DoubleStorage, torch.Storage) # don't support integral or sparse default types. self.assertRaises(TypeError, lambda: torch.set_default_tensor_type('torch.IntTensor')) self.assertRaises(TypeError, lambda: torch.set_default_dtype(torch.int64)) # don't allow passing dtype to set_default_tensor_type self.assertRaises(TypeError, lambda: torch.set_default_tensor_type(torch.float32)) torch.set_default_tensor_type(default_type) def test_constructor_device_legacy(self): self.assertRaises(RuntimeError, lambda: torch.FloatTensor(device='cuda')) self.assertRaises(RuntimeError, lambda: torch.FloatTensor(torch.Size([2, 3, 4]), device='cuda')) self.assertRaises(RuntimeError, lambda: torch.FloatTensor((2.0, 3.0), device='cuda')) self.assertRaises(RuntimeError, lambda: torch.Tensor(device='cuda')) self.assertRaises(RuntimeError, lambda: torch.Tensor(torch.Size([2, 3, 4]), device='cuda')) self.assertRaises(RuntimeError, lambda: torch.Tensor((2.0, 3.0), device='cuda')) x = torch.randn((3,), device='cpu') self.assertRaises(RuntimeError, lambda: x.new(device='cuda')) self.assertRaises(RuntimeError, lambda: x.new(torch.Size([2, 3, 4]), device='cuda')) self.assertRaises(RuntimeError, lambda: x.new((2.0, 3.0), device='cuda')) if torch.cuda.is_available(): self.assertRaises(RuntimeError, lambda: torch.cuda.FloatTensor(device='cpu')) self.assertRaises(RuntimeError, lambda: torch.cuda.FloatTensor(torch.Size([2, 3, 4]), device='cpu')) self.assertRaises(RuntimeError, lambda: torch.cuda.FloatTensor((2.0, 3.0), device='cpu')) default_type = torch.Tensor().type() torch.set_default_tensor_type(torch.cuda.FloatTensor) self.assertRaises(RuntimeError, lambda: torch.Tensor(device='cpu')) self.assertRaises(RuntimeError, lambda: torch.Tensor(torch.Size([2, 3, 4]), device='cpu')) self.assertRaises(RuntimeError, lambda: torch.Tensor((2.0, 3.0), device='cpu')) torch.set_default_tensor_type(torch.cuda.FloatTensor) torch.set_default_tensor_type(default_type) x = torch.randn((3,), device='cuda') self.assertRaises(RuntimeError, lambda: x.new(device='cpu')) self.assertRaises(RuntimeError, lambda: x.new(torch.Size([2, 3, 4]), device='cpu')) self.assertRaises(RuntimeError, lambda: x.new((2.0, 3.0), device='cpu')) def test_type(self): x = torch.randn(3, 3).double() self.assertEqual(x.type('torch.FloatTensor').dtype, torch.float32) self.assertEqual(x.type(torch.FloatTensor).dtype, torch.float32) self.assertEqual(x.int().type(torch.Tensor).dtype, torch.get_default_dtype()) self.assertEqual(x.type(torch.int32).dtype, torch.int32) def test_tensor_factory(self): # TODO: This test probably doesn't make too much sense now that # torch.tensor has been established for a while; it makes more # sense to test the legacy behavior in terms of the new behavior expected = torch.Tensor([1, 1]) # test data res1 = torch.tensor([1, 1]) self.assertEqual(res1, expected, exact_dtype=False) res1 = torch.tensor([1, 1], dtype=torch.int) self.assertEqual(res1, expected, exact_dtype=False) self.assertIs(torch.int, res1.dtype) # test copy res2 = torch.tensor(expected) self.assertEqual(res2, expected) res2[1] = 2 self.assertEqual(expected, torch.ones_like(expected)) res2 = torch.tensor(expected, dtype=torch.int) self.assertEqual(res1, expected, exact_dtype=False) self.assertIs(torch.int, res1.dtype) # test copy with numpy if TEST_NUMPY: for dtype in [np.float64, np.int64, np.int8, np.uint8]: a = np.array([5.]).astype(dtype) res1 = torch.tensor(a) self.assertEqual(5., res1[0].item()) a[0] = 7. self.assertEqual(5., res1[0].item()) # test boolean tensor a = torch.tensor([True, True, False, True, True], dtype=torch.bool) b = torch.tensor([-1, -1.1, 0, 1, 1.1], dtype=torch.bool) self.assertEqual(a, b) def test_tensor_factory_copy_var(self): def check_copy(copy, is_leaf, requires_grad, data_ptr=None): if data_ptr is None: data_ptr = copy.data_ptr self.assertEqual(copy, source, exact_dtype=False) self.assertTrue(copy.is_leaf == is_leaf) self.assertTrue(copy.requires_grad == requires_grad) self.assertTrue(copy.data_ptr == data_ptr) source = torch.randn(5, 5, dtype=torch.double, requires_grad=True) # test torch.tensor() check_copy(torch.tensor(source), True, False) check_copy(torch.tensor(source, requires_grad=False), True, False) check_copy(torch.tensor(source, requires_grad=True), True, True) # test tensor.new_tensor() copy = torch.randn(1) check_copy(copy.new_tensor(source), True, False) check_copy(copy.new_tensor(source, requires_grad=False), True, False) check_copy(copy.new_tensor(source, requires_grad=True), True, True) # test torch.as_tensor() check_copy(torch.as_tensor(source), source.is_leaf, source.requires_grad, source.data_ptr) # not copy check_copy(torch.as_tensor(source, dtype=torch.float), False, True) # copy and keep the graph def test_tensor_factory_type_inference(self): def test_inference(default_dtype): saved_dtype = torch.get_default_dtype() torch.set_default_dtype(default_dtype) default_complex_dtype = torch.complex64 if default_dtype == torch.float32 else torch.complex128 self.assertIs(default_dtype, torch.tensor(()).dtype) self.assertIs(default_dtype, torch.tensor(5.).dtype) self.assertIs(torch.int64, torch.tensor(5).dtype) self.assertIs(torch.bool, torch.tensor(True).dtype) self.assertIs(torch.int32, torch.tensor(5, dtype=torch.int32).dtype) self.assertIs(default_dtype, torch.tensor(((7, 5), (9, 5.))).dtype) self.assertIs(default_dtype, torch.tensor(((5., 5), (3, 5))).dtype) self.assertIs(torch.int64, torch.tensor(((5, 3), (3, 5))).dtype) self.assertIs(default_complex_dtype, torch.tensor(((5, 3 + 2j), (3, 5 + 4j))).dtype) if TEST_NUMPY: self.assertIs(torch.float64, torch.tensor(np.array(())).dtype) self.assertIs(torch.float64, torch.tensor(np.array(5.)).dtype) if np.array(5).dtype == np.int64: # np long, which can be 4 bytes (e.g. on windows) self.assertIs(torch.int64, torch.tensor(np.array(5)).dtype) else: self.assertIs(torch.int32, torch.tensor(np.array(5)).dtype) self.assertIs(torch.uint8, torch.tensor(np.array(3, dtype=np.uint8)).dtype) self.assertIs(default_dtype, torch.tensor(((7, np.array(5)), (np.array(9), 5.))).dtype) self.assertIs(torch.float64, torch.tensor(((7, 5), (9, np.array(5.)))).dtype) self.assertIs(torch.int64, torch.tensor(((5, np.array(3)), (np.array(3), 5))).dtype) torch.set_default_dtype(saved_dtype) test_inference(torch.float64) test_inference(torch.float32) def test_qengine(self): qengines = torch.backends.quantized.supported_engines original_qe = torch.backends.quantized.engine for qe in qengines: torch.backends.quantized.engine = qe assert torch.backends.quantized.engine == qe, 'qengine not set successfully' torch.backends.quantized.engine = original_qe def test_new_tensor(self): expected = torch.autograd.Variable(torch.ByteTensor([1, 1])) # test data res1 = expected.new_tensor([1, 1]) self.assertEqual(res1, expected) res1 = expected.new_tensor([1, 1], dtype=torch.int) self.assertEqual(res1, expected, exact_dtype=False) self.assertIs(torch.int, res1.dtype) # test copy res2 = expected.new_tensor(expected) self.assertEqual(res2, expected) res2[1] = 2 self.assertEqual(expected, torch.ones_like(expected)) res2 = expected.new_tensor(expected, dtype=torch.int) self.assertEqual(res2, expected, exact_dtype=False) self.assertIs(torch.int, res2.dtype) # test copy with numpy if TEST_NUMPY: a = np.array([5.]) res1 = torch.tensor(a) res1 = res1.new_tensor(a) self.assertEqual(5., res1[0].item()) a[0] = 7. self.assertEqual(5., res1[0].item()) if torch.cuda.device_count() >= 2: expected = expected.cuda(1) res1 = expected.new_tensor([1, 1]) self.assertEqual(res1.get_device(), expected.get_device()) res1 = expected.new_tensor([1, 1], dtype=torch.int) self.assertIs(torch.int, res1.dtype) self.assertEqual(res1.get_device(), expected.get_device()) res2 = expected.new_tensor(expected) self.assertEqual(res2.get_device(), expected.get_device()) res2 = expected.new_tensor(expected, dtype=torch.int) self.assertIs(torch.int, res1.dtype) self.assertEqual(res2.get_device(), expected.get_device()) res2 = expected.new_tensor(expected, dtype=torch.int, device=0) self.assertIs(torch.int, res1.dtype) self.assertEqual(res2.get_device(), 0) res1 = expected.new_tensor(1) self.assertEqual(res1.get_device(), expected.get_device()) res1 = expected.new_tensor(1, dtype=torch.int) self.assertIs(torch.int, res1.dtype) self.assertEqual(res1.get_device(), expected.get_device()) def test_as_tensor(self): # from python data x = [[0, 1], [2, 3]] self.assertEqual(torch.tensor(x), torch.as_tensor(x)) self.assertEqual(torch.tensor(x, dtype=torch.float32), torch.as_tensor(x, dtype=torch.float32)) # python data with heterogeneous types z = [0, 'torch'] with self.assertRaisesRegex(TypeError, "invalid data type"): torch.tensor(z) torch.as_tensor(z) # python data with self-referential lists z = [0] z += [z] with self.assertRaisesRegex(TypeError, "self-referential lists are incompatible"): torch.tensor(z) torch.as_tensor(z) z = [[1, 2], z] with self.assertRaisesRegex(TypeError, "self-referential lists are incompatible"): torch.tensor(z) torch.as_tensor(z) # from tensor (doesn't copy unless type is different) y = torch.tensor(x) self.assertIs(y, torch.as_tensor(y)) self.assertIsNot(y, torch.as_tensor(y, dtype=torch.float32)) if torch.cuda.is_available(): self.assertIsNot(y, torch.as_tensor(y, device='cuda')) y_cuda = y.to('cuda') self.assertIs(y_cuda, torch.as_tensor(y_cuda)) self.assertIs(y_cuda, torch.as_tensor(y_cuda, device='cuda')) if TEST_NUMPY: # doesn't copy for dtype in [np.float64, np.int64, np.int8, np.uint8]: n = np.random.rand(5, 6).astype(dtype) n_astensor = torch.as_tensor(n) self.assertEqual(torch.tensor(n), n_astensor) n_astensor[0][0] = 25.7 self.assertEqual(torch.tensor(n), n_astensor) # changing dtype causes copy n = np.random.rand(5, 6).astype(np.float32) n_astensor = torch.as_tensor(n, dtype=torch.float64) self.assertEqual(torch.tensor(n, dtype=torch.float64), n_astensor) n_astensor[0][1] = 250.8 self.assertNotEqual(torch.tensor(n, dtype=torch.float64), n_astensor) # changing device causes copy if torch.cuda.is_available(): n = np.random.randn(5, 6) n_astensor = torch.as_tensor(n, device='cuda') self.assertEqual(torch.tensor(n, device='cuda'), n_astensor) n_astensor[0][2] = 250.9 self.assertNotEqual(torch.tensor(n, device='cuda'), n_astensor) def test_renorm(self): m1 = torch.randn(10, 5) res1 = torch.Tensor() def renorm(matrix, value, dim, max_norm): m1 = matrix.transpose(dim, 0).contiguous() # collapse non-dim dimensions. m2 = m1.clone().resize_(m1.size(0), int(math.floor(m1.nelement() / m1.size(0)))) norms = m2.norm(value, 1, True) # clip new_norms = norms.clone() new_norms[torch.gt(norms, max_norm)] = max_norm new_norms.div_(norms.add_(1e-7)) # renormalize m1.mul_(new_norms.expand_as(m1)) return m1.transpose(dim, 0) # note that the axis fed to torch.renorm is different (2~=1) maxnorm = m1.norm(2, 1).mean() m2 = renorm(m1, 2, 1, maxnorm) m1.renorm_(2, 1, maxnorm) self.assertEqual(m1, m2, 1e-5) self.assertEqual(m1.norm(2, 0), m2.norm(2, 0), 1e-5) m1 = torch.randn(3, 4, 5) m2 = m1.transpose(1, 2).contiguous().clone().resize_(15, 4) maxnorm = m2.norm(2, 0).mean() m2 = renorm(m2, 2, 1, maxnorm) m1.renorm_(2, 1, maxnorm) m3 = m1.transpose(1, 2).contiguous().clone().resize_(15, 4) self.assertEqual(m3, m2) self.assertEqual(m3.norm(2, 0), m2.norm(2, 0)) def _spawn_method(self, method, arg): try: mp.set_start_method('spawn') except RuntimeError: pass with mp.Pool(1) as pool: self.assertTrue(pool.map(method, [arg])) @staticmethod def _test_multinomial_invalid_probs(probs): try: # n_sample = 1 is a special case, test n_sample=2 which is more general torch.multinomial(probs.to('cpu'), 2) return False # Should not be reached except RuntimeError as e: return 'invalid multinomial distribution' in str(e) @slowTest @unittest.skipIf(NO_MULTIPROCESSING_SPAWN, "Disabled for environments that \ don't support multiprocessing with spawn start method") @unittest.skipIf(IS_WINDOWS, 'FIXME: CUDA OOM error on Windows') @unittest.skipIf(not PY3, "spawn start method is not supported in Python 2, \ but we need it for for testing failure case for CPU RNG on Windows") def test_multinomial_invalid_probs(self): test_method = _TestTorchMixin._test_multinomial_invalid_probs self._spawn_method(test_method, torch.Tensor([1, -1, 1])) self._spawn_method(test_method, torch.Tensor([1, inf, 1])) self._spawn_method(test_method, torch.Tensor([1, -inf, 1])) self._spawn_method(test_method, torch.Tensor([1, 1, nan])) self._spawn_method(test_method, torch.Tensor([0, 1, 0])) @suppress_warnings def test_range(self): res1 = torch.range(0, 1) res2 = torch.Tensor() torch.range(0, 1, out=res2) self.assertEqual(res1, res2, 0) # Check range for non-contiguous tensors. x = torch.zeros(2, 3) torch.range(0, 3, out=x.narrow(1, 1, 2)) res2 = torch.Tensor(((0, 0, 1), (0, 2, 3))) self.assertEqual(x, res2, 1e-16) # Check negative res1 = torch.Tensor((1, 0)) res2 = torch.Tensor() torch.range(1, 0, -1, out=res2) self.assertEqual(res1, res2, 0) # Equal bounds res1 = torch.ones(1) res2 = torch.Tensor() torch.range(1, 1, -1, out=res2) self.assertEqual(res1, res2, 0) torch.range(1, 1, 1, out=res2) self.assertEqual(res1, res2, 0) # FloatTensor res1 = torch.range(0.6, 0.9, 0.1, out=torch.FloatTensor()) self.assertEqual(res1.size(0), 4) res1 = torch.range(1, 10, 0.3, out=torch.FloatTensor()) self.assertEqual(res1.size(0), 31) # DoubleTensor res1 = torch.range(0.6, 0.9, 0.1, out=torch.DoubleTensor()) self.assertEqual(res1.size(0), 4) res1 = torch.range(1, 10, 0.3, out=torch.DoubleTensor()) self.assertEqual(res1.size(0), 31) def test_range_warning(self): with warnings.catch_warnings(record=True) as w: torch.range(0, 10) self.assertEqual(len(w), 1) def test_arange(self): res1 = torch.arange(0, 1) res2 = torch.tensor([], dtype=torch.int64) torch.arange(0, 1, out=res2) self.assertEqual(res1, res2, 0) # Check arange with only one argument res1 = torch.arange(10) res2 = torch.arange(0, 10) self.assertEqual(res1, res2, 0) # Check arange for non-contiguous tensors. x = torch.zeros(2, 3) torch.arange(0, 4, out=x.narrow(1, 1, 2)) res2 = torch.Tensor(((0, 0, 1), (0, 2, 3))) self.assertEqual(x, res2, 1e-16) # Check negative res1 = torch.Tensor((1, 0)) res2 = torch.Tensor() torch.arange(1, -1, -1, out=res2) self.assertEqual(res1, res2, 0) # Equal bounds res1 = torch.ones(1) res2 = torch.Tensor() torch.arange(1, 0, -1, out=res2) self.assertEqual(res1, res2, 0) torch.arange(1, 2, 1, out=res2) self.assertEqual(res1, res2, 0) # FloatTensor res1 = torch.arange(0.6, 0.89, 0.1, out=torch.FloatTensor()) self.assertEqual(res1, [0.6, 0.7, 0.8]) res1 = torch.arange(1, 10, 0.3, out=torch.FloatTensor()) self.assertEqual(res1.size(0), 30) self.assertEqual(res1[0], 1) self.assertEqual(res1[29], 9.7) # DoubleTensor res1 = torch.arange(0.6, 0.89, 0.1, out=torch.DoubleTensor()) self.assertEqual(res1, [0.6, 0.7, 0.8]) res1 = torch.arange(1, 10, 0.3, out=torch.DoubleTensor()) self.assertEqual(res1.size(0), 30) self.assertEqual(res1[0], 1) self.assertEqual(res1[29], 9.7) # Bool Input matching numpy semantics r = torch.arange(True) self.assertEqual(r[0], 0) r2 = torch.arange(False) self.assertEqual(len(r2), 0) self.assertEqual(r.dtype, torch.int64) self.assertEqual(r2.dtype, torch.int64) # Check that it's exclusive r = torch.arange(0, 5) self.assertEqual(r.min(), 0) self.assertEqual(r.max(), 4) self.assertEqual(r.numel(), 5) r = torch.arange(0, 5, 2) self.assertEqual(r.min(), 0) self.assertEqual(r.max(), 4) self.assertEqual(r.numel(), 3) r1 = torch.arange(0, 5 + 1e-6) # NB: without the dtype, we'll infer output type to be int64 r2 = torch.arange(0, 5, dtype=torch.float32) r3 = torch.arange(0, 5 - 1e-6) self.assertEqual(r1[:-1], r2, 0) self.assertEqual(r2, r3, 0) r1 = torch.arange(10, -1 + 1e-6, -1) # NB: without the dtype, we'll infer output type to be int64 r2 = torch.arange(10, -1, -1, dtype=torch.float32) r3 = torch.arange(10, -1 - 1e-6, -1) self.assertEqual(r1, r2, 0) self.assertEqual(r2, r3[:-1], 0) # Test Rounding Errors line = torch.zeros(size=(1, 49)) self.assertWarnsRegex(lambda: torch.arange(-1, 1, 2. / 49, dtype=torch.float32, out=line), 'resized', 'The out tensor will be resized') self.assertEqual(line.shape, [50]) x = torch.empty(1).expand(10) self.assertRaises(RuntimeError, lambda: torch.arange(10, out=x)) msg = "unsupported range" self.assertRaisesRegex(RuntimeError, msg, lambda: torch.arange(0, float('inf'))) self.assertRaisesRegex(RuntimeError, msg, lambda: torch.arange(float('inf'))) for device in torch.testing.get_all_device_types(): self.assertRaisesRegex(RuntimeError, msg, lambda: torch.arange(-5, float('nan'), device=device)) # check with step size self.assertRaisesRegex(RuntimeError, msg, lambda: torch.arange(0, float('-inf'), -1, device=device)) self.assertRaisesRegex(RuntimeError, msg, lambda: torch.arange(0, float('inf'), device=device)) self.assertRaisesRegex(RuntimeError, msg, lambda: torch.arange(float('-inf'), 10, device=device)) self.assertRaisesRegex(RuntimeError, msg, lambda: torch.arange(float('nan'), 10, device=device)) self.assertRaisesRegex(RuntimeError, msg, lambda: torch.arange(float('inf'), device=device)) self.assertRaisesRegex(RuntimeError, msg, lambda: torch.arange(float('nan'), device=device)) self.assertRaisesRegex( RuntimeError, "overflow", lambda: torch.arange(1.175494351e-38, 3.402823466e+38, device=device)) # check that it holds a consistent output shape on precision-cornered step sizes d = torch.arange(-4.0, 4.0, 0.01, dtype=torch.float32, device=device) self.assertEqual(d.shape[0], 800) def test_arange_inference(self): saved_dtype = torch.get_default_dtype() torch.set_default_dtype(torch.float32) # end only self.assertIs(torch.float32, torch.arange(1.).dtype) self.assertIs(torch.float32, torch.arange(torch.tensor(1.)).dtype) self.assertIs(torch.float32, torch.arange(torch.tensor(1., dtype=torch.float64)).dtype) self.assertIs(torch.int64, torch.arange(1).dtype) self.assertIs(torch.int64, torch.arange(torch.tensor(1)).dtype) self.assertIs(torch.int64, torch.arange(torch.tensor(1, dtype=torch.int16)).dtype) # start, end, [step] self.assertIs(torch.float32, torch.arange(1., 3).dtype) self.assertIs(torch.float32, torch.arange(torch.tensor(1., dtype=torch.float64), 3).dtype) self.assertIs(torch.float32, torch.arange(1, 3.).dtype) self.assertIs(torch.float32, torch.arange(torch.tensor(1, dtype=torch.int16), torch.tensor(3.)).dtype) self.assertIs(torch.float32, torch.arange(1, 3, 1.).dtype) self.assertIs(torch.float32, torch.arange(torch.tensor(1), torch.tensor(3, dtype=torch.int16), torch.tensor(1., dtype=torch.float64)).dtype) self.assertIs(torch.int64, torch.arange(1, 3).dtype) self.assertIs(torch.int64, torch.arange(torch.tensor(1), 3).dtype) self.assertIs(torch.int64, torch.arange(torch.tensor(1), torch.tensor(3, dtype=torch.int16)).dtype) self.assertIs(torch.int64, torch.arange(1, 3, 1).dtype) self.assertIs(torch.int64, torch.arange(torch.tensor(1), torch.tensor(3), torch.tensor(1, dtype=torch.int16)).dtype) torch.set_default_dtype(saved_dtype) def test_randint_inference(self): size = (2, 1) for args in [(3,), (1, 3)]: # (low,) and (low, high) self.assertIs(torch.int64, torch.randint(*args, size=size).dtype) self.assertIs(torch.int64, torch.randint(*args, size=size, layout=torch.strided).dtype) self.assertIs(torch.int64, torch.randint(*args, size=size, generator=torch.default_generator).dtype) self.assertIs(torch.float32, torch.randint(*args, size=size, dtype=torch.float32).dtype) out = torch.empty(size, dtype=torch.float32) self.assertIs(torch.float32, torch.randint(*args, size=size, out=out).dtype) self.assertIs(torch.float32, torch.randint(*args, size=size, out=out, dtype=torch.float32).dtype) out = torch.empty(size, dtype=torch.int64) self.assertIs(torch.int64, torch.randint(*args, size=size, out=out).dtype) self.assertIs(torch.int64, torch.randint(*args, size=size, out=out, dtype=torch.int64).dtype) def test_broadcast_empty(self): # empty + empty self.assertRaises(RuntimeError, lambda: torch.randn(5, 0) + torch.randn(0, 5)) self.assertEqual(torch.randn(5, 0), torch.randn(0) + torch.randn(5, 0)) self.assertEqual(torch.randn(5, 0, 0), torch.randn(0) + torch.randn(5, 0, 1)) # scalar + empty self.assertEqual(torch.randn(5, 0, 6), torch.randn(()) + torch.randn(5, 0, 6)) # non-empty, empty self.assertEqual(torch.randn(0), torch.randn(0) + torch.randn(1)) self.assertEqual(torch.randn(0, 7, 0, 6, 5, 0, 7), torch.randn(0, 7, 0, 6, 5, 0, 1) + torch.randn(1, 1, 5, 1, 7)) self.assertRaises(RuntimeError, lambda: torch.randn(7, 0) + torch.randn(2, 1)) def test_scalars_as_floats(self): "zero-dim variables that don't require grad should bind to scalar arguments" x = torch.tensor(2.) y = torch.tensor(3.) # 3 + (3 * 3) * 2 self.assertEqual(y.addcmul(y, y, value=x), 21) x = torch.tensor(2., requires_grad=True) self.assertRaises(Exception, lambda: y.addcmul(y, y, value=x)) def test_copy_broadcast(self): torch.zeros(5, 6).copy_(torch.zeros(6)) self.assertRaises(RuntimeError, lambda: torch.zeros(5, 6).copy_(torch.zeros(30))) def test_copy_many_to_one(self): # Testing in-place copy where it attempt to write from many memory # storage to a single storage would cause RuntimeError to be thrown self.assertRaises(RuntimeError, lambda: torch.zeros(1, 6).expand(5, 6).copy_(torch.zeros(5, 6))) def test_not_equal(self): ones = torch.ones(10, dtype=torch.int) self.assertRaisesRegex(AssertionError, "0 not greater than or equal to", lambda: self.assertNotEqual(ones, ones)) def assertIsOrdered(self, order, x, mxx, ixx, task): SIZE = 4 if order == 'descending': def check_order(a, b): # `a != a` because we put NaNs # at the end of ascending sorted lists, # and the beginning of descending ones. return a != a or a >= b elif order == 'ascending': def check_order(a, b): # see above return b != b or a <= b else: error('unknown order "{}", must be "ascending" or "descending"'.format(order)) are_ordered = True for j, k in product(range(SIZE), range(1, SIZE)): self.assertTrue(check_order(mxx[j][k - 1], mxx[j][k]), 'torch.sort ({}) values unordered for {}'.format(order, task)) seen = set() indicesCorrect = True size = x.size(x.dim() - 1) for k in range(size): seen.clear() for j in range(size): self.assertEqual(x[k][ixx[k][j]], mxx[k][j], 'torch.sort ({}) indices wrong for {}'.format(order, task)) seen.add(ixx[k][j]) self.assertEqual(len(seen), size) def test_sort(self): SIZE = 4 x = torch.rand(SIZE, SIZE) res1val, res1ind = torch.sort(x) # Test use of result tensor res2val = torch.Tensor() res2ind = torch.LongTensor() torch.sort(x, out=(res2val, res2ind)) self.assertEqual(res1val, res2val, 0) self.assertEqual(res1ind, res2ind, 0) self.assertEqual(torch.argsort(x), res1ind) self.assertEqual(x.argsort(), res1ind) # Test sorting of random numbers self.assertIsOrdered('ascending', x, res2val, res2ind, 'random') # Test simple sort self.assertEqual( torch.sort(torch.Tensor((50, 40, 30, 20, 10)))[0], torch.Tensor((10, 20, 30, 40, 50)), 0 ) # Test that we still have proper sorting with duplicate keys x = torch.floor(torch.rand(SIZE, SIZE) * 10) torch.sort(x, out=(res2val, res2ind)) self.assertIsOrdered('ascending', x, res2val, res2ind, 'random with duplicate keys') # DESCENDING SORT x = torch.rand(SIZE, SIZE) res1val, res1ind = torch.sort(x, x.dim() - 1, True) # Test use of result tensor res2val = torch.Tensor() res2ind = torch.LongTensor() torch.sort(x, x.dim() - 1, True, out=(res2val, res2ind)) self.assertEqual(res1val, res2val, 0) self.assertEqual(res1ind, res2ind, 0) self.assertEqual(torch.argsort(x, x.dim() - 1, True), res1ind) self.assertEqual(x.argsort(x.dim() - 1, True), res1ind) # Test sorting of random numbers self.assertIsOrdered('descending', x, res2val, res2ind, 'random') # Test simple sort task self.assertEqual( torch.sort(torch.Tensor((10, 20, 30, 40, 50)), 0, True)[0], torch.Tensor((50, 40, 30, 20, 10)), 0 ) # Test that we still have proper sorting with duplicate keys self.assertIsOrdered('descending', x, res2val, res2ind, 'random with duplicate keys') # Test sorting with NaNs x = torch.rand(SIZE, SIZE) x[1][2] = float('NaN') x[3][0] = float('NaN') torch.sort(x, out=(res2val, res2ind)) self.assertIsOrdered('ascending', x, res2val, res2ind, 'random with NaNs') torch.sort(x, out=(res2val, res2ind), descending=True) self.assertIsOrdered('descending', x, res2val, res2ind, 'random with NaNs') def test_topk(self): def topKViaSort(t, k, dim, dir): sorted, indices = t.sort(dim, dir) return sorted.narrow(dim, 0, k), indices.narrow(dim, 0, k) def compareTensors(t, res1, ind1, res2, ind2, dim): # Values should be exactly equivalent self.assertEqual(res1, res2, 0) # Indices might differ based on the implementation, since there is # no guarantee of the relative order of selection if not ind1.eq(ind2).all(): # To verify that the indices represent equivalent elements, # gather from the input using the topk indices and compare against # the sort indices vals = t.gather(dim, ind2) self.assertEqual(res1, vals, 0) def compare(t, k, dim, dir): topKVal, topKInd = t.topk(k, dim, dir, True) sortKVal, sortKInd = topKViaSort(t, k, dim, dir) compareTensors(t, sortKVal, sortKInd, topKVal, topKInd, dim) t = torch.rand(random.randint(1, SIZE), random.randint(1, SIZE), random.randint(1, SIZE)) for _kTries in range(3): for _dimTries in range(3): for transpose in (True, False): for dir in (True, False): testTensor = t if transpose: dim1 = random.randrange(t.ndimension()) dim2 = dim1 while dim1 == dim2: dim2 = random.randrange(t.ndimension()) testTensor = t.transpose(dim1, dim2) dim = random.randrange(testTensor.ndimension()) k = random.randint(1, testTensor.size(dim)) compare(testTensor, k, dim, dir) def test_topk_arguments(self): q = torch.randn(10, 2, 10) # Make sure True isn't mistakenly taken as the 2nd dimension (interpreted as 1) self.assertRaises(TypeError, lambda: q.topk(4, True)) def test_median(self): for size in (155, 156): x = torch.rand(size, size) x0 = x.clone() nelem = x.nelement() res1val = torch.median(x) res2val, _ = torch.sort(x.view(nelem)) ind = int(math.floor((nelem + 1) / 2) - 1) self.assertEqual(res2val[ind], res1val, 0) res1val, res1ind = torch.median(x, dim=1, keepdim=False) res2val, res2ind = torch.sort(x) ind = int(math.floor((size + 1) / 2) - 1) self.assertEqual(res2val.select(1, ind), res1val, 0) self.assertEqual(res2val.select(1, ind), res1val, 0) # Test use of result tensor res2val = torch.Tensor() res2ind = torch.LongTensor() torch.median(x, dim=-1, keepdim=False, out=(res2val, res2ind)) self.assertEqual(res2val, res1val, 0) self.assertEqual(res2ind, res1ind, 0) # Test non-default dim res1val, res1ind = torch.median(x, 0, keepdim=False) res2val, res2ind = torch.sort(x, 0) self.assertEqual(res1val, res2val[ind], 0) self.assertEqual(res1ind, res2ind[ind], 0) # input unchanged self.assertEqual(x, x0, 0) def test_mode(self): x = torch.arange(1., SIZE * SIZE + 1).clone().resize_(SIZE, SIZE) x[:2] = 1 x[:, :2] = 1 x0 = x.clone() # Pre-calculated results. res1val = torch.Tensor(SIZE).fill_(1) # The indices are the position of the last appearance of the mode element. res1ind = torch.LongTensor(SIZE).fill_(1) res1ind[0] = SIZE - 1 res1ind[1] = SIZE - 1 res2val, res2ind = torch.mode(x, keepdim=False) self.assertEqual(res1val, res2val, 0) self.assertEqual(res1ind, res2ind, 0) # Test use of result tensor res2val = torch.Tensor() res2ind = torch.LongTensor() torch.mode(x, keepdim=False, out=(res2val, res2ind)) self.assertEqual(res1val, res2val, 0) self.assertEqual(res1ind, res2ind, 0) # Test non-default dim res2val, res2ind = torch.mode(x, 0, False) self.assertEqual(res1val, res2val, 0) self.assertEqual(res1ind, res2ind, 0) # input unchanged self.assertEqual(x, x0, 0) def test_trilu_indices(self): for test_args in tri_tests_args: _compare_trilu_indices(self, *test_args) run_additional_tri_tests(self, 'cpu') # test default options x = torch.ones( 3, 3, dtype=torch.long, device='cpu', layout=torch.strided) self.assertEqual( x.tril(0).nonzero().transpose(0, 1), torch.tril_indices(3, 3)) self.assertEqual( x.triu(0).nonzero().transpose(0, 1), torch.triu_indices(3, 3)) # test stride 0 cases x = torch.ones( 3, 1, 3, 3, dtype=torch.long, device='cpu', layout=torch.strided) output = x.triu(2).expand(3, 3, 3, 3) b = x.clone().expand(3, 3, 3, 3) self.assertEqual(b.triu(2), output) self.assertRaises(RuntimeError, lambda: b.triu_(2)) def test_narrow(self): x = torch.Tensor([[0, 1, 2], [3, 4, 5], [6, 7, 8]]) self.assertEqual(x.narrow(0, 0, 1), torch.Tensor([[0, 1, 2]])) self.assertEqual(x.narrow(0, 0, 2), torch.Tensor([[0, 1, 2], [3, 4, 5]])) self.assertEqual(x.narrow(0, 1, 1), torch.Tensor([[3, 4, 5]])) self.assertEqual(x.narrow(0, -1, 1), torch.Tensor([[6, 7, 8]])) self.assertEqual(x.narrow(0, -2, 2), torch.Tensor([[3, 4, 5], [6, 7, 8]])) self.assertEqual(x.narrow(0, -3, 3), torch.Tensor([[0, 1, 2], [3, 4, 5], [6, 7, 8]])) self.assertEqual(x.narrow(-1, -1, 1), torch.Tensor([[2], [5], [8]])) self.assertEqual(x.narrow(-2, -1, 1), torch.Tensor([[6, 7, 8]])) def test_narrow_tensor(self): x = torch.Tensor([[0, 1, 2], [3, 4, 5], [6, 7, 8]]) self.assertEqual(x.narrow(0, torch.tensor(0), 1), torch.Tensor([[0, 1, 2]])) with self.assertRaises(Exception): x.narrow(0, torch.tensor(0.), 1) with self.assertRaises(Exception): x.narrow(0, torch.tensor([0]), 1) with self.assertRaises(Exception): x.narrow(0, torch.tensor([0, 1]), 1) def test_stack(self): for dtype in (torch.half, torch.double, torch.int): x = torch.randint(low=-100, high=100, size=(2, 3, 4)).to(dtype) y = torch.randint(low=-100, high=100, size=(2, 3, 4)).to(dtype) z = torch.randint(low=-100, high=100, size=(2, 3, 4)).to(dtype) for dim in range(4): res = torch.stack((x, y, z), dim) res_neg = torch.stack((x, y, z), dim - 4) expected_size = x.size()[:dim] + (3,) + x.size()[dim:] self.assertEqual(res, res_neg) self.assertEqual(res.size(), expected_size) self.assertEqual(res.select(dim, 0), x, 0) self.assertEqual(res.select(dim, 1), y, 0) self.assertEqual(res.select(dim, 2), z, 0) def test_stack_out(self): for dtype in (torch.half, torch.double, torch.int): x = torch.randint(low=-100, high=100, size=(2, 3, 4)).to(dtype) y = torch.randint(low=-100, high=100, size=(2, 3, 4)).to(dtype) z = torch.randint(low=-100, high=100, size=(2, 3, 4)).to(dtype) for dim in range(4): expected_size = x.size()[:dim] + (3,) + x.size()[dim:] res_out = x.new(expected_size) res_neg_out = x.new(expected_size) res_out_dp = res_out.data_ptr() res_out_neg_dp = res_neg_out.data_ptr() torch.stack((x, y, z), dim, out=res_out) torch.stack((x, y, z), dim - 4, out=res_neg_out) self.assertEqual(res_out, res_neg_out) self.assertEqual(res_out.size(), expected_size) self.assertEqual(res_out_dp, res_out.data_ptr()) self.assertEqual(res_out_neg_dp, res_neg_out.data_ptr()) self.assertEqual(res_out.select(dim, 0), x, 0) self.assertEqual(res_out.select(dim, 1), y, 0) self.assertEqual(res_out.select(dim, 2), z, 0) def test_unbind(self): x = torch.rand(2, 3, 4, 5) for dim in range(4): res = torch.unbind(x, dim) res2 = x.unbind(dim) self.assertEqual(x.size(dim), len(res)) self.assertEqual(x.size(dim), len(res2)) for i in range(dim): self.assertEqual(x.select(dim, i), res[i]) self.assertEqual(x.select(dim, i), res2[i]) def test_rand(self): def common_routine(dtype): torch.manual_seed(123456) res1 = torch.rand(SIZE, SIZE, dtype=dtype) res2 = torch.tensor([], dtype=dtype) torch.manual_seed(123456) torch.rand(SIZE, SIZE, out=res2) self.assertEqual(res1, res2) common_routine(dtype=torch.float32) common_routine(dtype=torch.float64) common_routine(dtype=torch.complex64) common_routine(dtype=torch.complex128) def test_randint(self): def seed(generator): if generator is None: torch.manual_seed(123456) else: generator.manual_seed(123456) return generator for generator in (None, torch.Generator()): generator = seed(generator) res1 = torch.randint(0, 6, (SIZE, SIZE), generator=generator) res2 = torch.empty((), dtype=torch.int64) generator = seed(generator) torch.randint(0, 6, (SIZE, SIZE), generator=generator, out=res2) generator = seed(generator) res3 = torch.randint(6, (SIZE, SIZE), generator=generator) res4 = torch.empty((), dtype=torch.int64) generator = seed(generator) torch.randint(6, (SIZE, SIZE), out=res4, generator=generator) self.assertEqual(res1, res2) self.assertEqual(res1, res3) self.assertEqual(res1, res4) self.assertEqual(res2, res3) self.assertEqual(res2, res4) self.assertEqual(res3, res4) self.assertTrue((res1 < 6).all().item()) self.assertTrue((res1 >= 0).all().item()) def test_slice(self): empty = torch.empty(0, 4) x = torch.arange(0., 16).view(4, 4) self.assertEqual(x[:], x) self.assertEqual(x[:4], x) # start and stop are clamped to the size of dim self.assertEqual(x[:5], x) # if start >= stop then the result is empty self.assertEqual(x[2:1], empty) self.assertEqual(x[2:2], empty) # out of bounds is also empty self.assertEqual(x[10:12], empty) # additional correctness checks self.assertEqual(x[:1].tolist(), [[0, 1, 2, 3]]) self.assertEqual(x[:-3].tolist(), [[0, 1, 2, 3]]) self.assertEqual(x[:, -2:3].tolist(), [[2], [6], [10], [14]]) self.assertEqual(x[0:-1:2].tolist(), [[0, 1, 2, 3], [8, 9, 10, 11]]) @skipIfNoLapack def test_ormqr(self): mat1 = torch.randn(7, 7) mat2 = torch.randn(7, 7) q, r = torch.qr(mat1) m, tau = torch.geqrf(mat1) out_holder = torch.empty_like(mat1) res1 = torch.mm(q, mat2) res2 = torch.ormqr(m, tau, mat2, left=True, transpose=False) torch.ormqr(m, tau, mat2, out=out_holder) self.assertEqual(res1, res2) self.assertEqual(res2, out_holder) res1 = torch.mm(mat2, q) res2 = torch.ormqr(m, tau, mat2, left=False, transpose=False) torch.ormqr(m, tau, mat2, left=False, transpose=False, out=out_holder) self.assertEqual(res1, res2) self.assertEqual(res2, out_holder) res1 = torch.mm(q.t(), mat2) res2 = torch.ormqr(m, tau, mat2, left=True, transpose=True) torch.ormqr(m, tau, mat2, left=True, transpose=True, out=out_holder) self.assertEqual(res1, res2) self.assertEqual(res2, out_holder) res1 = torch.mm(mat2, q.t()) res2 = torch.ormqr(m, tau, mat2, left=False, transpose=True) torch.ormqr(m, tau, mat2, left=False, transpose=True, out=out_holder) self.assertEqual(res1, res2) self.assertEqual(res2, out_holder) @staticmethod def _test_fft_ifft_rfft_irfft(self, device='cpu', dtype=torch.double): def _test_complex(sizes, signal_ndim, prepro_fn=lambda x: x): x = prepro_fn(torch.randn(*sizes, dtype=dtype, device=device)) for normalized in (True, False): res = x.fft(signal_ndim, normalized=normalized) rec = res.ifft(signal_ndim, normalized=normalized) self.assertEqual(x, rec, 1e-8, 'fft and ifft') res = x.ifft(signal_ndim, normalized=normalized) rec = res.fft(signal_ndim, normalized=normalized) self.assertEqual(x, rec, 1e-8, 'ifft and fft') def _test_real(sizes, signal_ndim, prepro_fn=lambda x: x): x = prepro_fn(torch.randn(*sizes, dtype=dtype, device=device)) signal_numel = 1 signal_sizes = x.size()[-signal_ndim:] for normalized, onesided in product((True, False), repeat=2): res = x.rfft(signal_ndim, normalized=normalized, onesided=onesided) if not onesided: # check Hermitian symmetry def test_one_sample(res, test_num=10): idxs_per_dim = [torch.LongTensor(test_num).random_(s).tolist() for s in signal_sizes] for idx in zip(*idxs_per_dim): reflected_idx = tuple((s - i) % s for i, s in zip(idx, res.size())) idx_val = res.__getitem__(idx) reflected_val = res.__getitem__(reflected_idx) self.assertEqual(idx_val[0], reflected_val[0], 'rfft hermitian symmetry on real part') self.assertEqual(idx_val[1], -reflected_val[1], 'rfft hermitian symmetry on imaginary part') if len(sizes) == signal_ndim: test_one_sample(res) else: output_non_batch_shape = res.size()[-(signal_ndim + 1):] flatten_batch_res = res.view(-1, *output_non_batch_shape) nb = flatten_batch_res.size(0) test_idxs = torch.LongTensor(min(nb, 4)).random_(nb) for test_idx in test_idxs.tolist(): test_one_sample(flatten_batch_res[test_idx]) # compare with C2C xc = torch.stack([x, torch.zeros_like(x)], -1) xc_res = xc.fft(signal_ndim, normalized=normalized) self.assertEqual(res, xc_res) test_input_signal_sizes = [signal_sizes] rec = res.irfft(signal_ndim, normalized=normalized, onesided=onesided, signal_sizes=signal_sizes) self.assertEqual(x, rec, 1e-8, 'rfft and irfft') if not onesided: # check that we can use C2C ifft rec = res.ifft(signal_ndim, normalized=normalized) self.assertEqual(x, rec.select(-1, 0), 1e-8, 'twosided rfft and ifft real') self.assertEqual(rec.select(-1, 1).abs().mean(), 0, 1e-8, 'twosided rfft and ifft imaginary') # contiguous case _test_real((100,), 1) _test_real((10, 1, 10, 100), 1) _test_real((100, 100), 2) _test_real((2, 2, 5, 80, 60), 2) _test_real((50, 40, 70), 3) _test_real((30, 1, 50, 25, 20), 3) _test_complex((100, 2), 1) _test_complex((100, 100, 2), 1) _test_complex((100, 100, 2), 2) _test_complex((1, 20, 80, 60, 2), 2) _test_complex((50, 40, 70, 2), 3) _test_complex((6, 5, 50, 25, 20, 2), 3) # non-contiguous case _test_real((165,), 1, lambda x: x.narrow(0, 25, 100)) # input is not aligned to complex type _test_real((100, 100, 3), 1, lambda x: x[:, :, 0]) _test_real((100, 100), 2, lambda x: x.t()) _test_real((20, 100, 10, 10), 2, lambda x: x.view(20, 100, 100)[:, :60]) _test_real((65, 80, 115), 3, lambda x: x[10:60, 13:53, 10:80]) _test_real((30, 20, 50, 25), 3, lambda x: x.transpose(1, 2).transpose(2, 3)) _test_complex((2, 100), 1, lambda x: x.t()) _test_complex((100, 2), 1, lambda x: x.expand(100, 100, 2)) _test_complex((300, 200, 3), 2, lambda x: x[:100, :100, 1:]) # input is not aligned to complex type _test_complex((20, 90, 110, 2), 2, lambda x: x[:, 5:85].narrow(2, 5, 100)) _test_complex((40, 60, 3, 80, 2), 3, lambda x: x.transpose(2, 0).select(0, 2)[5:55, :, 10:]) _test_complex((30, 55, 50, 22, 2), 3, lambda x: x[:, 3:53, 15:40, 1:21]) # non-contiguous with strides not representable as aligned with complex type _test_complex((50,), 1, lambda x: x.as_strided([5, 5, 2], [3, 2, 1])) _test_complex((50,), 1, lambda x: x.as_strided([5, 5, 2], [4, 2, 2])) _test_complex((50,), 1, lambda x: x.as_strided([5, 5, 2], [4, 3, 1])) _test_complex((50,), 2, lambda x: x.as_strided([5, 5, 2], [3, 3, 1])) _test_complex((50,), 2, lambda x: x.as_strided([5, 5, 2], [4, 2, 2])) _test_complex((50,), 2, lambda x: x.as_strided([5, 5, 2], [4, 3, 1])) @unittest.skipIf(not TEST_MKL, "PyTorch is built without MKL support") def test_fft_ifft_rfft_irfft(self): self._test_fft_ifft_rfft_irfft(self) @unittest.skip("Not implemented yet") def test_conv2(self): x = torch.rand(math.floor(torch.uniform(50, 100)), math.floor(torch.uniform(50, 100))) k = torch.rand(math.floor(torch.uniform(10, 20)), math.floor(torch.uniform(10, 20))) imvc = torch.conv2(x, k) imvc2 = torch.conv2(x, k, 'V') imfc = torch.conv2(x, k, 'F') ki = k.clone() ks = k.storage() kis = ki.storage() for i in range(ks.size() - 1, 0, -1): kis[ks.size() - i + 1] = ks[i] # for i=ks.size(), 1, -1 do kis[ks.size()-i+1]=ks[i] end imvx = torch.xcorr2(x, ki) imvx2 = torch.xcorr2(x, ki, 'V') imfx = torch.xcorr2(x, ki, 'F') self.assertEqual(imvc, imvc2, 0, 'torch.conv2') self.assertEqual(imvc, imvx, 0, 'torch.conv2') self.assertEqual(imvc, imvx2, 0, 'torch.conv2') self.assertEqual(imfc, imfx, 0, 'torch.conv2') self.assertLessEqual(math.abs(x.dot(x) - torch.xcorr2(x, x)[0][0]), 1e-10, 'torch.conv2') xx = torch.Tensor(2, x.size(1), x.size(2)) xx[1].copy_(x) xx[2].copy_(x) kk = torch.Tensor(2, k.size(1), k.size(2)) kk[1].copy_(k) kk[2].copy_(k) immvc = torch.conv2(xx, kk) immvc2 = torch.conv2(xx, kk, 'V') immfc = torch.conv2(xx, kk, 'F') self.assertEqual(immvc[0], immvc[1], 0, 'torch.conv2') self.assertEqual(immvc[0], imvc, 0, 'torch.conv2') self.assertEqual(immvc2[0], imvc2, 0, 'torch.conv2') self.assertEqual(immfc[0], immfc[1], 0, 'torch.conv2') self.assertEqual(immfc[0], imfc, 0, 'torch.conv2') @unittest.skip("Not implemented yet") def test_conv3(self): x = torch.rand(math.floor(torch.uniform(20, 40)), math.floor(torch.uniform(20, 40)), math.floor(torch.uniform(20, 40))) k = torch.rand(math.floor(torch.uniform(5, 10)), math.floor(torch.uniform(5, 10)), math.floor(torch.uniform(5, 10))) imvc = torch.conv3(x, k) imvc2 = torch.conv3(x, k, 'V') imfc = torch.conv3(x, k, 'F') ki = k.clone() ks = k.storage() kis = ki.storage() for i in range(ks.size() - 1, 0, -1): kis[ks.size() - i + 1] = ks[i] imvx = torch.xcorr3(x, ki) imvx2 = torch.xcorr3(x, ki, 'V') imfx = torch.xcorr3(x, ki, 'F') self.assertEqual(imvc, imvc2, 0, 'torch.conv3') self.assertEqual(imvc, imvx, 0, 'torch.conv3') self.assertEqual(imvc, imvx2, 0, 'torch.conv3') self.assertEqual(imfc, imfx, 0, 'torch.conv3') self.assertLessEqual(math.abs(x.dot(x) - torch.xcorr3(x, x)[0][0][0]), 4e-10, 'torch.conv3') xx = torch.Tensor(2, x.size(1), x.size(2), x.size(3)) xx[1].copy_(x) xx[2].copy_(x) kk = torch.Tensor(2, k.size(1), k.size(2), k.size(3)) kk[1].copy_(k) kk[2].copy_(k) immvc = torch.conv3(xx, kk) immvc2 = torch.conv3(xx, kk, 'V') immfc = torch.conv3(xx, kk, 'F') self.assertEqual(immvc[0], immvc[1], 0, 'torch.conv3') self.assertEqual(immvc[0], imvc, 0, 'torch.conv3') self.assertEqual(immvc2[0], imvc2, 0, 'torch.conv3') self.assertEqual(immfc[0], immfc[1], 0, 'torch.conv3') self.assertEqual(immfc[0], imfc, 0, 'torch.conv3') @unittest.skip("Not implemented yet") def _test_conv_corr_eq(self, fn, fn_2_to_3): ix = math.floor(random.randint(20, 40)) iy = math.floor(random.randint(20, 40)) iz = math.floor(random.randint(20, 40)) kx = math.floor(random.randint(5, 10)) ky = math.floor(random.randint(5, 10)) kz = math.floor(random.randint(5, 10)) x = torch.rand(ix, iy, iz) k = torch.rand(kx, ky, kz) o3 = fn(x, k) o32 = torch.zeros(o3.size()) fn_2_to_3(x, k, o3, o32) self.assertEqual(o3, o32) @unittest.skip("Not implemented yet") def test_xcorr3_xcorr2_eq(self): def reference(x, k, o3, o32): for i in range(o3.size(1)): for j in range(k.size(1)): o32[i].add(torch.xcorr2(x[i + j - 1], k[j])) self._test_conv_corr_eq(torch.xcorr3, reference) @unittest.skip("Not implemented yet") def test_xcorr3_xcorr2_eq_full(self): def reference(x, k, o3, o32): for i in range(x.size(1)): for j in range(k.size(1)): o32[i].add(torch.xcorr2(x[i], k[k.size(1) - j + 1], 'F')) self._test_conv_corr_eq(lambda x, k: torch.xcorr3(x, k, 'F'), reference) @unittest.skip("Not implemented yet") def test_conv3_conv2_eq_valid(self): def reference(x, k, o3, o32): for i in range(o3.size(1)): for j in range(k.size(1)): o32[i].add(torch.conv2(x[i + j - 1], k[k.size(1) - j + 1])) self._test_conv_corr_eq(torch.conv3, reference) @unittest.skip("Not implemented yet") def test_fconv3_fconv2_eq(self): def reference(x, k, o3, o32): for i in range(o3.size(1)): for j in range(k.size(1)): o32[i + j - 1].add(torch.conv2(x[i], k[j], 'F')) self._test_conv_corr_eq(lambda x, k: torch.conv3(x, k, 'F'), reference) def test_isfinite(self): x = torch.Tensor([1, inf, 2, -inf, nan, -10]) self.assertEqual(torch.isfinite(x), torch.BoolTensor([True, False, True, False, False, True])) def test_isfinite_int(self): x = torch.tensor([1, 2, 3]) self.assertEqual(torch.isfinite(x), torch.BoolTensor([True, True, True])) def test_isfinite_type(self): with self.assertRaises(TypeError): torch.isfinite(1) # Parameter must be a tensor def test_isinf_type(self): with self.assertRaises(TypeError): torch.isinf(1) # Parameter must be a tensor def test_isnan(self): x = torch.Tensor([1, nan, 2]) self.assertEqual(torch.isnan(x), torch.tensor([False, True, False])) def test_dtype_is_signed(self): for dtype in torch.testing.get_all_dtypes(): self.assertEqual(dtype.is_signed, torch.is_signed(torch.tensor(0, dtype=dtype))) self.assertRaisesRegex(RuntimeError, 'not supported for quantized', lambda: torch.quint8.is_signed) self.assertRaisesRegex(RuntimeError, 'not supported for quantized', lambda: torch.qint8.is_signed) self.assertRaisesRegex(RuntimeError, 'not supported for quantized', lambda: torch.qint32.is_signed) def test_RNGState(self): state = torch.get_rng_state() stateCloned = state.clone() before = torch.rand(1000) self.assertEqual(state.ne(stateCloned).long().sum(), 0, 0) torch.set_rng_state(state) after = torch.rand(1000) self.assertEqual(before, after, 0) def test_RNGStateAliasing(self): # Fork the random number stream at this point gen = torch.Generator() gen.set_state(torch.get_rng_state()) self.assertEqual(gen.get_state(), torch.get_rng_state()) target_value = torch.rand(1000) # Dramatically alter the internal state of the main generator _ = torch.rand(100000) forked_value = torch.rand(1000, generator=gen) self.assertEqual(target_value, forked_value, 0, "RNG has not forked correctly.") def test_RNG_after_pickle(self): torch.random.manual_seed(100) before = torch.rand(10) torch.random.manual_seed(100) buf = io.BytesIO() tensor = torch.Tensor([1, 2, 3]) ForkingPickler(buf, pickle.HIGHEST_PROTOCOL).dump(tensor) after = torch.rand(10) self.assertEqual(before, after, 0) def test_boxMullerState(self): torch.manual_seed(123) odd_number = 101 seeded = torch.randn(odd_number) state = torch.get_rng_state() midstream = torch.randn(odd_number) torch.set_rng_state(state) repeat_midstream = torch.randn(odd_number) torch.manual_seed(123) reseeded = torch.randn(odd_number) self.assertEqual(midstream, repeat_midstream, 0, 'get_rng_state/set_rng_state not generating same sequence of normally distributed numbers') self.assertEqual(seeded, reseeded, 0, 'repeated calls to manual_seed not generating same sequence of normally distributed numbers') def test_manual_seed(self): rng_state = torch.get_rng_state() torch.manual_seed(2) x = torch.randn(100) self.assertEqual(torch.initial_seed(), 2) torch.manual_seed(2) y = torch.randn(100) self.assertEqual(x, y) torch.set_rng_state(rng_state) def test_numel(self): b = torch.ByteTensor(3, 100, 100) self.assertEqual(b.nelement(), 3 * 100 * 100) self.assertEqual(b.numel(), 3 * 100 * 100) # Note: the warning this tests for only appears once per program, so # other instances of this warning should be addressed to avoid # the tests depending on the order in which they're run. @unittest.skipIf(not TEST_NUMPY, "Numpy not found") def test_numpy_non_writeable(self): arr = np.zeros(5) arr.flags['WRITEABLE'] = False self.assertWarns(lambda: torch.from_numpy(arr)) @unittest.skipIf(not TEST_NUMPY, "Numpy not found") def test_empty_storage_view(self): # we should be able to "modify" slices of a 0-element # array without an error being raised due to # trying to resize its storage t = torch.from_numpy(np.empty((0, 4))) t[:, 1::2] *= 1 @unittest.skipIf(not TEST_NUMPY, "Numpy not found") def test_newaxis_numpy_comparison(self): def run_test(tensor, *idx): npt = tensor.numpy() self.assertEqual(tensor[idx], npt[idx]) # 1D Tensor Tests x = torch.arange(0, 10) cases = [ [None], [None, None], [Ellipsis, None], [None, Ellipsis], [2, None], [None, 2], [Ellipsis, None, 2], [Ellipsis, 2, None], [2, Ellipsis, None], [2, None, Ellipsis], [None, 2, Ellipsis], [None, Ellipsis, 2], ] for case in cases: run_test(x, *case) # 2D Tensor Tests x = torch.arange(0, 12).view(3, 4) cases = [ [None], [None, None], [None, None, None], [Ellipsis, None], [Ellipsis, None, None], [None, Ellipsis], [None, Ellipsis, None], [None, None, Ellipsis], [2, None], [2, None, Ellipsis], [2, Ellipsis, None], [None, 2, Ellipsis], [Ellipsis, 2, None], [Ellipsis, None, 2], [None, Ellipsis, 2], [1, 2, None], [1, 2, Ellipsis, None], [1, Ellipsis, 2, None], [Ellipsis, 1, None, 2], [Ellipsis, 1, 2, None], [1, None, 2, Ellipsis], [None, 1, Ellipsis, 2], [None, 1, 2, Ellipsis], ] for case in cases: run_test(x, *case) def _consecutive(self, size, start=1): sequence = torch.ones(int(torch.Tensor(size).prod(0))).cumsum(0) sequence.add_(start - 1) return sequence.resize_(*size) def test_newindex(self): reference = self._consecutive((3, 3, 3)) # This relies on __index__() being correct - but we have separate tests for that def checkPartialAssign(index): reference = torch.zeros(3, 3, 3) reference[index] = self._consecutive((3, 3, 3))[index] self.assertEqual(reference[index], self._consecutive((3, 3, 3))[index], 0) reference[index] = 0 self.assertEqual(reference, torch.zeros(3, 3, 3), 0) checkPartialAssign(0) checkPartialAssign(1) checkPartialAssign(2) checkPartialAssign((0, 1)) checkPartialAssign((1, 2)) checkPartialAssign((0, 2)) checkPartialAssign(torch.LongTensor((0, 2))) with self.assertRaises(IndexError): reference[1, 1, 1, 1] = 1 with self.assertRaises(IndexError): reference[1, 1, 1, (1, 1)] = 1 with self.assertRaises(IndexError): reference[3, 3, 3, 3, 3, 3, 3, 3] = 1 with self.assertRaises(IndexError): reference[0.0] = 1 with self.assertRaises(TypeError): reference[0.0:2.0] = 1 with self.assertRaises(IndexError): reference[0.0, 0.0:2.0] = 1 with self.assertRaises(IndexError): reference[0.0, :, 0.0:2.0] = 1 with self.assertRaises(IndexError): reference[0.0, ..., 0.0:2.0] = 1 with self.assertRaises(IndexError): reference[0.0, :, 0.0] = 1 def test_index_add(self): for dest_contig, src_contig, index_contig in product([True, False], repeat=3): for other_sizes in ((), (4, 5)): num_copy, num_dest = 3, 3 dest = torch.randn(num_dest, *other_sizes) if not dest_contig: dest = torch.testing.make_non_contiguous(dest) src = torch.randn(num_copy, *other_sizes) if not src_contig: src = torch.testing.make_non_contiguous(src) idx = torch.randperm(num_dest).narrow(0, 0, num_copy) if not index_contig: idx = torch.testing.make_non_contiguous(idx) dest2 = dest.clone() dest.index_add_(0, idx, src) for i in range(idx.size(0)): dest2[idx[i]] += src[i] self.assertEqual(dest, dest2) # add coverage for issue with atomic add that appeared only for # specific dtypes on cuda: # https://github.com/pytorch/pytorch/issues/29153 def test_index_add_all_dtypes(self): for device in torch.testing.get_all_device_types(): for dtype in torch.testing.get_all_math_dtypes(device): size = [5, 5] if dtype.is_floating_point: tensor = torch.rand(size, dtype=dtype, device=device) elif dtype.is_signed: tensor = torch.randint(-5, 15, size, dtype=dtype, device=device) else: tensor = torch.randint(0, 10, size, dtype=dtype, device=device) # index_add calls atomicAdd on cuda. zeros = torch.zeros(size, dtype=dtype, device=device) added = zeros.index_add(0, torch.arange(0, size[0], dtype=torch.long, device=device), tensor) self.assertEqual(added, tensor) def test_t(self): # Test 0D tensors x = torch.randn(()) self.assertEqual(x, x.t()) x = x.to_sparse() self.assertEqual(x, x.t()) # Test 1D tensors x = torch.arange(4) self.assertEqual(x, x.t()) x = x.to_sparse() self.assertEqual(x, x.t()) # Test 2D tensors x = torch.rand((2, 2)) self.assertEqual(x.t(), x.transpose(0, 1)) x = x.to_sparse() self.assertEqual(x.t(), x.transpose(0, 1)) # Test 3D tensor x = torch.rand((2, 2, 2)) with self.assertRaisesRegex(RuntimeError, 'expects a tensor with <= 2 dimensions, but self is 3D'): x.t() x = x.to_sparse() with self.assertRaisesRegex(RuntimeError, 'expects a tensor with <= 2 sparse and 0 dense dimensions'): x.t() def test_take(self): def check(src, idx): expected = src.contiguous().view(-1).index_select( 0, idx.contiguous().view(-1)).view_as(idx) actual = src.take(idx) self.assertEqual(actual.size(), idx.size()) self.assertEqual(expected, actual) src = torch.randn(2, 3, 5) idx = torch.LongTensor([[0, 2], [3, 4]]) check(src, idx) check(src.transpose(1, 2), idx) check(src.bool(), idx) def test_put_(self): def check(dst, idx, value): expected = dst.clone(memory_format=torch.contiguous_format).view(-1).index_copy_( 0, idx.contiguous().view(-1), value.contiguous().view(-1)) expected = expected.view_as(dst) dst.put_(idx, value) self.assertEqual(expected, dst) dst = torch.randn(2, 3, 5) idx = torch.LongTensor([[0, 2], [3, 4]]) values = torch.randn(2, 2) check(dst, idx, values) check(dst.transpose(1, 2), idx, values) values = torch.tensor([[False, False], [False, False]]) check(dst.bool(), idx, values) def test_put_accumulate(self): dst = torch.ones(2, 2) idx = torch.LongTensor([[0, 1], [0, 1]]) src = torch.Tensor([1, 2, 3, 4]) dst.put_(idx, src, accumulate=True) self.assertEqual(dst.tolist(), [[5, 7], [1, 1]]) # Fill idx with valid indices. @staticmethod def _fill_indices(self, idx, dim, dim_size, elems_per_row, m, n, o): for i in range(1 if dim == 0 else m): for j in range(1 if dim == 1 else n): for k in range(1 if dim == 2 else o): ii = [i, j, k] ii[dim] = slice(0, idx.size(dim) + 1) idx[tuple(ii)] = torch.randperm(dim_size)[0:elems_per_row] def test_flatten(self): # Test that flatten returns 1-dim tensor when given a 0-dim tensor zero_dim_tensor = torch.tensor(123) flat0 = zero_dim_tensor.flatten() one_dim_tensor = torch.tensor([123]) flat1 = zero_dim_tensor.flatten() self.assertEqual(zero_dim_tensor.shape, torch.Size([])) self.assertEqual(flat0.shape, torch.Size([1])) self.assertEqual(one_dim_tensor.shape, torch.Size([1])) self.assertEqual(flat1.shape, torch.Size([1])) self.assertEqual(flat0, one_dim_tensor) self.assertEqual(flat0, flat1) self.assertEqual(flat0.shape, flat1.shape) # Test both float tensor and quantized tensor tensors = [torch.randn(5, 5, 5, 5), torch._empty_affine_quantized([5, 5, 5, 5], scale=2, zero_point=3, dtype=torch.quint8)] for src in tensors: flat = src.flatten(0, -1) self.assertEqual(flat.shape, torch.Size([625])) self.assertEqual(src.view(-1), flat.view(-1)) flat = src.flatten(0, 2) self.assertEqual(flat.shape, torch.Size([125, 5])) self.assertEqual(src.view(-1), flat.view(-1)) flat = src.flatten(0, 1) self.assertEqual(flat.shape, torch.Size([25, 5, 5])) self.assertEqual(src.view(-1), flat.view(-1)) flat = src.flatten(1, 2) self.assertEqual(flat.shape, torch.Size([5, 25, 5])) self.assertEqual(src.view(-1), flat.view(-1)) flat = src.flatten(2, 3) self.assertEqual(flat.shape, torch.Size([5, 5, 25])) self.assertEqual(src.view(-1), flat.view(-1)) flat = src.flatten(-2, -1) self.assertEqual(flat.shape, torch.Size([5, 5, 25])) self.assertEqual(src.view(-1), flat.view(-1)) flat = src.flatten(2, 2) self.assertEqual(flat, src) # out of bounds index with self.assertRaisesRegex(IndexError, 'Dimension out of range'): src.flatten(5, 10) # invalid start and end with self.assertRaisesRegex(RuntimeError, 'start_dim cannot come after end_dim'): src.flatten(2, 0) @staticmethod def _test_gather(self, cast, test_bounds=True): m, n, o = random.randint(10, 20), random.randint(10, 20), random.randint(10, 20) elems_per_row = random.randint(1, 10) dim = random.randrange(3) src = torch.randn(m, n, o) idx_size = [m, n, o] idx_size[dim] = elems_per_row idx = torch.LongTensor().resize_(*idx_size) _TestTorchMixin._fill_indices(self, idx, dim, src.size(dim), elems_per_row, m, n, o) src = cast(src) idx = cast(idx) actual = torch.gather(src, dim, idx) expected = cast(torch.Tensor().resize_(*idx_size)) for i in range(idx_size[0]): for j in range(idx_size[1]): for k in range(idx_size[2]): ii = [i, j, k] ii[dim] = idx[i, j, k] expected[i, j, k] = src[tuple(ii)] self.assertEqual(actual, expected, 0) if test_bounds: idx[0][0][0] = 23 self.assertRaises(RuntimeError, lambda: torch.gather(src, dim, idx)) src = cast(torch.randn(3, 4, 5)) expected, idx = src.max(2, True) expected = cast(expected) idx = cast(idx) actual = torch.gather(src, 2, idx) self.assertEqual(actual, expected, 0) # Bool test case t = torch.tensor([[False, True], [True, True]]) self.assertEqual(torch.gather(t, 1, torch.tensor([[0, 0], [1, 0]])), torch.tensor([[False, False], [True, True]])) def test_gather(self): self._test_gather(self, lambda t: t) @staticmethod def _test_scatter_base(self, cast, method, is_scalar=False, test_bounds=True): m, n, o = random.randint(10, 20), random.randint(10, 20), random.randint(10, 20) elems_per_row = random.randint(1, 10) dim = random.randrange(3) idx_size = [m, n, o] idx_size[dim] = elems_per_row idx = cast(torch.LongTensor().resize_(*idx_size)) _TestTorchMixin._fill_indices(self, idx, dim, ([m, n, o])[dim], elems_per_row, m, n, o) src_size = [random.randint(1, 5) + s for s in idx_size] if is_scalar: src = random.random() else: src = cast(torch.Tensor(*src_size).normal_()) base = cast(torch.randn(m, n, o)) actual = getattr(base.clone(), method)(dim, idx, src) expected = base.clone() for i in range(idx_size[0]): for j in range(idx_size[1]): for k in range(idx_size[2]): ii = [i, j, k] ii[dim] = idx[i, j, k] if method == 'scatter_' and not is_scalar: expected[tuple(ii)] = src[i, j, k] elif method == 'scatter_add_': expected[tuple(ii)] += src[i, j, k] else: expected[tuple(ii)] = src self.assertEqual(actual, expected, 0) if test_bounds: idx[0][0][0] = 34 with self.assertRaises(RuntimeError): getattr(base.clone(), method)(dim, idx, src) # test for empty index, should be a no-op idx = cast(torch.LongTensor()) actual = getattr(base.clone(), method)(dim, idx, src) self.assertEqual(actual, base, 0) def test_scatter(self): self._test_scatter_base(self, lambda t: t, 'scatter_') def test_scatterAdd(self): self._test_scatter_base(self, lambda t: t, 'scatter_add_') def test_scatterFill(self): self._test_scatter_base(self, lambda t: t, 'scatter_', True) def test_masked_scatter(self): with warnings.catch_warnings(record=True) as w: for maskType in [torch.uint8, torch.bool]: for dt in torch.testing.get_all_dtypes(): num_copy, num_dest = 3, 10 dest = torch.tensor([1, 2, 3, 4, 5, 6, 7, 8, 9, 10], dtype=dt) dest2 = dest.clone() src = torch.tensor([0, 0, 0, 0, 0, 0, 0, 0, 0, 0], dtype=dt) mask = torch.tensor((0, 0, 0, 0, 1, 0, 1, 0, 1, 0), dtype=maskType) if dt == torch.bool: # torch.bool is a special case and is being tested # in a separate test continue if dt == torch.half: self.assertRaises(RuntimeError, lambda: dest.masked_scatter_(mask, src)) continue dest.masked_scatter_(mask, src) j = 0 for i in range(num_dest): if mask[i]: dest2[i] = src[j] j += 1 self.assertEqual(dest, dest2, 0) # make source bigger than number of 1s in mask src = torch.tensor([1, 1, 1, 1, 1, 1, 1, 1, 1, 1], dtype=dt) dest.masked_scatter_(mask, src) # make src smaller. this should fail src = torch.randn(num_copy - 1) with self.assertRaises(RuntimeError): dest.masked_scatter_(mask, src) # Only 16 (not 25) here as the warnings in the assertRaises are not caught on the python side self.assertEqual(len(w), 16) warn = 'masked_scatter_ received a mask with dtype torch.uint8,' for wi in w: self.assertEqual(str(wi.message)[0:55], str(warn)) def test_masked_fill(self): with warnings.catch_warnings(record=True) as w: for dt in torch.testing.get_all_dtypes(): for dtype in [torch.uint8, torch.bool]: num_dest = 10 dst = torch.tensor([0, 0, 0, 0, 0, 0, 0, 0, 0, 0], dtype=dt) mask = torch.rand(num_dest).mul(2).floor().to(dtype) val = random.random() dst2 = dst.clone() if dt == torch.half: self.assertRaises(RuntimeError, lambda: dst.masked_fill_(mask, val)) continue dst.masked_fill_(mask, val) for i in range(num_dest): if mask[i]: dst2[i] = val self.assertEqual(dst, dst2, 0) # test non-contiguous case dst = torch.randn(num_dest, num_dest, num_dest).permute((2, 0, 1)) dst2 = dst.clone() dst.masked_fill_((dst > 0).to(dtype), val) dst2.masked_fill_((dst2 > 0).to(dtype), val) self.assertEqual(dst, dst2, 0) # Only 27 (not 28) here as the warning in the assertRaises are not caught on the python side self.assertEqual(len(w), 27) warn = 'masked_fill_ received a mask with dtype torch.uint8,' for wi in w: self.assertEqual(str(wi.message)[0:52], str(warn)) @slowTest def test_abs(self): def _test_abs(tensors_dict): for _category, tensors in tensors_dict.items(): for data in tensors: _test_abs_single(data) def _test_abs_single(data): switch = torch.rand(data.size()).mul(2).floor().mul(2).add(-1).type(data.dtype) res = torch.mul(data, switch) self.assertTensorsSlowEqual(res.abs(), data, 1e-16) shapes = [(3, 4), (3, 5, 7), (2, 2, 5, 8, 2, 3), (1000,), (10, 10, 10)] for shape in shapes: # Test all except char/byte _test_abs(self._make_tensors(shape, val_range=(0, 1000))) # Test char _test_abs_single(torch.CharTensor(*shape).random_(0, 100)) # Test byte byte_tensor = torch.ByteTensor(*shape).random_(0, 100) self.assertTensorsSlowEqual(byte_tensor, byte_tensor.abs(), 1e-16) # Checking that the right abs function is called for LongTensor bignumber = 2 ** 31 + 1 res = torch.LongTensor((-bignumber,)) self.assertGreater(res.abs()[0], 0) # One of rec = torch.randn(2, 2, 3, 7, 6, 2).type(torch.float64).clamp(0, 1) val1 = rec.select(-1, -1)[0][0][0].sum() val2 = rec.select(-1, -1).abs()[0][0][0].sum() self.assertEqual(val1, val2, 1e-8, 'absolute value') # Both abs(0.0) and abs(-0.0) should result in 0.0 for dtype in (torch.float, torch.double): for abs_zeros in (torch.tensor([0.0, -0.0], dtype=dtype).abs().tolist(), # test a large tensor so that the vectorized version is tested torch.abs(-torch.zeros(10000, dtype=dtype)).tolist()): for num in abs_zeros: self.assertGreater(math.copysign(1.0, num), 0.0) def test_unbiased(self): tensor = torch.randn(100) self.assertEqual(tensor.var(0), tensor.var(0, unbiased=True)) self.assertEqual(tensor.var(), tensor.var(unbiased=True)) self.assertEqual(tensor.var(unbiased=False), tensor.var(0, unbiased=False)) tensor = torch.FloatTensor([1.0, 2.0]) self.assertEqual(tensor.var(unbiased=True), 0.5) self.assertEqual(tensor.var(unbiased=False), 0.25) tensor = torch.FloatTensor([1.0, 2.0, 3.0]) self.assertEqual(tensor.var(unbiased=True), 1.0) self.assertEqual(tensor.var(unbiased=False), 2.0 / 3.0) tensor = torch.randn(100) self.assertEqual(tensor.std(0), tensor.std(0, unbiased=True)) self.assertEqual(tensor.std(), tensor.std(unbiased=True)) self.assertEqual(tensor.std(unbiased=False), tensor.std(0, unbiased=False)) def test_structseq_repr(self): a = torch.arange(250).reshape(5, 5, 10) expected = """ torch.return_types.max( values=tensor([[ 40, 41, 42, 43, 44, 45, 46, 47, 48, 49], [ 90, 91, 92, 93, 94, 95, 96, 97, 98, 99], [140, 141, 142, 143, 144, 145, 146, 147, 148, 149], [190, 191, 192, 193, 194, 195, 196, 197, 198, 199], [240, 241, 242, 243, 244, 245, 246, 247, 248, 249]]), indices=tensor([[4, 4, 4, 4, 4, 4, 4, 4, 4, 4], [4, 4, 4, 4, 4, 4, 4, 4, 4, 4], [4, 4, 4, 4, 4, 4, 4, 4, 4, 4], [4, 4, 4, 4, 4, 4, 4, 4, 4, 4], [4, 4, 4, 4, 4, 4, 4, 4, 4, 4]]))""" self.assertEqual(repr(a.max(1)), textwrap.dedent(expected).strip()) def test_var_stability(self): tensor = torch.FloatTensor([2281.5, 2281.25]) self.assertEqual(tensor.var(dim=0), 0.03125) self.assertEqual(tensor.var(), 0.03125) def test_view_empty(self): x = torch.randn(0, 6) self.assertEqual((1, 0, 6, 1, 1), x.view(1, 0, 6, 1, 1).shape) def test_reshape(self): x = torch.randn(3, 3) self.assertEqual(x.data_ptr(), x.reshape(-1).data_ptr()) self.assertEqual(x.data_ptr(), x.reshape(1, 9, 1).data_ptr()) self.assertEqual(torch.reshape(x, (9,)), x.reshape(9)) self.assertRaises(RuntimeError, lambda: x.reshape(-1, -1)) y = torch.randn(4, 4, 4)[:, 0, :] self.assertNotEqual(y.data_ptr(), y.reshape(-1).data_ptr()) self.assertEqual(y.contiguous().view(-1), y.reshape(-1)) self.assertEqual(y.reshape(2, 2, 4).data_ptr(), y.data_ptr()) s = torch.randn(()) self.assertEqual(s.data_ptr(), s.reshape(()).data_ptr()) self.assertEqual(s.reshape(-1).shape, (1,)) self.assertRaises(RuntimeError, lambda: s.reshape(2)) empty = torch.tensor([]) self.assertEqual(empty, empty.reshape(-1)) self.assertEqual(empty, empty.reshape([0])) # TODO: fix these once we have multi-dimensional empty tensors self.assertEqual(empty.reshape([0, 1]).shape, (0, 1)) self.assertEqual(empty.reshape([1, -1]).shape, (1, 0)) self.assertRaises(RuntimeError, lambda: empty.reshape(1)) x = torch.randn(3, 3) self.assertEqual(x.data_ptr(), x.reshape_as(torch.rand(9)).data_ptr()) self.assertEqual(x.data_ptr(), x.reshape_as(torch.rand(1, 9, 1)).data_ptr()) self.assertRaises(RuntimeError, lambda: x.reshape_as(torch.rand(10))) def test_empty_reshape(self): x = torch.randn(0, 6) self.assertEqual((1, 0, 6, 1, 1), x.reshape(1, 0, 6, 1, 1).shape) # should be viewable -- i.e. data_ptr is the same. self.assertEqual(x.data_ptr(), x.reshape(1, 0, 6, 1, 1).data_ptr()) # match NumPy semantics -- don't infer the size of dimension with a degree of freedom self.assertRaises(RuntimeError, lambda: x.reshape(0, -1)) def check_single_matmul(self, x, y, shape): a = np.array(x, copy=False) b = np.array(y, copy=False) expected = np.matmul(a, b) ans = torch.matmul(x, y) self.assertTrue(ans.is_contiguous()) self.assertTrue(np.array_equal(ans, expected)) out = torch.zeros(*shape, dtype=torch.int64) ans = torch.matmul(x, y, out=out) self.assertIs(ans, out) self.assertTrue(ans.is_contiguous()) self.assertTrue(np.array_equal(ans, expected)) @unittest.skipIf(not TEST_NUMPY, "Numpy not found") def test_matmul_small_brute_force_1d_Nd(self): # Issue #20452: range(0, 10) does not work. n = 1 for m in range(1, 8): for p in range(1, 8): for o in range(1, 5): # 1d, 3d, inner dimensions C x = torch.arange(m) y = torch.arange(o * m * p).reshape(o, m, p) self.check_single_matmul(x, y, (o, n, p)) # 1d, 3d, inner dimensions Fortran x = torch.arange(m) y = torch.arange(o * p * m).reshape(o, p, m).transpose(-1, -2) self.check_single_matmul(x, y, (o, n, p)) # 1d, 3d, inner dimensions non-contiguous x = torch.arange(2 * m)[::2] y = torch.arange(o * m * 2 * p).reshape(o, m, 2 * p)[:, :, ::2] self.check_single_matmul(x, y, (o, n, p)) for r in range(1, 5): # 1d, 4d, inner dimensions C x = torch.arange(m) y = torch.arange(r * o * m * p).reshape(r, o, m, p) self.check_single_matmul(x, y, (r, o, n, p)) # 1d, 4d, inner dimensions Fortran x = torch.arange(m) y = torch.arange(r * o * p * m).reshape(r, o, p, m).transpose(-1, -2) self.check_single_matmul(x, y, (r, o, n, p)) # 1d, 4d, inner dimensions non-contiguous x = torch.arange(2 * m)[::2] y = torch.arange(r * o * m * 2 * p).reshape(r, o, m, 2 * p)[:, :, :, ::2] self.check_single_matmul(x, y, (r, o, n, p)) @unittest.skipIf(not TEST_NUMPY, "Numpy not found") def test_matmul_small_brute_force_2d_Nd(self): # Issue #20452: range(0, 10) does not work. for n in range(1, 5): for m in range(1, 5): for p in range(1, 5): for o in range(1, 3): # 2d, 3d, inner dimensions C x = torch.arange(n * m).reshape(n, m) y = torch.arange(o * m * p).reshape(o, m, p) self.check_single_matmul(x, y, (o, n, p)) # 2d, 3d, inner dimensions Fortran x = torch.arange(m * n).reshape(m, n).transpose(-1, -2) y = torch.arange(o * p * m).reshape(o, p, m).transpose(-1, -2) self.check_single_matmul(x, y, (o, n, p)) # 2d, 3d, inner dimensions non-contiguous x = torch.arange(n * 2 * m).reshape(n, 2 * m)[:, ::2] y = torch.arange(o * m * 2 * p).reshape(o, m, 2 * p)[:, :, ::2] self.check_single_matmul(x, y, (o, n, p)) for r in range(1, 2): # 2d, 4d, inner dimensions C x = torch.arange(n * m).reshape(n, m) y = torch.arange(r * o * m * p).reshape(r, o, m, p) self.check_single_matmul(x, y, (r, o, n, p)) # 2d, 4d, inner dimensions Fortran x = torch.arange(m * n).reshape(m, n).transpose(-1, -2) y = torch.arange(r * o * p * m).reshape(r, o, p, m).transpose(-1, -2) self.check_single_matmul(x, y, (r, o, n, p)) # 2d, 4d, inner dimensions non-contiguous x = torch.arange(n * 2 * m).reshape(n, 2 * m)[:, ::2] y = torch.arange(r * o * m * 2 * p).reshape(r, o, m, 2 * p)[:, :, :, ::2] self.check_single_matmul(x, y, (r, o, n, p)) def test_expand(self): tensor = torch.rand(1, 8, 1) tensor2 = torch.rand(5) template = torch.rand(4, 8, 5) target = template.size() self.assertEqual(tensor.expand_as(template).size(), target) self.assertEqual(tensor.expand(4, 8, 5).size(), target) self.assertEqual(tensor.expand(target).size(), target) self.assertEqual(tensor2.expand_as(template).size(), target) self.assertEqual(tensor2.expand(4, 8, 5).size(), target) self.assertEqual(tensor2.expand(target).size(), target) # test double expand self.assertEqual(tensor2.expand(1, 5).expand(2, 2, 5), tensor2.repeat(2, 2, 1)) # test non-contiguous noncontig = torch.randn(5, 2, 1, 3)[:, 0] self.assertFalse(noncontig.is_contiguous()) self.assertEqual(noncontig.expand(2, 5, 4, 3), noncontig.contiguous().repeat(2, 1, 4, 1)) # make sure it's compatible with unsqueeze expanded = tensor2.expand(1, 1, 5) unsqueezed = tensor2.unsqueeze(0).unsqueeze(1) self.assertEqual(expanded, unsqueezed) self.assertEqual(expanded.stride(), unsqueezed.stride()) # test -1 as target size self.assertEqual(tensor.expand(4, -1, 5), tensor.expand(4, 8, 5)) self.assertRaises(RuntimeError, lambda: tensor2.expand(-1, -1)) # test expanding empty to empty self.assertEqual(torch.zeros(0).expand((0,)), torch.zeros(0)) def test_repeat(self): initial_shape = (8, 4) tensor = torch.rand(*initial_shape) size = (3, 1, 1) torchSize = torch.Size(size) target = [3, 8, 4] self.assertEqual(tensor.repeat(*size).size(), target, 'Error in repeat') self.assertEqual(tensor.repeat(torchSize).size(), target, 'Error in repeat using LongStorage') result = tensor.repeat(*size) self.assertEqual(result.size(), target, 'Error in repeat using result') result = tensor.repeat(torchSize) self.assertEqual(result.size(), target, 'Error in repeat using result and LongStorage') self.assertEqual(result.mean(0).view(8, 4), tensor, 'Error in repeat (not equal)') zeroDimTarget = torch.Size([24, 0]) self.assertEqual(tensor.repeat((3, 0)).size(), zeroDimTarget, "Error when calling with 0 repeats") def test_repeat_interleave(self): x = torch.tensor([0, 1, 2, 3]) expected = torch.tensor([1, 2, 2, 3, 3, 3]) self.assertEqual(torch.repeat_interleave(x), expected) with self.assertRaises(RuntimeError): torch.repeat_interleave(torch.arange(4).reshape(2, 2)) with self.assertRaises(RuntimeError): torch.repeat_interleave(torch.arange(4.0)) with self.assertRaises(RuntimeError): torch.repeat_interleave(torch.tensor([1, 2, -1, 3, 4])) y = torch.tensor([[1, 2], [3, 4]]) y1_v1 = torch.repeat_interleave(y, 2) y1_v2 = torch.repeat_interleave(y, torch.tensor(2)) y1_v3 = torch.repeat_interleave(y, torch.tensor([2])) y1_expect = torch.tensor([1, 1, 2, 2, 3, 3, 4, 4]) self.assertEqual(y1_v1, y1_expect) self.assertEqual(y1_v2, y1_expect) self.assertEqual(y1_v3, y1_expect) y2 = torch.repeat_interleave(y, 3, dim=1) y2_expect = torch.tensor([[1, 1, 1, 2, 2, 2], [3, 3, 3, 4, 4, 4]]) self.assertEqual(y2, y2_expect) y3 = torch.repeat_interleave(y, torch.tensor([1, 2]), dim=0) y3_expect = torch.tensor([[1, 2], [3, 4], [3, 4]]) self.assertEqual(y3, y3_expect) with self.assertRaises(RuntimeError): torch.repeat_interleave(y, torch.tensor([1, 2, 3]), dim=0) with self.assertRaises(RuntimeError): torch.repeat_interleave(y, torch.arange(9).reshape(3, 3), dim=0) # test zero sized dimension x = torch.zeros((5, 0)) y = torch.repeat_interleave(x, repeats=3, dim=1) self.assertEqual(y, x.new_zeros(5, 0)) x = torch.tensor([], dtype=torch.int64) y = torch.repeat_interleave(x, x) self.assertEqual(y, x) @unittest.skipIf(not TEST_NUMPY, "Numpy not found") def test_repeat_tile(self): initial_shape = (8, 4) repeats = ((3, 1, 1), (3, 3, 3), (1, 2, 1), (2, 2, 2, 2)) def _generate_noncontiguous_input(): out = np.broadcast_to(np.random.random((1, 4)), initial_shape) # Note: non-writeable NumPy arrays will warn if converted to tensors out.setflags(write=True) assert not (out.flags.c_contiguous or out.flags.f_contiguous) return out for repeat in repeats: for tensor in (torch.from_numpy(np.random.random(initial_shape)), torch.from_numpy(_generate_noncontiguous_input()),): self.assertEqual(tensor.repeat(*repeat).numpy(), np.tile(tensor.numpy(), repeat)) def test_is_same_size(self): t1 = torch.Tensor(3, 4, 9, 10) t2 = torch.Tensor(3, 4) t3 = torch.Tensor(1, 9, 3, 3) t4 = torch.Tensor(3, 4, 9, 10) self.assertFalse(t1.is_same_size(t2)) self.assertFalse(t1.is_same_size(t3)) self.assertTrue(t1.is_same_size(t4)) def test_tensor_set(self): t1 = torch.Tensor() t2 = torch.Tensor(3, 4, 9, 10).uniform_() t1.set_(t2) self.assertEqual(t1.storage()._cdata, t2.storage()._cdata) size = torch.Size([9, 3, 4, 10]) t1.set_(t2.storage(), 0, size) self.assertEqual(t1.size(), size) t1.set_(t2.storage(), 0, tuple(size)) self.assertEqual(t1.size(), size) self.assertEqual(t1.stride(), (120, 40, 10, 1)) stride = (10, 360, 90, 1) t1.set_(t2.storage(), 0, size, stride) self.assertEqual(t1.stride(), stride) t1.set_(t2.storage(), 0, size=size, stride=stride) self.assertEqual(t1.size(), size) self.assertEqual(t1.stride(), stride) # test argument names t1 = torch.Tensor() # 1. case when source is tensor t1.set_(source=t2) self.assertEqual(t1.storage()._cdata, t2.storage()._cdata) # 2. case when source is storage t1.set_(source=t2.storage()) self.assertEqual(t1.storage()._cdata, t2.storage()._cdata) # 3. case when source is storage, and other args also specified t1.set_(source=t2.storage(), storage_offset=0, size=size, stride=stride) self.assertEqual(t1.size(), size) self.assertEqual(t1.stride(), stride) t1 = torch.tensor([True, True], dtype=torch.bool) t2 = torch.tensor([False, False], dtype=torch.bool) t1.set_(t2) self.assertEqual(t1.storage()._cdata, t2.storage()._cdata) def test_tensor_set_errors(self): f_cpu = torch.randn((2, 3), dtype=torch.float32) d_cpu = torch.randn((2, 3), dtype=torch.float64) # change dtype self.assertRaises(RuntimeError, lambda: f_cpu.set_(d_cpu.storage())) self.assertRaises(RuntimeError, lambda: f_cpu.set_(d_cpu.storage(), 0, d_cpu.size(), d_cpu.stride())) self.assertRaises(RuntimeError, lambda: f_cpu.set_(d_cpu)) # change device if torch.cuda.is_available(): f_cuda = torch.randn((2, 3), dtype=torch.float32, device='cuda') # cpu -> cuda self.assertRaises(RuntimeError, lambda: f_cpu.set_(f_cuda.storage())) self.assertRaises(RuntimeError, lambda: f_cpu.set_(f_cuda.storage(), 0, f_cuda.size(), f_cuda.stride())) self.assertRaises(RuntimeError, lambda: f_cpu.set_(f_cuda)) # cuda -> cpu self.assertRaises(RuntimeError, lambda: f_cuda.set_(f_cpu.storage())) self.assertRaises(RuntimeError, lambda: f_cuda.set_(f_cpu.storage(), 0, f_cpu.size(), f_cpu.stride())) self.assertRaises(RuntimeError, lambda: f_cuda.set_(f_cpu)) def test_equal(self): # Contiguous, 1D t1 = torch.Tensor((3, 4, 9, 10)) t2 = t1.contiguous() t3 = torch.Tensor((1, 9, 3, 10)) t4 = torch.Tensor((3, 4, 9)) t5 = torch.Tensor() self.assertTrue(t1.equal(t2)) self.assertFalse(t1.equal(t3)) self.assertFalse(t1.equal(t4)) self.assertFalse(t1.equal(t5)) self.assertTrue(torch.equal(t1, t2)) self.assertFalse(torch.equal(t1, t3)) self.assertFalse(torch.equal(t1, t4)) self.assertFalse(torch.equal(t1, t5)) # Non contiguous, 2D s = torch.Tensor(((1, 2, 3, 4), (5, 6, 7, 8))) s1 = s[:, 1:3] s2 = s1.clone() s3 = torch.Tensor(((2, 3), (6, 7))) s4 = torch.Tensor(((0, 0), (0, 0))) self.assertFalse(s1.is_contiguous()) self.assertTrue(s1.equal(s2)) self.assertTrue(s1.equal(s3)) self.assertFalse(s1.equal(s4)) self.assertTrue(torch.equal(s1, s2)) self.assertTrue(torch.equal(s1, s3)) self.assertFalse(torch.equal(s1, s4)) def test_element_size(self): byte = torch.ByteStorage().element_size() char = torch.CharStorage().element_size() short = torch.ShortStorage().element_size() int = torch.IntStorage().element_size() long = torch.LongStorage().element_size() float = torch.FloatStorage().element_size() double = torch.DoubleStorage().element_size() bool = torch.BoolStorage().element_size() bfloat16 = torch.BFloat16Storage().element_size() self.assertEqual(byte, torch.ByteTensor().element_size()) self.assertEqual(char, torch.CharTensor().element_size()) self.assertEqual(short, torch.ShortTensor().element_size()) self.assertEqual(int, torch.IntTensor().element_size()) self.assertEqual(long, torch.LongTensor().element_size()) self.assertEqual(float, torch.FloatTensor().element_size()) self.assertEqual(double, torch.DoubleTensor().element_size()) self.assertEqual(bool, torch.BoolTensor().element_size()) self.assertGreater(byte, 0) self.assertGreater(char, 0) self.assertGreater(short, 0) self.assertGreater(int, 0) self.assertGreater(long, 0) self.assertGreater(float, 0) self.assertGreater(double, 0) self.assertGreater(bool, 0) self.assertGreater(bfloat16, 0) # These tests are portable, not necessarily strict for your system. self.assertEqual(byte, 1) self.assertEqual(char, 1) self.assertEqual(bool, 1) self.assertGreaterEqual(short, 2) self.assertGreaterEqual(int, 2) self.assertGreaterEqual(int, short) self.assertGreaterEqual(long, 4) self.assertGreaterEqual(long, int) self.assertGreaterEqual(double, float) def test_split(self): tensor = torch.rand(7, 4) split_size = 3 dim = 0 target_sizes = ([3, 4], [3, 4], [1, 4]) splits = tensor.split(split_size, dim) start = 0 for target_size, split in zip(target_sizes, splits): self.assertEqual(split.size(), target_size) self.assertEqual(tensor.narrow(dim, start, target_size[dim]), split, 0) start = start + target_size[dim] # Variable sections split tensor = torch.randn(20, 10) dim = 0 split_sizes = [5, 5, 10] target_sizes = ([[5, 10], [5, 10], [10, 10]]) splits = tensor.split(split_sizes, dim) start = 0 for target_size, split in zip(target_sizes, splits): self.assertEqual(split.size(), target_size) self.assertEqual(tensor.narrow(dim, start, target_size[dim]), split, 0) start = start + target_size[dim] split_sizes = [2, 2, 6] target_sizes = ([20, 2], [20, 2], [20, 6]) dim = 1 splits = tensor.split(split_sizes, dim) start = 0 for target_size, split in zip(target_sizes, splits): self.assertEqual(split.size(), target_size) self.assertEqual(tensor.narrow(dim, start, target_size[dim]), split, 0) start = start + target_size[dim] def test_chunk(self): tensor = torch.rand(4, 7) num_chunks = 3 dim = 1 target_sizes = ([4, 3], [4, 3], [4, 1]) splits = tensor.chunk(num_chunks, dim) start = 0 for target_size, split in zip(target_sizes, splits): self.assertEqual(split.size(), target_size) self.assertEqual(tensor.narrow(dim, start, target_size[dim]), split, 0) start = start + target_size[dim] # Invalid chunk sizes error_regex = 'chunk expects.*greater than 0' with self.assertRaisesRegex(RuntimeError, error_regex): tensor.chunk(0) with self.assertRaisesRegex(RuntimeError, error_regex): tensor.chunk(-2) def test_tolist(self): list0D = [] tensor0D = torch.Tensor(list0D) self.assertEqual(tensor0D.tolist(), list0D) table1D = [1, 2, 3] tensor1D = torch.Tensor(table1D) storage = torch.Storage(table1D) self.assertEqual(tensor1D.tolist(), table1D) self.assertEqual(storage.tolist(), table1D) self.assertEqual(tensor1D.tolist(), table1D) self.assertEqual(storage.tolist(), table1D) table2D = [[1, 2], [3, 4]] tensor2D = torch.Tensor(table2D) self.assertEqual(tensor2D.tolist(), table2D) tensor3D = torch.Tensor([[[1, 2], [3, 4]], [[5, 6], [7, 8]]]) tensorNonContig = tensor3D.select(1, 1) self.assertFalse(tensorNonContig.is_contiguous()) self.assertEqual(tensorNonContig.tolist(), [[3, 4], [7, 8]]) def test_permute(self): orig = [1, 2, 3, 4, 5, 6, 7] perm = torch.randperm(7).tolist() x = torch.Tensor(*orig).fill_(0) new = list(map(lambda x: x - 1, x.permute(*perm).size())) self.assertEqual(perm, new) self.assertEqual(x.size(), orig) def test_reversed(self): val = torch.arange(0, 10) self.assertEqual(reversed(val), torch.arange(9, -1, -1)) val = torch.arange(1, 10).view(3, 3) self.assertEqual(reversed(val), torch.tensor([[7, 8, 9], [4, 5, 6], [1, 2, 3]])) val = torch.tensor(42) self.assertEqual(reversed(val), torch.tensor(42)) def test_contains(self): x = torch.arange(0, 10) self.assertEqual(4 in x, True) self.assertEqual(12 in x, False) x = torch.arange(1, 10).view(3, 3) val = torch.arange(1, 4) self.assertEqual(val in x, True) val += 10 self.assertEqual(val in x, False) self.assertRaisesRegex( RuntimeError, "Tensor.__contains__ only supports Tensor or scalar, but you passed in a {}.".format(type("foo")), lambda: "foo" in x) self.assertRaisesRegex( RuntimeError, "Tensor.__contains__ only supports Tensor or scalar, but you passed in a {}.".format(type([1, 2])), lambda: [1, 2] in x) def test_storage(self): v = torch.randn(3, 5) self.assertEqual(v.storage()[0], v[0][0]) self.assertEqual(v.storage()[14], v[2][4]) def test_deepcopy(self): from copy import deepcopy a = torch.randn(5, 5) b = torch.randn(5, 5) c = a.view(25) q = [a, [a.storage(), b.storage()], b, c] w = deepcopy(q) self.assertEqual(w[0], q[0], 0) self.assertEqual(w[1][0], q[1][0], 0) self.assertEqual(w[1][1], q[1][1], 0) self.assertEqual(w[1], q[1], 0) self.assertEqual(w[2], q[2], 0) # Check that deepcopy preserves sharing w[0].add_(1) for i in range(a.numel()): self.assertEqual(w[1][0][i], q[1][0][i] + 1) self.assertEqual(w[3], c + 1) w[2].sub_(1) for i in range(a.numel()): self.assertEqual(w[1][1][i], q[1][1][i] - 1) def test_deepcopy_scalar(self): from copy import deepcopy a = torch.tensor(5) self.assertEqual(a.size(), deepcopy(a).size()) self.assertEqual(a, deepcopy(a)) def test_deepcopy_parameter(self): from copy import deepcopy l = torch.nn.Linear(10, 1) s = l.state_dict(keep_vars=True) self.assertEqual(torch.nn.Parameter, type(s['weight'])) self.assertEqual(torch.nn.Parameter, type(s['bias'])) s2 = deepcopy(s) self.assertEqual(torch.nn.Parameter, type(s2['weight'])) self.assertEqual(torch.nn.Parameter, type(s2['bias'])) def test_pickle(self): if sys.version_info[0] == 2: import cPickle as pickle else: import pickle a = torch.randn(5, 5) serialized = pickle.dumps(a) b = pickle.loads(serialized) self.assertEqual(a, b) def test_pickle_parameter(self): if sys.version_info[0] == 2: import cPickle as pickle else: import pickle a = torch.nn.Parameter(torch.randn(5, 5)) serialized = pickle.dumps(a) b = pickle.loads(serialized) self.assertTrue(isinstance(b, torch.nn.Parameter)) self.assertEqual(a.requires_grad, b.requires_grad) self.assertEqual(a, b) def test_pickle_parameter_no_requires_grad(self): if sys.version_info[0] == 2: import cPickle as pickle else: import pickle a = torch.nn.Parameter(torch.randn(5, 5), requires_grad=False) serialized = pickle.dumps(a) b = pickle.loads(serialized) self.assertTrue(isinstance(b, torch.nn.Parameter)) self.assertEqual(a.requires_grad, b.requires_grad) self.assertEqual(a, b) def test_pickle_dtype(self): t = torch.float32 serialized = pickle.dumps(t) b = pickle.loads(serialized) self.assertTrue(isinstance(b, torch.dtype)) self.assertEqual(id(b), id(t)) def test_pickle_size(self): a = torch.rand(10).size() serialized = pickle.dumps(a) b = pickle.loads(serialized) self.assertTrue(isinstance(b, torch.Size)) self.assertEqual(a, b) def test_norm_fastpaths(self): x = torch.randn(3, 5) # slow path result = torch.norm(x, 4.5, 1) expected = torch.pow(x.abs().pow(4.5).sum(1), 1.0 / 4.5) self.assertEqual(result, expected) # fast 0-norm result = torch.norm(x, 0, 1) expected = (x != 0).type_as(x).sum(1) self.assertEqual(result, expected) # fast 1-norm result = torch.norm(x, 1, 1) expected = x.abs().sum(1) self.assertEqual(result, expected) # fast 2-norm result = torch.norm(x, 2, 1) expected = torch.sqrt(x.pow(2).sum(1)) self.assertEqual(result, expected) # fast 3-norm result = torch.norm(x, 3, 1) expected = torch.pow(x.pow(3).abs().sum(1), 1.0 / 3.0) self.assertEqual(result, expected) @staticmethod def _test_bernoulli(self, t_dtype, p_dtype, device): for trivial_p in ([0, 1], [1, 0, 1, 1, 0, 1]): x = torch.tensor(trivial_p, dtype=p_dtype, device=device) self.assertEqual(x.bernoulli().tolist(), trivial_p) def isBinary(t): return torch.ne(t, 0).mul_(torch.ne(t, 1)).sum().item() == 0 p = torch.rand(5, 5, dtype=p_dtype, device=device) self.assertTrue(isBinary(p.bernoulli())) p = torch.rand(5, dtype=p_dtype, device=device).expand(5, 5) self.assertTrue(isBinary(p.bernoulli())) p = torch.rand(5, 5, dtype=p_dtype, device=device) torch.bernoulli(torch.rand_like(p), out=p) self.assertTrue(isBinary(p)) p = torch.rand(5, dtype=p_dtype, device=device).expand(5, 5) torch.bernoulli(torch.rand_like(p), out=p) self.assertTrue(isBinary(p)) t = torch.empty(10, 10, dtype=t_dtype, device=device) t.fill_(2) t.bernoulli_(0.5) self.assertTrue(isBinary(t)) p = torch.rand(10, dtype=p_dtype, device=device).expand(10, 10) t.fill_(2) t.bernoulli_(p) self.assertTrue(isBinary(t)) t.fill_(2) torch.bernoulli(torch.rand_like(t, dtype=p_dtype), out=t) self.assertTrue(isBinary(t)) t.fill_(2) t.bernoulli_(torch.rand_like(t, dtype=p_dtype)) self.assertTrue(isBinary(t)) def test_bernoulli(self): self._test_bernoulli(self, torch.float32, torch.float64, 'cpu') # test that it works with integral tensors self._test_bernoulli(self, torch.uint8, torch.float64, 'cpu') # test that it works with bool tensors self._test_bernoulli(self, torch.bool, torch.float32, 'cpu') @slowTest def test_bernoulli_edge_cases(self): # Need to draw a lot of samples to cover every random floating point number. a = torch.zeros(10000, 10000, dtype=torch.float32) # probability of drawing "1" is 0 num_ones = (torch.bernoulli(a) == 1).sum() self.assertEqual(num_ones, 0) b = torch.ones(10000, 10000, dtype=torch.float32) # probability of drawing "1" is 1 num_zeros = (torch.bernoulli(b) == 0).sum() self.assertEqual(num_zeros, 0) def test_generator_cpu(self): # test default generators are equal self.assertEqual(torch.default_generator, torch.default_generator) # tests Generator API # manual_seed, seed, initial_seed, get_state, set_state g1 = torch.Generator() g2 = torch.Generator() g1.manual_seed(12345) g2.manual_seed(12345) self.assertEqual(g1.initial_seed(), g2.initial_seed()) g1.seed() g2.seed() self.assertNotEqual(g1.initial_seed(), g2.initial_seed()) g1 = torch.Generator() g2_state = g2.get_state() g2_randn = torch.randn(1, generator=g2) g1.set_state(g2_state) g1_randn = torch.randn(1, generator=g1) self.assertEqual(g1_randn, g2_randn) default_state = torch.default_generator.get_state() q = torch.Tensor(100) g1_normal = q.normal_() g2 = torch.Generator() g2.set_state(default_state) g2_normal = q.normal_(generator=g2) self.assertEqual(g1_normal, g2_normal) def test_sobolengine_unscrambled_lowdim(self): engine_1d = torch.quasirandom.SobolEngine(1) expected_1d = torch.tensor([0.5, 0.75, 0.25, 0.375, 0.875, 0.625, 0.125, 0.1875, 0.6875, 0.9375]) actual_1d = engine_1d.draw(10) self.assertEqual(actual_1d.view(-1), expected_1d) self.assertEqual(actual_1d.size(), torch.Size([10, 1])) # Test out kwarg engine_1d.reset() actual_1d_out = torch.Tensor().float() engine_1d.draw(10, out=actual_1d_out) self.assertEqual(actual_1d.view(-1), expected_1d) engine_3d = torch.quasirandom.SobolEngine(3) expected_3d = torch.tensor([0.5, 0.75, 0.25, 0.625, 0.125, 0.375, 0.875, 0.3125, 0.8125, 0.5625]) actual_3d = engine_3d.draw(10) self.assertEqual(actual_3d[:, 2], expected_3d) self.assertEqual(actual_3d[:, 0], expected_1d) self.assertEqual(actual_3d.size(), torch.Size([10, 3])) engine_3d = torch.quasirandom.SobolEngine(3) draws = torch.cat([engine_3d.draw() for _ in range(0, 10)]) self.assertEqual(draws, actual_3d) engine_3d = torch.quasirandom.SobolEngine(3).fast_forward(5) draws = engine_3d.draw(5) self.assertEqual(draws, actual_3d[5:]) engine_3d.reset() self.assertEqual(engine_3d.draw(3), actual_3d[:3]) engine_3d.fast_forward(2) self.assertEqual(engine_3d.draw(5), actual_3d[5:]) def test_sobolengine_unscrambled_highdim(self): from collections import Counter engine = torch.quasirandom.SobolEngine(1111) count1 = dict(Counter(engine.draw().view(-1).tolist())) count2 = dict(Counter(engine.draw().view(-1).tolist())) count3 = dict(Counter(engine.draw().view(-1).tolist())) self.assertTrue(count1 == {0.5: 1111}) self.assertTrue(count2 == {0.25: 580, 0.75: 531}) self.assertTrue(count3 == {0.25: 531, 0.75: 580}) engine = torch.quasirandom.SobolEngine(1111) draws = engine.draw(1000) self.assertTrue(torch.all(draws <= 1)) self.assertTrue(torch.all(draws >= 0)) def test_sobolengine_scrambled_lowdim(self): engine_1d = torch.quasirandom.SobolEngine(1, scramble=True, seed=1729) expected_1d = [0.16478512, 0.43221009, 0.84261382, 0.99750268, 0.27460563, 0.01084163, 0.73373985, 0.65039611, 0.12329865, 0.35587373] actual_1d = engine_1d.draw(10) self.assertEqual(actual_1d.flatten(), torch.tensor(expected_1d)) self.assertEqual(actual_1d.size(), torch.Size([10, 1])) # make sure random seed if chosen if none is provided engine_1d_a = torch.quasirandom.SobolEngine(1, scramble=True) engine_1d_b = torch.quasirandom.SobolEngine(1, scramble=True) self.assertNotEqual(engine_1d_a.draw(2), engine_1d_b.draw(2)) engine_3d = torch.quasirandom.SobolEngine(3, scramble=True, seed=1729) expected_3d = [0.32642800, 0.17881306, 0.68837059, 0.46492538, 0.91789097, 0.58075899, 0.03642474, 0.68229187, 0.20051685, 0.30083340] actual_3d = engine_3d.draw(10) self.assertEqual(actual_3d[:, 2], torch.tensor(expected_3d)) self.assertEqual(actual_3d.size(), torch.Size([10, 3])) engine_3d = torch.quasirandom.SobolEngine(3, scramble=True, seed=1729) draws = torch.cat([engine_3d.draw() for _ in range(0, 10)]) self.assertEqual(draws, actual_3d) engine_3d = torch.quasirandom.SobolEngine(3, scramble=True, seed=1729) engine_3d.fast_forward(5) draws = engine_3d.draw(5) self.assertEqual(draws, actual_3d[5:]) engine_3d.reset() self.assertEqual(engine_3d.draw(3), actual_3d[:3]) engine_3d.fast_forward(2) self.assertEqual(engine_3d.draw(5), actual_3d[5:]) def test_sobolengine_scrambled_highdim(self): engine = torch.quasirandom.SobolEngine(1111, scramble=True) draws = engine.draw(1000) self.assertTrue(torch.all(draws <= 1)) self.assertTrue(torch.all(draws >= 0)) def test_parsing_int64(self): # accepts integer arguments x = torch.cumsum(torch.ones(5, 5), 0) self.assertEqual(x, torch.cumsum(torch.ones(5, 5), torch.tensor(0))) # doesn't accept floating point variables self.assertRaises(TypeError, lambda: torch.cumsum(torch.ones(5, 5), torch.tensor(0.))) def test_parsing_double(self): # accepts floating point and integer arguments x = torch.randn(2, 3) torch.isclose(x, x, 1, 1) self.assertTrue(torch.isclose(x, x, 1, 1).all()) self.assertTrue(torch.isclose(x, x, 1.5, 1.).all()) # accepts floating point and integer tensors self.assertTrue(torch.isclose(x, x, torch.tensor(1), torch.tensor(1)).all()) self.assertTrue(torch.isclose(x, x, torch.tensor(1.5), torch.tensor(1.)).all()) # doesn't accept variables with requires_grad self.assertRaises(TypeError, lambda: torch.isclose(x, x, torch.tensor(1.5), torch.tensor(1., requires_grad=True)).all()) def test_parsing_intlist(self): # parse with integer variables self.assertEqual(torch.Size([3, 4]), torch.ones((torch.tensor(3), torch.tensor(4))).shape) self.assertEqual(torch.Size([3, 4]), torch.ones(torch.tensor(3), torch.tensor(4)).shape) # parse with numpy integers if TEST_NUMPY: self.assertEqual(torch.Size([3, 4]), torch.ones((np.array(3), np.int64(4))).shape) self.assertEqual(torch.Size([3, 4]), torch.ones(np.array(3), np.int64(4)).shape) self.assertEqual(torch.Size([3, 4]), torch.ones((np.int64(3), np.array(4))).shape) self.assertEqual(torch.Size([3, 4]), torch.ones(np.int64(3), np.array(4)).shape) # fail parse with float variables self.assertRaises(TypeError, lambda: torch.ones((torch.tensor(3.), torch.tensor(4)))) # fail parse with numpy floats if TEST_NUMPY: self.assertRaises(TypeError, lambda: torch.ones((np.float(3.), torch.tensor(4)))) self.assertRaises(TypeError, lambda: torch.ones((np.array(3.), torch.tensor(4)))) # fail parse with > 1 element variables self.assertRaises(TypeError, lambda: torch.ones(torch.tensor(3, 3))) self.assertRaises(TypeError, lambda: torch.ones((torch.tensor(3, 3)))) if TEST_NUMPY: self.assertRaises(TypeError, lambda: torch.ones(np.array(3, 3))) self.assertRaises(TypeError, lambda: torch.ones((np.array(3, 3)))) # fail parse with additional positional args after intlist arg self.assertRaisesRegex(TypeError, "received an invalid combination of arguments", lambda: torch.LongTensor((6, 0), 1, 1, 0)) self.assertRaisesRegex(TypeError, "missing 1 required positional arguments", lambda: torch.tensor().new_zeros((5, 5), 0)) def test_half_tensor(self): x = torch.randn(5, 5).float() y = torch.randn(5, 5).float() xh, yh = x.half(), y.half() self.assertEqual(x.half().float(), x, 1e-3) z = torch.Tensor(5, 5) self.assertEqual(z.copy_(xh), x, 1e-3) with tempfile.NamedTemporaryFile() as f: torch.save(xh, f) f.seek(0) xh2 = torch.load(f) self.assertEqual(xh.float(), xh2.float()) def test_from_buffer(self): a = bytearray([1, 2, 3, 4]) self.assertEqual(torch.ByteStorage.from_buffer(a).tolist(), [1, 2, 3, 4]) shorts = torch.ShortStorage.from_buffer(a, 'big') self.assertEqual(shorts.size(), 2) self.assertEqual(shorts.tolist(), [258, 772]) ints = torch.IntStorage.from_buffer(a, 'little') self.assertEqual(ints.size(), 1) self.assertEqual(ints[0], 67305985) f = bytearray([0x40, 0x10, 0x00, 0x00]) floats = torch.FloatStorage.from_buffer(f, 'big') self.assertEqual(floats.size(), 1) self.assertEqual(floats[0], 2.25) f = bytearray([0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x10, 0x40]) bools = torch.BoolStorage.from_buffer(f, 'big') self.assertEqual(bools.size(), 8) self.assertEqual(bools.tolist(), [False, True, True, True, True, True, True, True]) self.assertEqual(bools.type(), 'torch.BoolStorage') f = bytearray(b'\x80\x02\x8a\nl\xfc\x9cF\xf9 j\xa8P\x19.\x80\x02M\xe9') bools = torch.BoolStorage.from_buffer(f, 'big') self.assertEqual(bools.size(), 19) f = bytearray(b'\0x4A') bools = torch.BoolStorage.from_buffer(f, 'big') self.assertEqual(bools.size(), 4) self.assertEqual(bools.tolist(), [False, True, True, True]) def test_storage_casts(self): storage = torch.IntStorage([-1, 0, 1, 2, 3, 4]) self.assertEqual(storage.size(), 6) self.assertEqual(storage.tolist(), [-1, 0, 1, 2, 3, 4]) self.assertEqual(storage.type(), 'torch.IntStorage') self.assertIs(storage.dtype, torch.int32) floatStorage = storage.float() self.assertEqual(floatStorage.size(), 6) self.assertEqual(floatStorage.tolist(), [-1, 0, 1, 2, 3, 4]) self.assertEqual(floatStorage.type(), 'torch.FloatStorage') self.assertEqual(floatStorage.int().tolist(), [-1, 0, 1, 2, 3, 4]) self.assertIs(floatStorage.dtype, torch.float32) halfStorage = storage.half() self.assertEqual(halfStorage.size(), 6) self.assertEqual(halfStorage.tolist(), [-1, 0, 1, 2, 3, 4]) self.assertEqual(halfStorage.type(), 'torch.HalfStorage') self.assertEqual(halfStorage.int().tolist(), [-1, 0, 1, 2, 3, 4]) self.assertIs(halfStorage.dtype, torch.float16) bfloat16Storage = storage.bfloat16() self.assertEqual(bfloat16Storage.size(), 6) self.assertEqual(bfloat16Storage.tolist(), [-1, 0, 1, 2, 3, 4]) self.assertEqual(bfloat16Storage.type(), 'torch.BFloat16Storage') self.assertEqual(bfloat16Storage.int().tolist(), [-1, 0, 1, 2, 3, 4]) self.assertIs(bfloat16Storage.dtype, torch.bfloat16) longStorage = storage.long() self.assertEqual(longStorage.size(), 6) self.assertEqual(longStorage.tolist(), [-1, 0, 1, 2, 3, 4]) self.assertEqual(longStorage.type(), 'torch.LongStorage') self.assertEqual(longStorage.int().tolist(), [-1, 0, 1, 2, 3, 4]) self.assertIs(longStorage.dtype, torch.int64) shortStorage = storage.short() self.assertEqual(shortStorage.size(), 6) self.assertEqual(shortStorage.tolist(), [-1, 0, 1, 2, 3, 4]) self.assertEqual(shortStorage.type(), 'torch.ShortStorage') self.assertEqual(shortStorage.int().tolist(), [-1, 0, 1, 2, 3, 4]) self.assertIs(shortStorage.dtype, torch.int16) doubleStorage = storage.double() self.assertEqual(doubleStorage.size(), 6) self.assertEqual(doubleStorage.tolist(), [-1.0, 0.0, 1.0, 2.0, 3.0, 4.0]) self.assertEqual(doubleStorage.type(), 'torch.DoubleStorage') self.assertEqual(doubleStorage.int().tolist(), [-1, 0, 1, 2, 3, 4]) self.assertIs(doubleStorage.dtype, torch.float64) charStorage = storage.char() self.assertEqual(charStorage.size(), 6) self.assertEqual(charStorage.tolist(), [-1.0, 0.0, 1.0, 2.0, 3.0, 4.0]) self.assertEqual(charStorage.type(), 'torch.CharStorage') self.assertEqual(charStorage.int().tolist(), [-1, 0, 1, 2, 3, 4]) self.assertIs(charStorage.dtype, torch.int8) byteStorage = storage.byte() self.assertEqual(byteStorage.size(), 6) self.assertEqual(byteStorage.tolist(), [255, 0, 1, 2, 3, 4]) self.assertEqual(byteStorage.type(), 'torch.ByteStorage') self.assertEqual(byteStorage.int().tolist(), [255, 0, 1, 2, 3, 4]) self.assertIs(byteStorage.dtype, torch.uint8) boolStorage = storage.bool() self.assertEqual(boolStorage.size(), 6) self.assertEqual(boolStorage.tolist(), [True, False, True, True, True, True]) self.assertEqual(boolStorage.type(), 'torch.BoolStorage') self.assertEqual(boolStorage.int().tolist(), [1, 0, 1, 1, 1, 1]) self.assertIs(boolStorage.dtype, torch.bool) @unittest.skipIf(IS_WINDOWS, "TODO: need to fix this test case for Windows") def test_from_file(self): size = 10000 with tempfile.NamedTemporaryFile() as f: s1 = torch.FloatStorage.from_file(f.name, True, size) t1 = torch.FloatTensor(s1).copy_(torch.randn(size)) # check mapping s2 = torch.FloatStorage.from_file(f.name, True, size) t2 = torch.FloatTensor(s2) self.assertEqual(t1, t2, 0) # check changes to t1 from t2 rnum = random.uniform(-1, 1) t1.fill_(rnum) self.assertEqual(t1, t2, 0) # check changes to t2 from t1 rnum = random.uniform(-1, 1) t2.fill_(rnum) self.assertEqual(t1, t2, 0) @unittest.skipIf(IS_WINDOWS, "TODO: need to fix this test case for Windows") def test_torch_from_file(self): size = 10000 with tempfile.NamedTemporaryFile() as f: s1 = torch.from_file(f.name, True, size, dtype=torch.float) t1 = torch.FloatTensor(s1).copy_(torch.randn(size)) # check mapping s2 = torch.from_file(f.name, True, size, dtype=torch.float) t2 = torch.FloatTensor(s2) self.assertEqual(t1, t2, 0) # check changes to t1 from t2 rnum = random.uniform(-1, 1) t1.fill_(rnum) self.assertEqual(t1, t2, 0) # check changes to t2 from t1 rnum = random.uniform(-1, 1) t2.fill_(rnum) self.assertEqual(t1, t2, 0) def test_print(self): default_type = torch.Tensor().type() for t in torch._tensor_classes: if t == torch.HalfTensor: continue # HalfTensor does not support fill if t.is_sparse: continue if t.is_cuda and not torch.cuda.is_available(): continue obj = t(100, 100).fill_(1) obj.__repr__() str(obj) # test half tensor obj = torch.rand(100, 100, device='cpu').half() obj.__repr__() str(obj) for t in torch._storage_classes: if t == torch.BFloat16Storage: continue # Fix once fill is enabled for bfloat16 if t.is_cuda and not torch.cuda.is_available(): continue if t == torch.BoolStorage or t == torch.cuda.BoolStorage: obj = t(100).fill_(True) else: obj = t(100).fill_(1) obj.__repr__() str(obj) # test big integer x = torch.tensor(2341234123412341) self.assertEqual(x.__repr__(), str(x)) self.assertExpectedInline(str(x), '''tensor(2341234123412341)''') # test scientific notation x = torch.tensor([1e28, 1e-28]) self.assertEqual(x.__repr__(), str(x)) self.assertExpectedInline(str(x), '''tensor([1.0000e+28, 1.0000e-28])''') # test scientific notation using set_printoptions x = torch.tensor([1e2, 1e-2]) torch.set_printoptions(sci_mode=True) self.assertEqual(x.__repr__(), str(x)) self.assertExpectedInline(str(x), '''tensor([1.0000e+02, 1.0000e-02])''') torch.set_printoptions(sci_mode=False) self.assertEqual(x.__repr__(), str(x)) self.assertExpectedInline(str(x), '''tensor([ 100.0000, 0.0100])''') torch.set_printoptions(sci_mode=None) # reset to the default value # test no leading space if all elements positive x = torch.tensor([1, 2]) self.assertEqual(x.__repr__(), str(x)) self.assertExpectedInline(str(x), '''tensor([1, 2])''') # test for leading space if there are negative elements x = torch.tensor([1, -2]) self.assertEqual(x.__repr__(), str(x)) self.assertExpectedInline(str(x), '''tensor([ 1, -2])''') # test inf and nan x = torch.tensor([4, inf, 1.5, -inf, 0, nan, 1]) self.assertEqual(x.__repr__(), str(x)) self.assertExpectedInline(str(x), '''tensor([4.0000, inf, 1.5000, -inf, 0.0000, nan, 1.0000])''') # test dtype torch.set_default_dtype(torch.float) x = torch.tensor([1e-324, 1e-323, 1e-322, 1e307, 1e308, 1e309], dtype=torch.float64) self.assertEqual(x.__repr__(), str(x)) expected_str = '''\ tensor([ 0.0000e+00, 9.8813e-324, 9.8813e-323, 1.0000e+307, 1.0000e+308, inf], dtype=torch.float64)''' self.assertExpectedInline(str(x), expected_str) # test changing default dtype torch.set_default_dtype(torch.float64) self.assertEqual(x.__repr__(), str(x)) expected_str = '''\ tensor([ 0.0000e+00, 9.8813e-324, 9.8813e-323, 1.0000e+307, 1.0000e+308, inf])''' self.assertExpectedInline(str(x), expected_str) # test summary x = torch.zeros(10000) self.assertEqual(x.__repr__(), str(x)) self.assertExpectedInline(str(x), '''tensor([0., 0., 0., ..., 0., 0., 0.])''') # test internal summary function x = torch.rand(1, 20, 5, 30) summary = torch._tensor_str.get_summarized_data(x) self.assertEqual(summary.shape, (1, 6, 5, 6)) first_and_last = [0, 1, 2, -3, -2, -1] self.assertEqual(summary, x[:, first_and_last][..., first_and_last]) # test device if torch.cuda.is_available(): x = torch.tensor([123], device='cuda:0') self.assertEqual(x.__repr__(), str(x)) self.assertExpectedInline(str(x), '''tensor([123], device='cuda:0')''') # test changing default to cuda torch.set_default_tensor_type(torch.cuda.FloatTensor) self.assertEqual(x.__repr__(), str(x)) self.assertExpectedInline(str(x), '''tensor([123])''') # test printing a tensor on a different gpu than current one. if torch.cuda.device_count() >= 2: with torch.cuda.device(1): self.assertEqual(x.__repr__(), str(x)) self.assertExpectedInline(str(x), '''tensor([123], device='cuda:0')''') # test printing cpu tensor when default device is cuda y = torch.tensor([123], device='cpu') self.assertEqual(y.__repr__(), str(y)) self.assertExpectedInline(str(y), '''tensor([123], device='cpu')''') torch.set_default_tensor_type(default_type) # test integral floats and requires_grad x = torch.tensor([123.], requires_grad=True) self.assertEqual(x.__repr__(), str(x)) self.assertExpectedInline(str(x), '''tensor([123.], requires_grad=True)''') # test non-contiguous print # sliced tensor should have > PRINT_OPTS.threshold elements x = torch.ones(100, 2, 2, 10) y = x.as_strided(size=(100, 2, 10), stride=(2 * 2 * 10, 2 * 10, 1)) self.assertEqual(str(y), y.__repr__()) expected_str = '''\ tensor([[[1., 1., 1., ..., 1., 1., 1.], [1., 1., 1., ..., 1., 1., 1.]], [[1., 1., 1., ..., 1., 1., 1.], [1., 1., 1., ..., 1., 1., 1.]], [[1., 1., 1., ..., 1., 1., 1.], [1., 1., 1., ..., 1., 1., 1.]], ..., [[1., 1., 1., ..., 1., 1., 1.], [1., 1., 1., ..., 1., 1., 1.]], [[1., 1., 1., ..., 1., 1., 1.], [1., 1., 1., ..., 1., 1., 1.]], [[1., 1., 1., ..., 1., 1., 1.], [1., 1., 1., ..., 1., 1., 1.]]])\ ''' self.assertExpectedInline(str(y), expected_str) # test print 0-dim tensor: there's no 0-dim in Numpy, we match arrayprint style x = torch.tensor(0.00002) self.assertEqual(x.__repr__(), str(x)) self.assertExpectedInline(str(x), '''tensor(2.0000e-05)''') # test print boolean tensor x = torch.tensor([True]) self.assertEqual(x.__repr__(), str(x)) self.assertExpectedInline(str(x), '''tensor([True])''') x = torch.tensor(True) self.assertEqual(x.__repr__(), str(x)) self.assertExpectedInline(str(x), '''tensor(True)''') # [Numpy] test print float in sci_mode when min < 0.0001. x = torch.tensor([0.00002]) self.assertEqual(x.__repr__(), str(x)) self.assertExpectedInline(str(x), '''tensor([2.0000e-05])''') # [Numpy] test print float in sci_mode when max > 1e8. # TODO: Pytorch uses fixed precision to print, while Numpy uses dragon4_scientific # to do automatic trimming and padding. x = torch.tensor([123456789.]) self.assertEqual(x.__repr__(), str(x)) self.assertExpectedInline(str(x), '''tensor([1.2346e+08])''') # [Numpy] test print float in sci_mode when max / min > 1000. x = torch.tensor([0.01, 11]) self.assertEqual(x.__repr__(), str(x)) self.assertExpectedInline(str(x), '''tensor([1.0000e-02, 1.1000e+01])''') # [Numpy] test print int max / min > 1000, no sci_mode x = torch.tensor([1, 1010]) self.assertEqual(x.__repr__(), str(x)) self.assertExpectedInline(str(x), '''tensor([ 1, 1010])''') # [Numpy] test print int > 1e8, no sci_mode x = torch.tensor([1000000000]) # 1e9 self.assertEqual(x.__repr__(), str(x)) self.assertExpectedInline(str(x), '''tensor([1000000000])''') # [Numpy] test printing float in int_mode x = torch.tensor([1., 1000.]) self.assertEqual(x.__repr__(), str(x)) self.assertExpectedInline(str(x), '''tensor([ 1., 1000.])''') # [Numpy] test printing float in int_mode in sci format when max / min > 1000. x = torch.tensor([1., 1010.]) self.assertEqual(x.__repr__(), str(x)) self.assertExpectedInline(str(x), '''tensor([1.0000e+00, 1.0100e+03])''') def test_sizeof(self): sizeof_empty = torch.randn(0).storage().__sizeof__() sizeof_10 = torch.randn(10).storage().__sizeof__() sizeof_100 = torch.randn(100).storage().__sizeof__() self.assertEqual((sizeof_100 - sizeof_empty) // (sizeof_10 - sizeof_empty), 10) self.assertEqual((sizeof_100 - sizeof_empty) % (sizeof_10 - sizeof_empty), 0) sizeof_empty = torch.randn(0).type(torch.ByteTensor).storage().__sizeof__() sizeof_10 = torch.randn(10).type(torch.ByteTensor).storage().__sizeof__() sizeof_100 = torch.randn(100).type(torch.ByteTensor).storage().__sizeof__() self.assertEqual((sizeof_100 - sizeof_empty) // (sizeof_10 - sizeof_empty), 10) self.assertEqual((sizeof_100 - sizeof_empty) % (sizeof_10 - sizeof_empty), 0) def test_unsqueeze(self): x = torch.randn(2, 3, 4) y = x.unsqueeze(1) self.assertEqual(y, x.view(2, 1, 3, 4)) y = x.clone().unsqueeze_(2) self.assertEqual(y, x.view(2, 3, 1, 4)) x = x[:, 1] self.assertFalse(x.is_contiguous()) y = x.unsqueeze(1) self.assertEqual(y, x.contiguous().view(2, 1, 4)) y = x.clone().unsqueeze_(2) self.assertEqual(y, x.contiguous().view(2, 4, 1)) def test_iter(self): x = torch.randn(5, 5) for i, sub in enumerate(x): self.assertEqual(sub, x[i]) x = torch.Tensor() self.assertEqual(list(x), []) def test_accreal_type(self): x = torch.ones(2, 3, 4) self.assertIsInstance(x.double().sum().item(), float) self.assertIsInstance(x.float().sum().item(), float) self.assertIsInstance(x.long().sum().item(), int) self.assertIsInstance(x.int().sum().item(), int) self.assertIsInstance(x.short().sum().item(), int) self.assertIsInstance(x.char().sum().item(), int) self.assertIsInstance(x.byte().sum().item(), int) def test_assertEqual(self): x = torch.FloatTensor([0]) self.assertEqual(x, 0) xv = torch.autograd.Variable(x) self.assertEqual(xv, 0) self.assertEqual(x, xv) self.assertEqual(xv, x) def test_new(self): x = torch.autograd.Variable(torch.Tensor()) y = torch.autograd.Variable(torch.randn(4, 4)) z = torch.autograd.Variable(torch.IntTensor([1, 2, 3])) self.assertEqual(x.new().shape, [0]) self.assertEqual(x.new(), x) self.assertEqual(x.new(1, 2).shape, [1, 2]) self.assertEqual(x.new(torch.Size([3, 4])).shape, [3, 4]) self.assertEqual(x.new([3, 4]).shape, [2]) self.assertEqual(x.new([3, 4]).tolist(), [3, 4]) self.assertEqual(x.new((3, 4)).tolist(), [3, 4]) if TEST_NUMPY: self.assertEqual(x.new([np.int32(3), np.float64(4)]).tolist(), [3, 4]) self.assertEqual(x.new(np.array((3, 4))).tolist(), [3, 4]) self.assertEqual(x.new([z[2], z[0] + 3]).tolist(), [3, 4]) self.assertEqual(x.new(size=(3, 4)).shape, [3, 4]) self.assertEqual(x.new(()).shape, [0]) self.assertEqual(x.new(y.storage()).data_ptr(), y.data_ptr()) self.assertEqual(x.new(y).data_ptr(), y.data_ptr()) self.assertIsNot(x.new(y), y) self.assertRaises(TypeError, lambda: x.new(z)) # TypeError would be better self.assertRaises(RuntimeError, lambda: x.new(z.storage())) def test_empty_like(self): x = torch.autograd.Variable(torch.Tensor()) y = torch.autograd.Variable(torch.randn(4, 4)) z = torch.autograd.Variable(torch.IntTensor([1, 2, 3])) for a in (x, y, z): self.assertEqual(torch.empty_like(a).shape, a.shape) self.assertEqual(torch.empty_like(a).type(), a.type()) @unittest.skipIf(PYTORCH_CUDA_MEMCHECK, "is_pinned uses failure to detect pointer property") def test_pin_memory(self): x = torch.randn(3, 5) self.assertFalse(x.is_pinned()) if not torch.cuda.is_available(): self.assertRaises(RuntimeError, lambda: x.pin_memory()) else: pinned = x.pin_memory() self.assertTrue(pinned.is_pinned()) self.assertEqual(pinned, x) self.assertNotEqual(pinned.data_ptr(), x.data_ptr()) # test that pin_memory on already pinned tensor has no effect self.assertIs(pinned, pinned.pin_memory()) self.assertEqual(pinned.data_ptr(), pinned.pin_memory().data_ptr()) @unittest.skipIf(not TEST_NUMPY, "Numpy not found") def test_numpy_unresizable(self): x = np.zeros((2, 2)) y = torch.from_numpy(x) with self.assertRaises(ValueError): x.resize((5, 5)) z = torch.randn(5, 5) w = z.numpy() with self.assertRaises(RuntimeError): z.resize_(10, 10) with self.assertRaises(ValueError): w.resize((10, 10)) @unittest.skipIf(not TEST_NUMPY, "Numpy not found") def test_to_numpy(self): def get_castable_tensor(shape, tp): dtype = tp.dtype if dtype.is_floating_point: dtype_info = torch.finfo(dtype) # can't directly use min and max, because for double, max - min # is greater than double range and sampling always gives inf. low = max(dtype_info.min, -1e10) high = min(dtype_info.max, 1e10) t = torch.empty(shape, dtype=torch.float64).uniform_(low, high) else: # can't directly use min and max, because for int64_t, max - min # is greater than int64_t range and triggers UB. dtype_info = torch.iinfo(dtype) low = max(dtype_info.min, int(-1e10)) high = min(dtype_info.max, int(1e10)) dtype_info = torch.iinfo(dtype) t = torch.empty(shape, dtype=torch.int64).random_(low, high) return t.to(dtype) types = [ torch.ByteTensor, torch.CharTensor, torch.ShortTensor, torch.IntTensor, torch.HalfTensor, torch.FloatTensor, torch.DoubleTensor, torch.LongTensor, ] for tp in types: # 1D sz = 10 x = get_castable_tensor(sz, tp) y = x.numpy() for i in range(sz): self.assertEqual(x[i], y[i]) # 1D > 0 storage offset xm = get_castable_tensor(sz * 2, tp) x = xm.narrow(0, sz - 1, sz) self.assertTrue(x.storage_offset() > 0) y = x.numpy() for i in range(sz): self.assertEqual(x[i], y[i]) def check2d(x, y): for i in range(sz1): for j in range(sz2): self.assertEqual(x[i][j], y[i][j]) # empty x = torch.Tensor().type(tp) y = x.numpy() self.assertEqual(y.size, 0) # contiguous 2D sz1 = 3 sz2 = 5 x = get_castable_tensor((sz1, sz2), tp) y = x.numpy() check2d(x, y) self.assertTrue(y.flags['C_CONTIGUOUS']) # with storage offset xm = get_castable_tensor((sz1 * 2, sz2), tp) x = xm.narrow(0, sz1 - 1, sz1) y = x.numpy() self.assertTrue(x.storage_offset() > 0) check2d(x, y) self.assertTrue(y.flags['C_CONTIGUOUS']) # non-contiguous 2D x = get_castable_tensor((sz2, sz1), tp).t() y = x.numpy() check2d(x, y) self.assertFalse(y.flags['C_CONTIGUOUS']) # with storage offset xm = get_castable_tensor((sz2 * 2, sz1), tp) x = xm.narrow(0, sz2 - 1, sz2).t() y = x.numpy() self.assertTrue(x.storage_offset() > 0) check2d(x, y) # non-contiguous 2D with holes xm = get_castable_tensor((sz2 * 2, sz1 * 2), tp) x = xm.narrow(0, sz2 - 1, sz2).narrow(1, sz1 - 1, sz1).t() y = x.numpy() self.assertTrue(x.storage_offset() > 0) check2d(x, y) if tp != torch.HalfTensor: # check writeable x = get_castable_tensor((3, 4), tp) y = x.numpy() self.assertTrue(y.flags.writeable) y[0][1] = 3 self.assertTrue(x[0][1] == 3) y = x.t().numpy() self.assertTrue(y.flags.writeable) y[0][1] = 3 self.assertTrue(x[0][1] == 3) @unittest.skipIf(not TEST_NUMPY, "Numpy not found") def test_to_numpy_bool(self): x = torch.tensor([True, False], dtype=torch.bool) self.assertEqual(x.dtype, torch.bool) y = x.numpy() self.assertEqual(y.dtype, np.bool) for i in range(len(x)): self.assertEqual(x[i], y[i]) x = torch.tensor([True], dtype=torch.bool) self.assertEqual(x.dtype, torch.bool) y = x.numpy() self.assertEqual(y.dtype, np.bool) self.assertEqual(x[0], y[0]) @unittest.skipIf(not TEST_NUMPY, "Numpy not found") def test_from_numpy(self): dtypes = [ np.double, np.float, np.float16, np.complex64, np.complex128, np.int64, np.int32, np.int16, np.int8, np.uint8, np.longlong, np.bool, ] complex_dtypes = [ np.complex64, np.complex128, ] for dtype in dtypes: array = np.array([1, 2, 3, 4], dtype=dtype) tensor_from_array = torch.from_numpy(array) # TODO: change to tensor equality check once HalfTensor # implements `==` for i in range(len(array)): self.assertEqual(tensor_from_array[i], array[i]) # ufunc 'remainder' not supported for complex dtypes if dtype not in complex_dtypes: # This is a special test case for Windows # https://github.com/pytorch/pytorch/issues/22615 array2 = array % 2 tensor_from_array2 = torch.from_numpy(array2) for i in range(len(array2)): self.assertEqual(tensor_from_array2[i], array2[i]) # Test unsupported type array = np.array([1, 2, 3, 4], dtype=np.uint16) with self.assertRaises(TypeError): tensor_from_array = torch.from_numpy(array) # check storage offset x = np.linspace(1, 125, 125) x.shape = (5, 5, 5) x = x[1] expected = torch.arange(1, 126, dtype=torch.float64).view(5, 5, 5)[1] self.assertEqual(torch.from_numpy(x), expected) # check noncontiguous x = np.linspace(1, 25, 25) x.shape = (5, 5) expected = torch.arange(1, 26, dtype=torch.float64).view(5, 5).t() self.assertEqual(torch.from_numpy(x.T), expected) # check noncontiguous with holes x = np.linspace(1, 125, 125) x.shape = (5, 5, 5) x = x[:, 1] expected = torch.arange(1, 126, dtype=torch.float64).view(5, 5, 5)[:, 1] self.assertEqual(torch.from_numpy(x), expected) # check zero dimensional x = np.zeros((0, 2)) self.assertEqual(torch.from_numpy(x).shape, (0, 2)) x = np.zeros((2, 0)) self.assertEqual(torch.from_numpy(x).shape, (2, 0)) # check ill-sized strides raise exception x = np.array([3., 5., 8.]) x.strides = (3,) self.assertRaises(ValueError, lambda: torch.from_numpy(x)) @unittest.skipIf(not TEST_NUMPY, "Numpy not found") def test_ctor_with_numpy_scalar_ctor(self): dtypes = [ np.double, np.float, np.float16, np.int64, np.int32, np.int16, np.uint8, np.bool, ] for dtype in dtypes: self.assertEqual(dtype(42), torch.tensor(dtype(42)).item()) @unittest.skipIf(not TEST_NUMPY, "Numpy not found") def test_numpy_index(self): i = np.int32([0, 1, 2]) x = torch.randn(5, 5) for idx in i: self.assertFalse(isinstance(idx, int)) self.assertEqual(x[idx], x[int(idx)]) @unittest.skipIf(not TEST_NUMPY, "Numpy not found") def test_numpy_array_interface(self): types = [ torch.DoubleTensor, torch.FloatTensor, torch.HalfTensor, torch.LongTensor, torch.IntTensor, torch.ShortTensor, torch.ByteTensor, ] dtypes = [ np.float64, np.float32, np.float16, np.int64, np.int32, np.int16, np.uint8, ] for tp, dtype in zip(types, dtypes): if np.dtype(dtype).kind == 'u': x = torch.Tensor([1, 2, 3, 4]).type(tp) array = np.array([1, 2, 3, 4], dtype=dtype) else: x = torch.Tensor([1, -2, 3, -4]).type(tp) array = np.array([1, -2, 3, -4], dtype=dtype) # Test __array__ w/o dtype argument asarray = np.asarray(x) self.assertIsInstance(asarray, np.ndarray) self.assertEqual(asarray.dtype, dtype) for i in range(len(x)): self.assertEqual(asarray[i], x[i]) # Test __array_wrap__, same dtype abs_x = np.abs(x) abs_array = np.abs(array) self.assertIsInstance(abs_x, tp) for i in range(len(x)): self.assertEqual(abs_x[i], abs_array[i]) # Test __array__ with dtype argument for dtype in dtypes: x = torch.IntTensor([1, -2, 3, -4]) asarray = np.asarray(x, dtype=dtype) self.assertEqual(asarray.dtype, dtype) if np.dtype(dtype).kind == 'u': wrapped_x = np.array([1, -2, 3, -4], dtype=dtype) for i in range(len(x)): self.assertEqual(asarray[i], wrapped_x[i]) else: for i in range(len(x)): self.assertEqual(asarray[i], x[i]) # Test some math functions with float types float_types = [torch.DoubleTensor, torch.FloatTensor] float_dtypes = [np.float64, np.float32] for tp, dtype in zip(float_types, float_dtypes): x = torch.Tensor([1, 2, 3, 4]).type(tp) array = np.array([1, 2, 3, 4], dtype=dtype) for func in ['sin', 'sqrt', 'ceil']: ufunc = getattr(np, func) res_x = ufunc(x) res_array = ufunc(array) self.assertIsInstance(res_x, tp) for i in range(len(x)): self.assertEqual(res_x[i], res_array[i]) # Test functions with boolean return value for tp, dtype in zip(types, dtypes): x = torch.Tensor([1, 2, 3, 4]).type(tp) array = np.array([1, 2, 3, 4], dtype=dtype) geq2_x = np.greater_equal(x, 2) geq2_array = np.greater_equal(array, 2).astype('uint8') self.assertIsInstance(geq2_x, torch.ByteTensor) for i in range(len(x)): self.assertEqual(geq2_x[i], geq2_array[i]) @unittest.skipIf(not TEST_NUMPY, "Numpy not found") def test_multiplication_numpy_scalar(self): for np_dtype in [np.float32, np.float64, np.int32, np.int64, np.int16, np.uint8]: for t_dtype in [torch.float, torch.double]: np_sc = np_dtype(2.0) t = torch.ones(2, requires_grad=True, dtype=t_dtype) r1 = t * np_sc self.assertIsInstance(r1, torch.Tensor) self.assertTrue(r1.dtype == t_dtype) self.assertTrue(r1.requires_grad) r2 = np_sc * t self.assertIsInstance(r2, torch.Tensor) self.assertTrue(r2.dtype == t_dtype) self.assertTrue(r2.requires_grad) @unittest.skipIf(not TEST_NUMPY, "Numpy not found") def test_parse_numpy_int(self): self.assertRaisesRegex(RuntimeError, "Overflow", lambda: torch.mean(torch.randn(1, 1), np.uint64(-1))) # https://github.com/pytorch/pytorch/issues/29252 for nptype in [np.int16, np.int8, np.uint8, np.int32, np.int64]: scalar = 3 np_arr = np.array([scalar], dtype=nptype) np_val = np_arr[0] # np integral type can be treated as a python int in native functions with # int parameters: self.assertEqual(torch.ones(5).diag(scalar), torch.ones(5).diag(np_val)) self.assertEqual(torch.ones([2, 2, 2, 2]).mean(scalar), torch.ones([2, 2, 2, 2]).mean(np_val)) # numpy integral type parses like a python int in custom python bindings: self.assertEqual(torch.Storage(np_val).size(), scalar) tensor = torch.tensor([2], dtype=torch.int) tensor[0] = np_val self.assertEqual(tensor[0], np_val) # Original reported issue, np integral type parses to the correct # PyTorch integral type when passed for a `Scalar` parameter in # arithmetic operations: t = torch.from_numpy(np_arr) self.assertEqual((t + np_val).dtype, t.dtype) self.assertEqual((np_val + t).dtype, t.dtype) def test_error_msg_type_translation(self): with self.assertRaisesRegex( RuntimeError, # message includes both Double and Long '(?=.*Double)(?=.*Long)'): # Calls model with a LongTensor input but DoubleTensor weights input = torch.zeros(1, 1, 1, 6, dtype=torch.long) weight = torch.nn.Parameter(torch.zeros(1, 1, 1, 3, dtype=torch.double)) model = torch.nn.Conv2d(1, 1, (1, 3), stride=1, padding=0, bias=False) model.weight = weight out = model(input) def test_tensor_from_sequence(self): class MockSequence(object): def __init__(self, lst): self.lst = lst def __len__(self): return len(self.lst) def __getitem__(self, item): raise TypeError class GoodMockSequence(MockSequence): def __getitem__(self, item): return self.lst[item] bad_mock_seq = MockSequence([1.0, 2.0, 3.0]) good_mock_seq = GoodMockSequence([1.0, 2.0, 3.0]) with self.assertRaisesRegex(ValueError, 'could not determine the shape'): torch.Tensor(bad_mock_seq) self.assertEqual(torch.Tensor([1.0, 2.0, 3.0]), torch.Tensor(good_mock_seq)) def test_comparison_ops(self): x = torch.randn(5, 5) y = torch.randn(5, 5) eq = x == y for idx in iter_indices(x): self.assertEqual(x[idx] == y[idx], eq[idx] == 1) ne = x != y for idx in iter_indices(x): self.assertEqual(x[idx] != y[idx], ne[idx] == 1) lt = x < y for idx in iter_indices(x): self.assertEqual(x[idx] < y[idx], lt[idx] == 1) le = x <= y for idx in iter_indices(x): self.assertEqual(x[idx] <= y[idx], le[idx] == 1) gt = x > y for idx in iter_indices(x): self.assertEqual(x[idx] > y[idx], gt[idx] == 1) ge = x >= y for idx in iter_indices(x): self.assertEqual(x[idx] >= y[idx], ge[idx] == 1) def test_comparison_ops_must_take_bool_output(self): for op in [torch.lt, torch.le, torch.gt, torch.ge, torch.eq, torch.ne, torch.logical_and, torch.logical_or, torch.logical_xor]: self.assertEqual(op(torch.tensor([True]), torch.tensor([False])).dtype, torch.bool) def test_inplace_comparison_ops_require_inputs_have_same_dtype(self): with self.assertRaisesRegex(RuntimeError, 'Expected object of scalar type'): for op in ['lt_', 'le_', 'gt_', 'ge_', 'eq_', 'ne_', 'logical_xor_', 'logical_and_', 'logical_or_']: x = torch.tensor([1], dtype=torch.int) y = torch.tensor([2], dtype=torch.long) in_place_method = getattr(x, op) in_place_method(y) def test_comparison_ops_check_for_scalar_overflow(self): with self.assertRaisesRegex(RuntimeError, 'value cannot be converted to type'): torch.tensor([1 << 5], dtype=torch.uint8) < (1 << 20) (1 << 20) < torch.tensor([1 << 5], dtype=torch.uint8) torch.tensor([1 << 5], dtype=torch.uint8) <= (1 << 20) (1 << 20) <= torch.tensor([1 << 5], dtype=torch.uint8) torch.tensor([1 << 5], dtype=torch.uint8) > (1 << 20) (1 << 20) > torch.tensor([1 << 5], dtype=torch.uint8) torch.tensor([1 << 5], dtype=torch.uint8) >= (1 << 20) (1 << 20) >= torch.tensor([1 << 5], dtype=torch.uint8) torch.tensor([1 << 5], dtype=torch.uint8) == (1 << 20) (1 << 20) == torch.tensor([1 << 5], dtype=torch.uint8) torch.tensor([1 << 5], dtype=torch.uint8) != (1 << 20) (1 << 20) != torch.tensor([1 << 5], dtype=torch.uint8) def test_comparison_ops_check_for_zerodim_tensor_overflow(self): with self.assertRaisesRegex(RuntimeError, 'value cannot be converted to type'): torch.tensor([1 << 5], dtype=torch.uint8) < torch.tensor(1 << 20, dtype=torch.int32) torch.tensor(1 << 40, dtype=torch.int64) < torch.tensor([1 << 30], dtype=torch.int32) torch.tensor([1 << 5], dtype=torch.uint8) <= torch.tensor(1 << 20, dtype=torch.int32) torch.tensor(1 << 40, dtype=torch.int64) <= torch.tensor([1 << 30], dtype=torch.int32) torch.tensor([1 << 5], dtype=torch.uint8) > torch.tensor(1 << 20, dtype=torch.int32) torch.tensor(1 << 40, dtype=torch.int64) > torch.tensor([1 << 30], dtype=torch.int32) torch.tensor([1 << 5], dtype=torch.uint8) >= torch.tensor(1 << 20, dtype=torch.int32) torch.tensor(1 << 40, dtype=torch.int64) >= torch.tensor([1 << 30], dtype=torch.int32) torch.tensor([1 << 5], dtype=torch.uint8) == torch.tensor(1 << 20, dtype=torch.int32) torch.tensor(1 << 40, dtype=torch.int64) == torch.tensor([1 << 30], dtype=torch.int32) torch.tensor([1 << 5], dtype=torch.uint8) != torch.tensor(1 << 20, dtype=torch.int32) torch.tensor(1 << 40, dtype=torch.int64) != torch.tensor([1 << 30], dtype=torch.int32) def test_bitwise_ops(self): x = torch.randn(5, 5).gt(0) y = torch.randn(5, 5).gt(0) and_result = x & y for idx in iter_indices(x): if and_result[idx]: self.assertTrue(x[idx] and y[idx]) else: self.assertFalse(x[idx] and y[idx]) or_result = x | y for idx in iter_indices(x): if or_result[idx]: self.assertTrue(x[idx] or y[idx]) else: self.assertFalse(x[idx] or y[idx]) xor_result = x ^ y for idx in iter_indices(x): if xor_result[idx]: self.assertTrue(x[idx] ^ y[idx]) else: self.assertFalse(x[idx] ^ y[idx]) x_clone = x.clone() x_clone &= y self.assertEqual(x_clone, and_result) x_clone = x.clone() x_clone |= y self.assertEqual(x_clone, or_result) x_clone = x.clone() x_clone ^= y self.assertEqual(x_clone, xor_result) def test_op_invert(self): res = 0xffff - torch.arange(127, dtype=torch.int8) for dtype in (torch.uint8, torch.int8, torch.int16, torch.int32, torch.int64): a = torch.arange(127, dtype=dtype) self.assertEqual(res.to(dtype), ~a) self.assertEqual(torch.tensor([True, False]), ~torch.tensor([False, True])) # test exceptions for dtype in(torch.half, torch.float, torch.double): a = torch.zeros(10, dtype=dtype) with self.assertRaises(TypeError): b = ~a def test_apply(self): x = torch.arange(1, 6) res = x.clone().apply_(lambda k: k + k) self.assertEqual(res, x * 2) self.assertRaises(TypeError, lambda: x.apply_(lambda k: "str")) def test_map(self): x = torch.autograd.Variable(torch.randn(3, 3)) y = torch.autograd.Variable(torch.randn(3)) res = x.clone() res.map_(y, lambda a, b: a + b) self.assertEqual(res, x + y) self.assertRaisesRegex(TypeError, "not callable", lambda: res.map_(y, "str")) def test_map2(self): x = torch.autograd.Variable(torch.randn(3, 3)) y = torch.autograd.Variable(torch.randn(3)) z = torch.autograd.Variable(torch.randn(1, 3)) res = x.clone() res.map2_(y, z, lambda a, b, c: a + b * c) self.assertEqual(res, x + y * z) z.requires_grad = True self.assertRaisesRegex( RuntimeError, "requires grad", lambda: res.map2_(y, z, lambda a, b, c: a + b * c)) def test_Size(self): x = torch.Size([1, 2, 3]) self.assertIsInstance(x, tuple) self.assertEqual(x[0], 1) self.assertEqual(x[1], 2) self.assertEqual(x[2], 3) self.assertEqual(len(x), 3) self.assertRaises(TypeError, lambda: torch.Size(torch.ones(3))) self.assertIsInstance(x * 2, torch.Size) self.assertIsInstance(x[:-1], torch.Size) self.assertIsInstance(x + x, torch.Size) def test_Size_scalar(self): three = torch.tensor(3) two = torch.tensor(2) x = torch.Size([0, 1, two, three, 4]) for i in range(1, 5): self.assertEqual(x[i], i) def test_Size_iter(self): for sizes in [iter([1, 2, 3, 4, 5]), range(1, 6)]: x = torch.Size(sizes) for i in range(0, 5): self.assertEqual(x[i], i + 1) def test_t_not_2d_error(self): self.assertRaises(RuntimeError, lambda: torch.randn(2, 3, 4).t()) self.assertRaises(RuntimeError, lambda: torch.randn(2, 3, 4).t_()) # unit test for special case transposed copy (see ATen/native/Copy.cpp for details) @unittest.skipIf(not TEST_NUMPY, "Numpy not found") def test_big_transpose(self): t = torch.rand(456, 789) t1 = t.t().contiguous() t2 = torch.from_numpy(t.numpy().transpose()) self.assertEqual(t1, t2) def test_inplace_division(self): t = torch.rand(5, 5) id_before = id(t) t /= 2 id_after = id(t) self.assertEqual(id_before, id_after) def test_simple_scalar_cast(self): ok = [torch.Tensor([1.5]), torch.zeros(1, 1, 1, 1)] ok_values = [1.5, 0] not_ok = map(torch.Tensor, [[], [1, 2], [[1, 2], [3, 4]]]) for tensor, value in zip(ok, ok_values): self.assertEqual(int(tensor), int(value)) self.assertEqual(float(tensor), float(value)) if sys.version_info[0] < 3: self.assertEqual(long(tensor), long(value)) for tensor in not_ok: self.assertRaises(ValueError, lambda: int(tensor)) self.assertRaises(ValueError, lambda: float(tensor)) if sys.version_info[0] < 3: self.assertRaises(ValueError, lambda: long(tensor)) def test_offset_scalar_cast(self): x = torch.Tensor([1, 2, 3]) y = x[2:] self.assertEqual(int(y), 3) # skip this test for now as it affects all tests @unittest.skipIf(True, "flush_denormal not supported") def test_set_flush_denormal(self): tiny_float = 1e-42 tiny_double = 1e-320 float_tensor = torch.FloatTensor([1.0, tiny_float]) double_tensor = torch.DoubleTensor([1.0, tiny_float, tiny_double]) self.assertEqual(float_tensor[0], 1.0, prec=0.0) self.assertEqual(float_tensor[1], tiny_float, prec=tiny_float / 16) self.assertEqual(double_tensor[0], 1.0, prec=0.0) self.assertEqual(double_tensor[1], tiny_float, prec=0.0) self.assertEqual(double_tensor[2], tiny_double, prec=0.0) torch.set_flush_denormal(True) self.assertEqual(float_tensor[0], 1.0, prec=0.0) self.assertEqual(float_tensor[1], 0.0, prec=0.0) # tiny_float to zero self.assertEqual(double_tensor[0], 1.0, prec=0.0) # tiny_float is not converted to zero in double type self.assertEqual(double_tensor[1], tiny_float, prec=0.0) self.assertEqual(double_tensor[2], 0.0, prec=0.0) # tiny_double to zero torch.set_flush_denormal(False) def test_show_config(self): # We can't usefully test the output; just make sure this doesn't crash torch.__config__.show() def test_parallel_info(self): torch.__config__.parallel_info() @slowTest def test_slow_test(self): # Just a smoketest to make sure our slowTest decorator works. pass def test_is_nonzero(self): self.assertExpectedRaises(RuntimeError, lambda: torch.tensor([]).is_nonzero(), subname="empty") self.assertExpectedRaises(RuntimeError, lambda: torch.tensor([0, 0]).is_nonzero(), subname="multiple") self.assertFalse(torch.tensor(0).is_nonzero()) self.assertTrue(torch.tensor(1).is_nonzero()) self.assertFalse(torch.tensor([0]).is_nonzero()) self.assertTrue(torch.tensor([1]).is_nonzero()) self.assertFalse(torch.tensor([[0]]).is_nonzero()) self.assertTrue(torch.tensor([[1]]).is_nonzero()) def test_meshgrid(self): a = torch.tensor(1) b = torch.tensor([1, 2, 3]) c = torch.tensor([1, 2]) grid_a, grid_b, grid_c = torch.meshgrid([a, b, c]) self.assertEqual(grid_a.shape, torch.Size([1, 3, 2])) self.assertEqual(grid_b.shape, torch.Size([1, 3, 2])) self.assertEqual(grid_c.shape, torch.Size([1, 3, 2])) grid_a2, grid_b2, grid_c2 = torch.meshgrid(a, b, c) self.assertEqual(grid_a2.shape, torch.Size([1, 3, 2])) self.assertEqual(grid_b2.shape, torch.Size([1, 3, 2])) self.assertEqual(grid_c2.shape, torch.Size([1, 3, 2])) expected_grid_a = torch.ones(1, 3, 2, dtype=torch.int64) expected_grid_b = torch.tensor([[[1, 1], [2, 2], [3, 3]]]) expected_grid_c = torch.tensor([[[1, 2], [1, 2], [1, 2]]]) self.assertTrue(grid_a.equal(expected_grid_a)) self.assertTrue(grid_b.equal(expected_grid_b)) self.assertTrue(grid_c.equal(expected_grid_c)) self.assertTrue(grid_a2.equal(expected_grid_a)) self.assertTrue(grid_b2.equal(expected_grid_b)) self.assertTrue(grid_c2.equal(expected_grid_c)) # NB: we must not be built with CUDA; if we are built with CUDA but no CUDA # is available, we get a different error. @unittest.skipIf(torch.backends.cuda.is_built() or IS_SANDCASTLE, "CUDA is built, can't test CUDA not built error") def test_cuda_not_built(self): msg = "Torch not compiled with CUDA enabled" self.assertRaisesRegex(AssertionError, msg, lambda: torch.cuda.current_device()) self.assertRaisesRegex(AssertionError, msg, lambda: torch.tensor([1], device="cuda")) self.assertRaisesRegex(AssertionError, msg, lambda: torch.tensor([1]).cuda()) self.assertRaisesRegex(TypeError, msg, lambda: torch.cuda.FloatTensor()) self.assertRaisesRegex(TypeError, msg, lambda: torch.set_default_tensor_type(torch.cuda.FloatTensor)) self.assertRaisesRegex(AssertionError, msg, lambda: torch.tensor([1]).to(device="cuda")) def test_cast_binary_op(self): # Scalar a = torch.tensor(2) b = torch.tensor(3) a_copy = a.clone() b_copy = b.clone() self.assertEqual(torch.tensor(6, dtype=torch.float), a.float() * b) self.assertEqual(a.type(), a_copy.type()) self.assertEqual(b.type(), b_copy.type()) def test_cartesian_prod(self): a = torch.tensor([1]) b = torch.tensor([1, 2, 3]) c = torch.tensor([1, 2]) prod = torch.cartesian_prod(a, b, c) expected = torch.tensor(list(product([a], b, c))) self.assertEqual(expected, prod) # test 0 size input d = torch.empty(0, dtype=b.dtype) prod = torch.cartesian_prod(a, b, c, d) expected = torch.empty(0, 4, dtype=b.dtype) self.assertEqual(expected, prod) # test single input prod = torch.cartesian_prod(b) self.assertEqual(b, prod) def test_combinations(self): a = torch.tensor([1, 2, 3]) c = torch.combinations(a, r=1) expected = torch.tensor(list(combinations(a, r=1))) self.assertEqual(c, expected) c = torch.combinations(a, r=1, with_replacement=True) expected = torch.tensor(list(combinations_with_replacement(a, r=1))) self.assertEqual(c, expected) c = torch.combinations(a) expected = torch.tensor(list(combinations(a, r=2))) self.assertEqual(c, expected) c = torch.combinations(a, with_replacement=True) expected = torch.tensor(list(combinations_with_replacement(a, r=2))) self.assertEqual(c, expected) c = torch.combinations(a, r=3) expected = torch.tensor(list(combinations(a, r=3))) self.assertEqual(c, expected) c = torch.combinations(a, r=4) expected = torch.empty(0, 4, dtype=a.dtype) self.assertEqual(c, expected) c = torch.combinations(a, r=5) expected = torch.empty(0, 5, dtype=a.dtype) self.assertEqual(c, expected) # test empty imput a = torch.empty(0) c1 = torch.combinations(a) c2 = torch.combinations(a, with_replacement=True) expected = torch.empty(0, 2, dtype=a.dtype) self.assertEqual(c1, expected) self.assertEqual(c2, expected) def test_has_internal_overlap(self): OVERLAP_NO = 0 OVERLAP_YES = 1 OVERLAP_TOO_HARD = 2 # Check for contiguous tensors a = torch.randn(3, 3) self.assertEqual(torch._debug_has_internal_overlap(a), OVERLAP_NO) # Checks for zero strides b = torch.randn(1, 3) b_expanded = b.expand(4, 3) self.assertEqual(torch._debug_has_internal_overlap(b_expanded), OVERLAP_YES) # Check for zero strided, size 1 axis, in non-contiguous storage (gh-33812) c = torch.randn(10).as_strided([2, 1, 5], [1, 0, 2]) self.assertEqual(torch._debug_has_internal_overlap(c), OVERLAP_TOO_HARD) def test_allow_tensor_metadata_change(self): def do_test(t): with self.assertRaisesRegex( RuntimeError, "set_sizes_contiguous is not allowed on a Tensor created from .data or .detach()"): t.resize_((2, 1)) with self.assertRaisesRegex( RuntimeError, "set_storage is not allowed on a Tensor created from .data or .detach()"): t.set_() with self.assertRaisesRegex( RuntimeError, "set_storage_offset is not allowed on a Tensor created from .data or .detach()"): t.set_(t.storage(), 0, t.size(), list(t.stride())) do_test(torch.tensor([[1, 2]]).data) do_test(torch.tensor([[1, 2]]).detach()) def test_c10_layer_norm(self): # test that we can call c10 ops and they return a reasonable result X = torch.rand(5, 5, dtype=torch.float) weight = torch.rand(*X.size()[1:], dtype=torch.float) bias = torch.rand(*X.size()[1:], dtype=torch.float) epsilon = 1e-4 expected_norm = torch.nn.functional.layer_norm( X, X.size()[1:], weight=weight, bias=bias, eps=epsilon) actual_norm, actual_mean, actual_stdev = \ torch.ops._caffe2.LayerNorm(torch.tensor(X), torch.tensor( weight), torch.tensor(bias), 1, epsilon, True) torch.testing.assert_allclose(expected_norm, actual_norm) def test_memory_format(self): def test_helper(x, memory_format): y = x.contiguous(memory_format=memory_format) self.assertFalse(y.is_contiguous()) self.assertTrue(y.is_contiguous(memory_format=memory_format)) self.assertEqual(y, x) test_helper(torch.randn(4, 3, 8, 8), torch.channels_last) test_helper(torch.randn(4, 3, 8, 8, 8), torch.channels_last_3d) def test_memory_format_contiguous_returns_same_tensor_if_already_satisfies(self): def test_helper(x, memory_format): alias = x.contiguous(memory_format=memory_format) alias.fill_(7) self.assertEqual(x, alias) test_helper(torch.randn(4, 8, 8, 3).permute(0, 3, 1, 2), torch.channels_last) test_helper(torch.randn(4, 8, 8, 8, 3).permute(0, 4, 1, 2, 3), torch.channels_last_3d) def test_memory_format_empty(self): def test_helper(dim1, dim2, memory_format): with self.assertRaises(RuntimeError): x = torch.empty(dim1, memory_format=memory_format) x = torch.empty(dim2, memory_format=memory_format) self.assertTrue(x.is_contiguous(memory_format=memory_format)) test_helper((3, 3), (3, 3, 3, 3), torch.channels_last) test_helper((3, 3, 3), (3, 3, 3, 3, 3), torch.channels_last_3d) def test_subclass_tensors(self): # raise an error when trying to subclass FloatTensor with self.assertRaisesRegex(TypeError, "type 'torch.FloatTensor' is not an acceptable base type"): class Foo1(torch.FloatTensor): pass # but allow subclassing Tensor: class Foo2(torch.Tensor): def foo(self): return 5 f = Foo2() self.assertEqual(f.foo(), 5) def test_ndim(self): a = torch.randn(1, 2, 3) self.assertEqual(3, a.ndim) b = torch.randn(()) self.assertEqual(0, b.ndim) c = torch.randn(1, 0) self.assertEqual(2, c.ndim) def test_T(self): a = torch.randn(2, 3, 4) t1 = a.T t2 = a.permute(2, 1, 0) self.assertEqual(t2, t1) b = torch.randn(10) self.assertEqual(b, b.T) scalar = torch.tensor(5) self.assertEqual(scalar, scalar.T) def test_python_types(self): a1 = torch.randn((1, 2), dtype=torch.float64) a2 = torch.randn((1, 2), dtype=float) self.assertEqual(a1.dtype, a2.dtype) b1 = torch.arange(10, 20, dtype=torch.int64) b2 = torch.arange(10, 20, dtype=int) self.assertEqual(b1.dtype, b2.dtype) c1 = torch.tensor([True, False], dtype=torch.bool) c2 = torch.tensor([True, False], dtype=bool) self.assertEqual(c1.dtype, c2.dtype) def test_fill_diagonal(self): a1 = torch.randn(7, 3) a2 = a1.clone() v = 1 for i in range(3): a2[i][i] = v a1.fill_diagonal_(v) self.assertEqual(a1, a2) b1 = torch.randn(7, 3) b2 = b1.clone() for i in range(3): b2[i][i] = v b2[i + 4][i] = v b1.fill_diagonal_(v, wrap=True) self.assertEqual(b1, b2) c1 = torch.rand(3, 3, 3) c2 = c1.clone() for i in range(3): c2[i][i][i] = v c1.fill_diagonal_(v) self.assertEqual(c1, c2) # non-contiguous tensor d1 = torch.rand(3, 3, 3)[:, 1, ...] d2 = d1.clone() for i in range(3): d2[i][i] = v d1.fill_diagonal_(v) self.assertEqual(d1, d2) e1 = torch.rand(7, 3, 3)[:, 1, ...] e2 = e1.clone() for i in range(3): e2[i][i] = v e2[i + 4][i] = v e1.fill_diagonal_(v, wrap=True) self.assertEqual(e1, e2) def test_batch_norm_cpu_inference(self): # input nchw in (2,1,1,1), (2,2,2,2) inputs = [ torch.tensor([[[[-0.5000]]], [[[0.5000]]]]), torch.tensor([ [ [[-0.5000, 0.5000], [-1.0000, 1.0000]], [[-0.2500, -0.5000], [0.2500, 0.5000]] ], [ [[0.1000, 1.0000], [1.0000, 0.1000]], [[1.0000, 0.5000], [1.5000, -1.5000]] ]])] # output nchw in (2,1,1,1), (2,2,2,2) outputs = [ torch.tensor([ [[[-0.499997496604919433593750000]]], [[[0.499997496604919433593750000]]]]), torch.tensor([ [[[-0.499997496604919433593750000, 0.499997496604919433593750000], [-0.999994993209838867187500000, 0.999994993209838867187500000]], [[-0.249998748302459716796875000, -0.499997496604919433593750000], [0.249998748302459716796875000, 0.499997496604919433593750000]]], [[[0.099999502301216125488281250, 0.999994993209838867187500000], [0.999994993209838867187500000, 0.099999502301216125488281250]], [[0.999994993209838867187500000, 0.499997496604919433593750000], [1.499992489814758300781250000, -1.499992489814758300781250000]]]])] for i in range(len(inputs)): for affine in [False, True]: m = torch.nn.BatchNorm2d(inputs[i].size()[1], 1e-05, 0.1, affine=affine) m.eval() # contiguous case input1 = inputs[i].contiguous() output1 = m(input1) # non-contiguous case input2 = input1.permute(0, 1, 3, 2) output2 = m(input2).permute(0, 1, 3, 2) # channels last case input3 = input1.contiguous(memory_format=torch.channels_last) output3 = m(input3) self.assertEqual(output3, outputs[i]) self.assertEqual(output3, output1) self.assertEqual(output3, output2) def test_tensor_grad_warnings(self): dummy = torch.empty(1) with warnings.catch_warnings(record=True) as w: # Accessing .grad on leaf dummy.requires_grad_() foo = dummy.grad self.assertEqual(len(w), 0) # Accessing .grad on non-leaf dummy = dummy.clone() foo = dummy.grad self.assertEqual(len(w), 1) # Accessing .grad on non-leaf that retains gradients dummy.retain_grad() foo = dummy.grad self.assertEqual(len(w), 1) def test_normal_shape(self): warned = False for device in torch.testing.get_all_device_types(): tensor1 = torch.rand(1, device=device) tensor4 = torch.rand(4, device=device) tensor120 = torch.rand(120, device=device) tensor2145 = torch.rand(2, 1, 4, 5, device=device) tensor2345 = torch.rand(2, 3, 4, 5, device=device) tensor2345_non_contiguous = torch.rand(2, 4, 3, 5, device=device).permute(0, 2, 1, 3) tensor2345_channels_last = tensor2345.contiguous(memory_format=torch.channels_last) output2345 = torch.zeros(2, 3, 4, 5, device=device) output345 = torch.zeros(3, 4, 5, device=device) # inputs have same size self.assertEqual(torch.normal(tensor2345, tensor2345).size(), (2, 3, 4, 5)) self.assertEqual(torch.normal(tensor2345_non_contiguous, tensor2345).size(), (2, 3, 4, 5)) self.assertEqual(torch.normal(tensor2345, tensor2345_channels_last).size(), (2, 3, 4, 5)) self.assertEqual(torch.normal(tensor2345_non_contiguous, tensor2345_channels_last).size(), (2, 3, 4, 5)) # scalar case self.assertEqual(torch.normal(tensor2345, 2).size(), (2, 3, 4, 5)) self.assertEqual(torch.normal(2, tensor2345).size(), (2, 3, 4, 5)) # inputs are expandable tensors self.assertEqual(torch.normal(tensor2345, tensor1).size(), (2, 3, 4, 5)) self.assertEqual(torch.normal(tensor2145, tensor2345).size(), (2, 3, 4, 5)) # inputs are non-expandable tensors, but they have same number of elements # TORCH_WARN_ONCE is used in torch.normal, only 1st assertEqual will show warn msg if not warned: self.assertWarnsRegex( lambda: self.assertEqual(torch.normal(tensor120, tensor2345).size(), (120,)), "deprecated and the support will be removed") warned = True else: self.assertEqual(torch.normal(tensor120, tensor2345).size(), (120,)) self.assertEqual(torch.normal(tensor2345, tensor120).size(), (2, 3, 4, 5)) # inputs are non-expandable tensors and they don't have same number of elements with self.assertRaisesRegex(RuntimeError, "inconsistent tensor"): torch.normal(tensor2345, tensor4) # output and inputs are size compatible self.assertEqual(torch.normal(tensor2345, tensor2345, out=output2345).size(), (2, 3, 4, 5)) # output and inputs are not size compatible with self.assertRaisesRegex(RuntimeError, "inconsistent tensor"): # inputs are expandable but have different broadcasted size than output torch.normal(tensor2345, tensor2145, out=output345) with self.assertRaisesRegex(RuntimeError, "inconsistent tensor"): # inputs are not expandable but reshapeable, output size is not the same as mean torch.normal(tensor2345, tensor120, out=output345) def test_tensoriterator_output_setup(self): # Test whether the output's memory layout is correct def test_memory_layout(x, y, scale, zero_point, out): self.assertEqual(x.dim(), 4) self.assertEqual(x.size(), y.size()) self.assertEqual(y.size(), out.size()) shape = x.size() for n in range(shape[0]): for c in range(shape[1]): for h in range(shape[2]): for w in range(shape[3]): if scale is not None and zero_point is not None: self.assertEqual( out[n][c][h][w], torch.ops.quantized.add(x[n][c][h][w], y[n][c][h][w], scale, zero_point)) else: self.assertEqual(out[n][c][h][w], x[n][c][h][w] + y[n][c][h][w]) xraw = torch.rand(2, 3, 4, 4) yraw = torch.rand(2, 3, 4, 4) qxraw = torch.quantize_per_tensor(xraw, 0.1, 5, torch.quint8) qyraw = torch.quantize_per_tensor(yraw, 0.1, 5, torch.quint8) # contiguous case fast setup test_memory_layout(xraw, yraw, None, None, xraw + yraw) test_memory_layout(qxraw, qyraw, 0.1, 5, torch.ops.quantized.add(qxraw, qyraw, 0.1, 5)) # channels last case fast setup x = xraw.contiguous(memory_format=torch.channels_last) y = yraw.contiguous(memory_format=torch.channels_last) test_memory_layout(x, y, None, None, x + y) qx = qxraw.contiguous(memory_format=torch.channels_last) qy = qyraw.contiguous(memory_format=torch.channels_last) test_memory_layout(qx, qy, 0.1, 5, torch.ops.quantized.add(qx, qy, 0.1, 5)) # non contiguous case fast setup (dense, non-overlapping, same shape and sizes) x = xraw.permute(0, 2, 3, 1) y = yraw.permute(0, 2, 3, 1) test_memory_layout(x, y, None, None, x + y) qx = qxraw.permute(0, 2, 3, 1) qy = qyraw.permute(0, 2, 3, 1) test_memory_layout(qx, qy, 0.1, 5, torch.ops.quantized.add(qx, qy, 0.1, 5)) # non contiguous case non fast setup x = xraw.permute(0, 2, 3, 1) y = yraw.permute(0, 3, 2, 1) test_memory_layout(x, y, None, None, x + y) qx = qxraw.permute(0, 2, 3, 1) qy = qyraw.permute(0, 3, 2, 1) test_memory_layout(qx, qy, 0.1, 5, torch.ops.quantized.add(qx, qy, 0.1, 5)) # Tests to make sure we still handle .data properly until it is removed def test_dot_data_use(self): # .data allows to change the Tensors types inplace, check that we still # raise a nice error. with self.assertRaisesRegex( RuntimeError, # message includes both Double and Long '(?=.*Double)(?=.*Long)'): # Calls model with a LongTensor input but DoubleTensor weights input = torch.randn(1, 1, 1, 6, dtype=torch.double) weight = torch.zeros(1, 1, 1, 3, dtype=torch.long) model = torch.nn.Conv2d(1, 1, (1, 3), stride=1, padding=0, bias=False) model.weight.data = weight out = model(input) # Functions to test negative dimension wrapping METHOD = 1 INPLACE_METHOD = 2 FUNCTIONAL = 4 DIM_ARG = None def make_neg_dim_test(name, tensor_arg, arg_constr, types, extra_dim=0): def neg_dim_test(self): if isinstance(tensor_arg, list): assert METHOD not in types and INPLACE_METHOD not in types x = [torch.randn(arg) for arg in tensor_arg] ndim = len(tensor_arg[-1]) else: x = torch.randn(*tensor_arg) ndim = len(tensor_arg) ndim += extra_dim n_dim_to_test = sum(map(lambda e: e is DIM_ARG, arg_constr())) for dims_val in combinations(range(ndim), n_dim_to_test): arg = arg_constr() arg_neg = copy.deepcopy(arg) idx = 0 for i, v in enumerate(arg): if v is DIM_ARG: arg[i] = dims_val[idx] arg_neg[i] = dims_val[idx] - ndim idx += 1 if METHOD in types: a = getattr(x, name)(*arg) b = getattr(x, name)(*arg_neg) self.assertEqual(a, b) if INPLACE_METHOD in types: a = x.clone() getattr(a, name + '_')(*arg) b = x.clone() getattr(b, name + '_')(*arg_neg) self.assertEqual(a, b) if FUNCTIONAL in types: a = getattr(torch, name)(x, *arg) b = getattr(torch, name)(x, *arg_neg) self.assertEqual(a, b) return neg_dim_test def idx_tensor(size, max_val): return torch.LongTensor(*size).random_(0, max_val - 1) def add_neg_dim_tests(): neg_dim_tests = [ ('narrow', (10, 20, 30), lambda: [DIM_ARG, 0, 5], [METHOD]), ('transpose', (10, 20, 30), lambda: [DIM_ARG, DIM_ARG], [METHOD, INPLACE_METHOD, FUNCTIONAL]), ('size', (10, 20, 30), lambda: [DIM_ARG], [METHOD]), ('cat', [(2, 3, 4), (2, 3, 4)], lambda: [DIM_ARG], [FUNCTIONAL]), ('chunk', (10, 20, 30), lambda: [5, DIM_ARG], [METHOD, FUNCTIONAL]), ('gather', (10, 20), lambda: [DIM_ARG, idx_tensor((10, 20), 10)], [METHOD, FUNCTIONAL]), ('index_select', (10, 10), lambda: [DIM_ARG, idx_tensor((10,), 10)], [METHOD, FUNCTIONAL]), ('split', (10, 20), lambda: [5, DIM_ARG], [METHOD, FUNCTIONAL]), ('squeeze', (10, 1, 20, 1), lambda: [DIM_ARG], [METHOD, INPLACE_METHOD, FUNCTIONAL]), ('unbind', (2, 3, 4), lambda: [DIM_ARG], [FUNCTIONAL]), ('unsqueeze', (10, 20), lambda: [DIM_ARG], [METHOD, INPLACE_METHOD, FUNCTIONAL], 1), ('cumprod', (10, 20), lambda: [DIM_ARG], [METHOD, FUNCTIONAL]), ('cumsum', (10, 20), lambda: [DIM_ARG], [METHOD, FUNCTIONAL]), ('cummax', (10, 20), lambda: [DIM_ARG], [METHOD, FUNCTIONAL]), ('cummin', (10, 20), lambda: [DIM_ARG], [METHOD, FUNCTIONAL]), ('mean', (10, 20), lambda: [DIM_ARG], [METHOD, FUNCTIONAL]), ('median', (10, 20), lambda: [DIM_ARG], [METHOD, FUNCTIONAL]), ('mode', (10, 20), lambda: [DIM_ARG], [METHOD, FUNCTIONAL]), ('norm', (10, 20), lambda: [2, DIM_ARG], [METHOD, FUNCTIONAL]), ('prod', (10, 20), lambda: [DIM_ARG], [METHOD, FUNCTIONAL]), ('std', (10, 20), lambda: [DIM_ARG], [METHOD, FUNCTIONAL]), ('sum', (10, 20), lambda: [DIM_ARG], [METHOD, FUNCTIONAL]), ('var', (10, 20), lambda: [DIM_ARG], [METHOD, FUNCTIONAL]), ('kthvalue', (10, 20), lambda: [3, DIM_ARG], [METHOD, FUNCTIONAL]), ('max', (10, 20), lambda: [DIM_ARG], [METHOD, FUNCTIONAL]), ('min', (10, 20), lambda: [DIM_ARG], [METHOD, FUNCTIONAL]), ('sort', (10, 20), lambda: [DIM_ARG], [METHOD, FUNCTIONAL]), ('topk', (10, 20), lambda: [5, DIM_ARG], [METHOD, FUNCTIONAL]), ('renorm', (10, 20), lambda: [2, DIM_ARG, 1], [METHOD, INPLACE_METHOD, FUNCTIONAL]), ('index_add', (10, 10), lambda: [DIM_ARG, idx_tensor((10,), 10), torch.randn(10, 10)], [INPLACE_METHOD]), ('index_copy', (10, 10), lambda: [DIM_ARG, idx_tensor((10,), 10), torch.randn(10, 10)], [INPLACE_METHOD]), ('index_fill', (10, 10), lambda: [DIM_ARG, idx_tensor((10,), 10), 12], [INPLACE_METHOD]), ('scatter', (10, 10), lambda: [DIM_ARG, idx_tensor((10, 10), 10), torch.randn(10, 10)], [INPLACE_METHOD]), ('select', (10, 20), lambda: [DIM_ARG, 3], [METHOD]), ('unfold', (10, 20), lambda: [DIM_ARG, 5, 2], [METHOD]), ] for decl in neg_dim_tests: if len(decl) == 4: name, tensor_arg, arg_constr, types = decl extra_dim = 0 elif len(decl) == 5: name, tensor_arg, arg_constr, types, extra_dim = decl test_name = 'test_' + name + '_neg_dim' assert not hasattr(_TestTorchMixin, test_name), "Duplicated test name: " + test_name setattr(_TestTorchMixin, test_name, make_neg_dim_test(name, tensor_arg, arg_constr, types, extra_dim)) # Device-generic tests. Instantiated below and not run directly. class TestTorchDeviceType(TestCase): exact_dtype = True def check_internal_mem_overlap(self, inplace_op, num_inputs, dtype, device, expected_failure=False): if isinstance(inplace_op, str): inplace_op = getattr(torch.Tensor, inplace_op) input = torch.randn(1, dtype=dtype, device=device).expand(3, 3) inputs = [input] + [torch.randn_like(input) for i in range(num_inputs - 1)] if not expected_failure: with self.assertRaisesRegex(RuntimeError, 'single memory location'): inplace_op(*inputs) else: with self.assertRaises(AssertionError): with self.assertRaisesRegex(RuntimeError, 'single memory location'): inplace_op(*inputs) def unary_check_input_output_mem_overlap(self, data, sz, op, expected_failure=False): def _test(op, output, input): output_exp = torch.empty_like(output) op(input, out=output_exp) self.assertEqual(op(input, out=output), output_exp, op.__name__) # output is identical to input: _test(op, output=data[0:sz], input=data[0:sz]) # output and input are independent: _test(op, output=data[0:sz], input=data[sz:2 * sz]) # output partially overlaps with input: if not expected_failure: with self.assertRaisesRegex(RuntimeError, 'unsupported operation'): _test(op, data[0:sz], data[1:sz + 1]) else: with self.assertRaises(AssertionError): with self.assertRaisesRegex(RuntimeError, 'unsupported operation'): _test(op, data[0:sz], data[1:sz + 1]) def binary_check_input_output_mem_overlap(self, op, device, expected_failure=False): sz = 3 data = torch.randn(2 * sz, device=device) other = torch.randn(sz, device=device) self.unary_check_input_output_mem_overlap( data, sz, lambda input, out: op(other, input, out=out), expected_failure=expected_failure) self.unary_check_input_output_mem_overlap( data, sz, lambda input, out: op(input, other, out=out), expected_failure=expected_failure) def ternary_check_input_output_mem_overlap(self, op, device, expected_failure=False): sz = 3 data = torch.randn(2 * sz, device=device) other1 = torch.randn(sz, device=device) other2 = torch.randn(sz, device=device) self.unary_check_input_output_mem_overlap( data, sz, lambda input, out: op(input, other1, other2, out=out), expected_failure=expected_failure) self.unary_check_input_output_mem_overlap( data, sz, lambda input, out: op(other1, input, other2, out=out), expected_failure=expected_failure) self.unary_check_input_output_mem_overlap( data, sz, lambda input, out: op(other1, other2, input, out=out), expected_failure=expected_failure) def _test_pow(self, base, exponent, np_exponent=None): if np_exponent is None: np_exponent = exponent def to_np(value): if isinstance(value, torch.Tensor): return value.cpu().numpy() return value try: expected = torch.from_numpy( np.power(to_np(base), to_np(np_exponent))) except ValueError as e: err_msg = "Integers to negative integer powers are not allowed." self.assertEqual(str(e), err_msg) out = torch.empty_like(base) test_cases = [ lambda: base.pow(exponent), lambda: base.pow_(exponent), lambda: torch.pow(base, exponent), lambda: torch.pow(base, exponent, out=out) ] for test_case in test_cases: self.assertRaisesRegex(RuntimeError, err_msg, test_case) else: if isinstance(base, torch.Tensor): actual = base.pow(exponent) self.assertEqual(actual, expected.to(actual), allow_inf=True) actual = base.clone() actual2 = actual.pow_(exponent) self.assertEqual(actual, expected.to(actual), allow_inf=True) self.assertEqual(actual2, expected.to(actual), allow_inf=True) actual = torch.pow(base, exponent) self.assertEqual(actual, expected.to(actual), allow_inf=True) actual2 = torch.pow(base, exponent, out=actual) self.assertEqual(actual, expected.to(actual), allow_inf=True) self.assertEqual(actual2, expected.to(actual), allow_inf=True) def _select_broadcastable_dims(self, dims_full=None): # select full dimensionality if dims_full is None: dims_full = [] ndims = random.randint(1, 4) dims_full = [random.randint(1, 8) for _ in range(ndims)] else: ndims = len(dims_full) # select actual dimensions for ops: # larger: full ndims, individual sizes may be reduced # smaller: possibly reduced ndims, sizes may be reduced smaller_ndims = random.randint(1, ndims) dims_small = [] dims_large = [] for i in range(ndims - 1, -1, -1): j = random.randint(1, 3) if j == 1: # no reduced singleton dimension ds = dims_full[i] dl = dims_full[i] elif j == 2: # larger may have reduced singleton dimension ds = dims_full[i] dl = 1 if len(dims_small) < smaller_ndims else dims_full[i] elif j == 3: # smaller may have reduced singleton dimension ds = 1 dl = dims_full[i] dims_large = [dl] + dims_large if len(dims_small) < smaller_ndims: dims_small = [ds] + dims_small return (dims_small, dims_large, dims_full) # collected tests of ops that used scalar_check in Declarations.cwrap for # correctness def test_scalar_check(self, device): zero_d = torch.randn((), device=device) one_d = torch.randn((1,), device=device) # _multinomial_alias_setup self.assertRaises(RuntimeError, lambda: torch._multinomial_alias_setup(zero_d)) # remainder self.assertEqual((), torch.remainder(zero_d, zero_d).shape) self.assertEqual((), torch.remainder(zero_d, 2).shape) self.assertEqual((1,), torch.remainder(zero_d, one_d).shape) self.assertEqual((1,), torch.remainder(one_d, zero_d).shape) # fmod self.assertEqual((), torch.fmod(zero_d, zero_d).shape) self.assertEqual((), torch.fmod(zero_d, 2).shape) self.assertEqual((1,), torch.fmod(zero_d, one_d).shape) self.assertEqual((1,), torch.fmod(one_d, zero_d).shape) # exp, cos, cosh, tan, atan, tanh, erf, erfc, reciprocal self.assertEqual((), torch.exp(zero_d).shape) self.assertEqual((), torch.cos(zero_d).shape) self.assertEqual((), torch.cosh(zero_d).shape) self.assertEqual((), torch.tan(zero_d).shape) self.assertEqual((), torch.atan(zero_d).shape) self.assertEqual((), torch.tanh(zero_d).shape) self.assertEqual((), torch.erf(zero_d).shape) self.assertEqual((), torch.erfc(zero_d).shape) self.assertEqual((), torch.reciprocal(zero_d).shape) self.assertEqual((1,), torch.exp(one_d).shape) self.assertEqual((1,), torch.cos(one_d).shape) self.assertEqual((1,), torch.cosh(one_d).shape) self.assertEqual((1,), torch.tan(one_d).shape) self.assertEqual((1,), torch.atan(one_d).shape) self.assertEqual((1,), torch.tanh(one_d).shape) self.assertEqual((1,), torch.erf(one_d).shape) self.assertEqual((1,), torch.erfc(one_d).shape) self.assertEqual((1,), torch.reciprocal(one_d).shape) # clamp self.assertEqual((), torch.clamp(zero_d, min=0, max=1).shape) self.assertEqual((), torch.clamp(zero_d, min=0).shape) self.assertEqual((), torch.clamp(zero_d, max=1).shape) self.assertEqual((1,), torch.clamp(one_d, min=0, max=1).shape) self.assertEqual((1,), torch.clamp(one_d, min=0).shape) self.assertEqual((1,), torch.clamp(one_d, max=1).shape) # cumsum, cumprod, cummax, cummin self.assertEqual((), torch.cumsum(zero_d, 0).shape) self.assertEqual((), torch.cumprod(zero_d, 0).shape) self.assertEqual((), torch.cummax(zero_d, 0)[0].shape) self.assertEqual((), torch.cummin(zero_d, 0)[0].shape) # renorm self.assertRaises(RuntimeError, lambda: torch.renorm(zero_d, 0.5, 0, 1.0)) # sort, topk self.assertEqual([(), ()], [x.shape for x in torch.sort(zero_d, 0, False)]) self.assertEqual([(), ()], [x.shape for x in torch.sort(zero_d, 0, True)]) self.assertEqual([(), ()], [x.shape for x in torch.topk(zero_d, 1, 0, False)]) self.assertEqual([(), ()], [x.shape for x in torch.topk(zero_d, 1, 0, True)]) # lstsq (gels) self.assertRaises(RuntimeError, lambda: torch.lstsq(zero_d, zero_d)) # eig self.assertRaises(RuntimeError, lambda: torch.eig(zero_d, False)) self.assertRaises(RuntimeError, lambda: torch.eig(zero_d, True)) # this is only implemented on cpu if (torch.device(device).type == 'cpu'): self.assertRaises(RuntimeError, lambda: torch.ormqr(zero_d, zero_d, zero_d)) # max, min self.assertEqual((), torch.max(zero_d, zero_d).shape) self.assertEqual((1,), torch.max(one_d, zero_d).shape) self.assertEqual((1,), torch.max(zero_d, one_d).shape) self.assertEqual((), torch.min(zero_d, zero_d).shape) self.assertEqual((1,), torch.min(one_d, zero_d).shape) self.assertEqual((1,), torch.min(zero_d, one_d).shape) # diag self.assertRaises(RuntimeError, lambda: torch.diag(zero_d)) zero_d_int = torch.tensor(1, device=device) one_d_int = torch.tensor([1], device=device) # lshift, rshift self.assertEqual((), (zero_d_int >> zero_d_int).shape) self.assertEqual((), (zero_d_int >> 1).shape) self.assertEqual((1,), (one_d_int >> zero_d_int).shape) self.assertEqual((1,), (zero_d_int >> one_d_int).shape) self.assertEqual((1,), (one_d_int >> 1).shape) self.assertEqual((), (zero_d_int << zero_d_int).shape) self.assertEqual((), (zero_d_int << 1).shape) self.assertEqual((1,), (one_d_int << zero_d_int).shape) self.assertEqual((1,), (zero_d_int << one_d_int).shape) self.assertEqual((1,), (one_d_int << 1).shape) # or self.assertEqual((), (zero_d_int | zero_d_int).shape) self.assertEqual((), (zero_d_int | 1).shape) self.assertEqual((1,), (one_d_int | zero_d_int).shape) self.assertEqual((1,), (zero_d_int | one_d_int).shape) self.assertEqual((1,), (one_d_int | 1).shape) # and self.assertEqual((), (zero_d_int & zero_d_int).shape) self.assertEqual((), (zero_d_int & 1).shape) self.assertEqual((1,), (one_d_int & zero_d_int).shape) self.assertEqual((1,), (zero_d_int & one_d_int).shape) self.assertEqual((1,), (one_d_int & 1).shape) # _multinomial_alias_draw self.assertRaises(RuntimeError, lambda: torch._multinomial_alias_draw(zero_d, zero_d_int, 10)) # clone self.assertEqual((), zero_d.clone().shape) zero_d_bool = torch.tensor(True, device=device) one_d_bool = torch.tensor([True], device=device) # masked_select self.assertEqual((1,), torch.masked_select(zero_d_bool, zero_d_bool).shape) self.assertEqual((1,), torch.masked_select(zero_d_bool, one_d_bool).shape) self.assertEqual((1,), torch.masked_select(one_d_bool, zero_d_bool).shape) zero_d_uint8 = torch.tensor(1, dtype=torch.uint8, device=device) one_d_uint8 = torch.tensor([1], dtype=torch.uint8, device=device) with warnings.catch_warnings(): warnings.simplefilter("ignore") self.assertEqual((1,), torch.masked_select(zero_d_uint8, zero_d_uint8).shape) self.assertEqual((1,), torch.masked_select(zero_d_uint8, one_d_uint8).shape) self.assertEqual((1,), torch.masked_select(one_d_uint8, zero_d_uint8).shape) # mode self.assertEqual([(), ()], [x.shape for x in torch.mode(zero_d, dim=0, keepdim=True)]) self.assertEqual([(), ()], [x.shape for x in torch.mode(zero_d, dim=0, keepdim=False)]) self.assertEqual([(1,), (1,)], [x.shape for x in torch.mode(one_d, dim=0, keepdim=True)]) self.assertEqual([(), ()], [x.shape for x in torch.mode(one_d, dim=0, keepdim=False)]) # max self.assertEqual([(), ()], [x.shape for x in torch.max(zero_d, dim=0, keepdim=True)]) self.assertEqual([(), ()], [x.shape for x in torch.max(zero_d, dim=0, keepdim=False)]) self.assertEqual([(1,), (1,)], [x.shape for x in torch.max(one_d, dim=0, keepdim=True)]) self.assertEqual([(), ()], [x.shape for x in torch.max(one_d, dim=0, keepdim=False)]) # min self.assertEqual([(), ()], [x.shape for x in torch.min(zero_d, dim=0, keepdim=True)]) self.assertEqual([(), ()], [x.shape for x in torch.min(zero_d, dim=0, keepdim=False)]) self.assertEqual([(1,), (1,)], [x.shape for x in torch.min(one_d, dim=0, keepdim=True)]) self.assertEqual([(), ()], [x.shape for x in torch.min(one_d, dim=0, keepdim=False)]) # set_ zero_d_clone = zero_d.clone() one_d_clone = one_d.clone() self.assertEqual((), zero_d_clone.set_(one_d.storage(), 0, (), ()).shape) self.assertEqual((1,), zero_d_clone.set_(one_d.storage(), 0, (1,), (1,)).shape) self.assertEqual((), one_d_clone.set_(one_d.storage(), 0, (), ()).shape) self.assertEqual((1,), one_d_clone.set_(one_d.storage(), 0, (1,), (1,)).shape) self.assertEqual((), zero_d.clone().set_(zero_d).shape) self.assertEqual((), one_d.clone().set_(zero_d).shape) self.assertEqual((1,), zero_d.clone().set_(one_d).shape) self.assertEqual((1,), one_d.clone().set_(one_d).shape) # take self.assertEqual((), torch.randn((2, 3), device=device).take(zero_d_int).shape) self.assertEqual((1,), torch.randn((2, 3), device=device).take(one_d_int).shape) # gather self.assertEqual((), torch.gather(zero_d, 0, torch.zeros((), dtype=torch.int64, device=device)).shape) self.assertEqual((1,), torch.gather(zero_d, 0, torch.zeros((1,), dtype=torch.int64, device=device)).shape) self.assertEqual((), torch.gather(one_d, 0, torch.zeros((), dtype=torch.int64, device=device)).shape) self.assertEqual((1,), torch.gather(one_d, 0, torch.zeros((1,), dtype=torch.int64, device=device)).shape) # normal # documentation says out shape matches shape of mean self.assertEqual((), torch.normal(zero_d, zero_d).shape) self.assertEqual((1,), torch.normal(one_d, zero_d).shape) self.assertEqual((), torch.normal(1, zero_d).shape) self.assertEqual((), torch.normal(zero_d, 1).shape) self.assertEqual((1,), torch.normal(one_d, 1).shape) # TODO: this behavior differs on CPU and GPU, see https://github.com/pytorch/pytorch/issues/30480. # self.assertEqual((), torch.normal(zero_d, one_d).shape) # self.assertEqual((), torch.normal(1, one_d).shape) # convolutions. Yes, we are testing nn.functional here; seems justified # given its similar to the other tests w = torch.randn(2, 1, 3, 3, device=device).div_(2).requires_grad_() self.assertRaises(RuntimeError, lambda: torch.nn.functional.conv2d(zero_d, w, groups=1)) self.assertRaises(RuntimeError, lambda: torch.nn.functional.conv2d(zero_d, w, groups=2)) # nll_loss -- verify input can't be 0-dimensional. self.assertRaises(ValueError, lambda: torch.nn.functional.nll_loss(zero_d, zero_d, reduction='none')) self.assertRaises(ValueError, lambda: torch.nn.functional.nll_loss(zero_d, one_d, reduction='none')) # verify output is 0-dimensional when reduction != 'none' for (input, target) in ((torch.randn(1, 1, device=device), torch.tensor([0], device=device)), (torch.randn(1, 1, 1, 1, device=device), torch.tensor([[[0]]], device=device))): self.assertEqual((), torch.nn.functional.nll_loss(input, target, reduction='mean').shape) self.assertEqual((), torch.nn.functional.nll_loss(input, target, reduction='sum').shape) # multilabel_margin_loss for input in (zero_d, one_d, torch.randn(1, 1, device=device)): for target in (torch.tensor(0, device=device), torch.tensor([0], device=device), torch.tensor([[0]], device=device)): if (input.dim() <= 1 and target.dim() <= 1) or (input.dim() == 2 and target.dim() == 2): output_shape = (target.shape[0],) if target.dim() == 2 else () self.assertEqual(output_shape, torch.nn.functional.multilabel_margin_loss(input, target, reduction='none').shape) self.assertEqual((), torch.nn.functional.multilabel_margin_loss(input, target, reduction='mean').shape) self.assertEqual((), torch.nn.functional.multilabel_margin_loss(input, target, reduction='sum').shape) else: self.assertRaises(RuntimeError, lambda: torch.nn.functional.multilabel_margin_loss(input, target, reduction='none')) self.assertRaises(RuntimeError, lambda: torch.nn.functional.multilabel_margin_loss(input, target, reduction='mean')) self.assertRaises(RuntimeError, lambda: torch.nn.functional.multilabel_margin_loss(input, target, reduction='sum')) # multi_margin_loss for input in (zero_d, one_d, torch.randn(1, 1, device=device)): for target in (torch.tensor(0, device=device), torch.tensor([0], device=device)): self.assertEqual(target.shape, torch.nn.functional.multi_margin_loss(input, target, reduction='none').shape) self.assertEqual((), torch.nn.functional.multi_margin_loss(input, target, reduction='mean').shape) self.assertEqual((), torch.nn.functional.multi_margin_loss(input, target, reduction='sum').shape) @onlyCPU @dtypes(torch.float) def test_diag(self, device, dtype): x = torch.rand(100, 100, dtype=dtype, device=device) res1 = torch.diag(x) res2 = torch.tensor((), dtype=dtype, device=device) torch.diag(x, out=res2) self.assertEqual(res1, res2) def test_diagonal(self, device): x = torch.randn((100, 100), device=device) result = torch.diagonal(x) expected = torch.diag(x) self.assertEqual(result, expected) x = torch.randn((100, 100), device=device) result = torch.diagonal(x, 17) expected = torch.diag(x, 17) self.assertEqual(result, expected) def test_conv_transposed_backward_agnostic_to_memory_format(self, device): in_channels = 64 out_channels = 128 scale_factor = 8 batch_size = 8 length = 16 conv = torch.nn.ConvTranspose1d( in_channels, out_channels, kernel_size=scale_factor * 2, stride=scale_factor).to(device) layer_norm = torch.nn.LayerNorm(out_channels).to(device) input_ = torch.randn(batch_size, in_channels, length).to(device).contiguous() input_ = conv(input_).contiguous() input_ = layer_norm(input_.transpose(1, 2).contiguous()).contiguous() input_.sum().backward() @unittest.skipIf(not TEST_NUMPY, 'Numpy not found') @onlyCPU @dtypes(torch.float) def test_diagonal_multidim(self, device, dtype): x = torch.randn(10, 11, 12, 13, dtype=dtype, device=device) xn = x.numpy() for args in [(2, 2, 3), (2,), (-2, 1, 2), (0, -2, -1)]: result = torch.diagonal(x, *args) expected = xn.diagonal(*args) self.assertEqual(expected.shape, result.shape) self.assertTrue(np.allclose(expected, result.numpy())) # test non-continguous xp = x.permute(1, 2, 3, 0) result = torch.diagonal(xp, 0, -2, -1) expected = xp.numpy().diagonal(0, -2, -1) self.assertEqual(expected.shape, result.shape) self.assertTrue(np.allclose(expected, result.numpy())) @onlyCPU @dtypes(torch.float) def test_broadcast_tensors(self, device, dtype): x0 = torch.randn(2, 1, 3, dtype=dtype, device=device) x1 = torch.randn(3, dtype=dtype, device=device) x2 = torch.randn(3, 1, dtype=dtype, device=device) expected_size = (2, 3, 3) y0, y1, y2 = torch.broadcast_tensors(x0, x1, x2) self.assertTrue(y0.size() == expected_size) self.assertTrue(y1.size() == expected_size) self.assertTrue(y2.size() == expected_size) def test_pow(self, device): # [res] torch.pow([res,] x) # pow has dedicated implementation for different exponents for dtype in torch.testing.get_all_math_dtypes(device): # This test won't work on torch.half because math.pow will generate a much more accurate result. We skip it # for now. if dtype == torch.half: continue m1 = torch.empty(0, dtype=dtype, device=device) if m1.is_floating_point(): m1 = torch.rand(100, 100, dtype=dtype, device=device) + 0.5 else: # math.pow will overflow and throw exceptions for large integers range_high = 4 if dtype in (torch.int8, torch.uint8) else 10 m1 = torch.randint(1, range_high, (100, 100), dtype=dtype, device=device) for num in [-2.8, -2, -1, -0.5, 0, 0.5, 1, 2, 3, 4, 3.3]: if isinstance(num, int) and num < 0 and not m1.is_floating_point(): with self.assertRaisesRegex(RuntimeError, r'Integers to negative integer powers are not allowed\.'): torch.pow(m1[4], num) else: # base - tensor, exponent - number # contiguous res1 = torch.pow(m1[4], num) res2 = res1.clone().zero_() for i in range(res2.size(0)): res2[i] = math.pow(m1[4][i], num) self.assertEqual(res1, res2) # non-contiguous res1 = torch.pow(m1[:, 4], num) res2 = res1.clone().zero_() for i in range(res2.size(0)): res2[i] = math.pow(m1[i, 4], num) self.assertEqual(res1, res2) # base - number, exponent - tensor # contiguous res1 = torch.pow(3, m1[4]) res2 = res1.clone().zero_() for i in range(res2.size(0)): res2[i] = math.pow(3, m1[4, i]) self.assertEqual(res1, res2) # non-contiguous res1 = torch.pow(3, m1[:, 4]) res2 = res1.clone().zero_() for i in range(res2.size(0)): res2[i] = math.pow(3, m1[i][4]) self.assertEqual(res1, res2) # resize behavior for exp == 1 out = torch.zeros(1, dtype=dtype, device=device) torch.pow(m1, 1, out=out) self.assertEqual(out, m1) def test_neg(self, device): int_types = [torch.int, torch.short, torch.int8, torch.uint8] float_types = [torch.float, torch.double, torch.long] # Tests bool tensor negation raises the correct error self.assertRaisesRegex( RuntimeError, r"Negation, the `\-` operator, on a bool tensor is not supported. " r"If you are trying to invert a mask, use the `\~` or `logical_not\(\)` operator instead.", lambda: - torch.tensor([False, True], device=device)) for dtype in float_types + int_types: if dtype in float_types: a = torch.randn(100, 90).type(dtype).to(device) if dtype == torch.uint8: a = torch.randint(0, 256, (100, 90), dtype=dtype, device=device) else: a = torch.randint(-128, 128, (100, 90), dtype=dtype, device=device) zeros = torch.Tensor().type(dtype).resize_as_(a).zero_().to(device) if dtype == torch.uint8: res_add = torch.add(zeros, a, alpha=255) else: res_add = torch.add(zeros, a, alpha=-1) res_neg = a.clone() res_neg.neg_() self.assertEqual(res_neg, res_add) # test out of place as well res_neg_out_place = a.clone().neg() self.assertEqual(res_neg_out_place, res_add) # test via __neg__ operator res_neg_op = -a.clone() self.assertEqual(res_neg_op, res_add) @skipCUDAIfNoMagma @skipCPUIfNoLapack def test_inverse(self, device): from torch.testing._internal.common_utils import random_fullrank_matrix_distinct_singular_value # no batches: 2-D tensors matrix = random_fullrank_matrix_distinct_singular_value(5).to(device) matrix_inverse = torch.inverse(matrix) identity = torch.eye(5, dtype=torch.float64, device=device) self.assertEqual(identity, torch.mm(matrix, matrix_inverse), 1e-8, 'inverse value') self.assertEqual(identity, torch.mm(matrix_inverse, matrix), 1e-8, 'inverse value') matrix_inverse_out = torch.empty(5, 5, dtype=torch.float64, device=device) torch.inverse(matrix, out=matrix_inverse_out) self.assertEqual(matrix_inverse_out, matrix_inverse, 0, 'inverse value in-place') # second call, now that matrix_inverse_out is transposed torch.inverse(matrix, out=matrix_inverse_out) self.assertEqual(matrix_inverse_out, matrix_inverse, 0, 'inverse value in-place') # one batch matrix = random_fullrank_matrix_distinct_singular_value(5, 1).to(device) matrix_inverse = torch.inverse(matrix) expected_inv = matrix.squeeze(0).inverse() self.assertEqual(matrix_inverse, expected_inv.unsqueeze(0)) # four batches matrices = random_fullrank_matrix_distinct_singular_value(5, 4).to(device) expected_inv_list = [] for i in range(0, 4): expected_inv_list.append(torch.inverse(matrices[i])) expected_inv = torch.stack(expected_inv_list) matrices_inverse = torch.inverse(matrices) self.assertEqual(matrices_inverse, expected_inv) # six batches (2 x 3) matrices = random_fullrank_matrix_distinct_singular_value(5, 2, 3).to(device) expected_inv_list = [] for mat in matrices.view(-1, 5, 5): expected_inv_list.append(torch.inverse(mat)) expected_inv = torch.stack(expected_inv_list).view(2, 3, 5, 5) matrices_inverse = torch.inverse(matrices) self.assertEqual(matrices_inverse, expected_inv) # incorrect input test with self.assertRaisesRegex(RuntimeError, "must be batches of square matrices"): torch.inverse(torch.randn(2, 3, 4, 3)) # correctness test matrices = random_fullrank_matrix_distinct_singular_value(5, 3).to(device) matrices_inverse = torch.inverse(matrices) self.assertEqual(torch.matmul(matrices, matrices_inverse), identity.expand_as(matrices)) self.assertEqual(torch.matmul(matrices_inverse, matrices), identity.expand_as(matrices)) # torch.inverse with out and batches matrices = random_fullrank_matrix_distinct_singular_value(5, 3).to(device) matrices_inverse = torch.empty(3, 5, 5, dtype=torch.float64, device=device) torch.inverse(matrices, out=matrices_inverse) self.assertEqual(torch.inverse(matrices), matrices_inverse) # non-contiguous inputs if not TEST_NUMPY: return from numpy.linalg import inv matrices = random_fullrank_matrix_distinct_singular_value(3, 2).to(device).permute(0, 2, 1) assert not matrices.is_contiguous() matrices_inverse = torch.inverse(matrices) expected_inv = torch.as_tensor(inv(matrices.cpu().numpy())) self.assertEqual(matrices_inverse, expected_inv.to(device)) def test_bitwise_not(self, device): res = 0xffff - torch.arange(127, dtype=torch.int8, device=device) for dtype in (torch.bool, torch.uint8, torch.int8, torch.int16, torch.int32, torch.int64): if dtype == torch.bool: a = torch.tensor([True, False], device=device) expected_res = torch.tensor([False, True], device=device) else: a = torch.arange(127, dtype=dtype, device=device) expected_res = res.type(dtype) # new tensor self.assertEqual(expected_res, a.bitwise_not()) # out b = torch.empty(0, dtype=dtype, device=device) torch.bitwise_not(a, out=b) self.assertEqual(expected_res, b) # in-place a.bitwise_not_() self.assertEqual(expected_res, a) # test exceptions for dtype in(torch.half, torch.float, torch.double): a = torch.zeros(10, dtype=dtype, device=device) # new tensor with self.assertRaises(RuntimeError): a.bitwise_not() # out b = torch.empty(0, dtype=dtype, device=device) with self.assertRaises(RuntimeError): torch.bitwise_not(a, out=b) # in-place with self.assertRaises(RuntimeError): a.bitwise_not_() def test_bitwise_and(self, device): for dtype in (torch.uint8, torch.int8, torch.int16, torch.int32, torch.int64): a = torch.tensor([1, -2, 3], dtype=dtype, device=device) b = torch.tensor([2, 1, 3], dtype=dtype, device=device) expected_res = torch.tensor([0, 0, 3], dtype=dtype, device=device) b_scalar = 2 expected_res_scalar = torch.tensor([0, 2, 2], dtype=dtype, device=device) # standard version self.assertEqual(torch.bitwise_and(a, b), expected_res) self.assertEqual(torch.bitwise_and(a, b_scalar), expected_res_scalar) # out c = torch.empty(0, dtype=dtype, device=device) torch.bitwise_and(a, b, out=c) self.assertEqual(c, expected_res) torch.bitwise_and(a, b_scalar, out=c) self.assertEqual(c, expected_res_scalar) # in-place a1 = a.clone() a1.bitwise_and_(b) self.assertEqual(a1, expected_res) a.bitwise_and_(b_scalar) self.assertEqual(a, expected_res_scalar) self.assertEqual(torch.tensor([False, True, False], device=device), torch.bitwise_and(torch.tensor([True, True, False], device=device), torch.tensor([False, True, False], device=device))) def test_bitwise_or(self, device): for dtype in (torch.uint8, torch.int8, torch.int16, torch.int32, torch.int64): a = torch.tensor([1, -2, 3], dtype=dtype, device=device) b = torch.tensor([2, 1, 3], dtype=dtype, device=device) expected_res = torch.tensor([3, -1, 3], dtype=dtype, device=device) b_scalar = 2 expected_res_scalar = torch.tensor([3, -2, 3], dtype=dtype, device=device) # standard version self.assertEqual(torch.bitwise_or(a, b), expected_res) self.assertEqual(torch.bitwise_or(a, b_scalar), expected_res_scalar) # out c = torch.empty(0, dtype=dtype, device=device) torch.bitwise_or(a, b, out=c) self.assertEqual(c, expected_res) torch.bitwise_or(a, b_scalar, out=c) self.assertEqual(c, expected_res_scalar) # in-place a1 = a.clone() a1.bitwise_or_(b) self.assertEqual(a1, expected_res) a.bitwise_or_(b_scalar) self.assertEqual(a, expected_res_scalar) self.assertEqual(torch.tensor([True, True, False], device=device), torch.bitwise_or(torch.tensor([True, True, False], device=device), torch.tensor([False, True, False], device=device))) def test_bitwise_xor(self, device): for dtype in (torch.uint8, torch.int8, torch.int16, torch.int32, torch.int64): a = torch.tensor([1, -2, 3], dtype=dtype, device=device) b = torch.tensor([2, 1, 3], dtype=dtype, device=device) expected_res = torch.tensor([3, -1, 0], dtype=dtype, device=device) b_scalar = 2 expected_res_scalar = torch.tensor([3, -4, 1], dtype=dtype, device=device) # standard version self.assertEqual(torch.bitwise_xor(a, b), expected_res) self.assertEqual(torch.bitwise_xor(a, b_scalar), expected_res_scalar) # out c = torch.empty(0, dtype=dtype, device=device) torch.bitwise_xor(a, b, out=c) self.assertEqual(c, expected_res) torch.bitwise_xor(a, b_scalar, out=c) self.assertEqual(c, expected_res_scalar) # in-place a1 = a.clone() a1.bitwise_xor_(b) self.assertEqual(a1, expected_res) a.bitwise_xor_(b_scalar) self.assertEqual(a, expected_res_scalar) self.assertEqual(torch.tensor([True, False, False], device=device), torch.bitwise_xor(torch.tensor([True, True, False], device=device), torch.tensor([False, True, False], device=device))) def test_logical_not(self, device): for dtype in torch.testing.get_all_dtypes(): a = torch.tensor([10, 1, 0], dtype=dtype, device=device) if dtype == torch.bfloat16: self.assertRaises(RuntimeError, lambda: a.logical_not()) continue expected_res = torch.tensor([0, 0, 1], dtype=dtype, device=device) # new tensor self.assertEqual(expected_res.bool(), a.logical_not()) # out for out_dtype in torch.testing.get_all_dtypes(): b = torch.empty(0, dtype=out_dtype, device=device) if out_dtype == torch.bfloat16: self.assertRaises(RuntimeError, lambda: torch.logical_not(a, out=b)) continue torch.logical_not(a, out=b) self.assertEqual(expected_res.bool(), b.bool()) # in-place a.logical_not_() self.assertEqual(expected_res, a) def _test_logical(self, device, op, a_, b_, expected_res_): for dtype in torch.testing.get_all_dtypes(): expected_res = torch.tensor(expected_res_, dtype=dtype, device=device) a = torch.tensor(a_, dtype=dtype, device=device) for other_dtype in torch.testing.get_all_dtypes(): b = torch.tensor(b_, dtype=other_dtype, device=device) # Skip bfloat16 on CUDA. Remove this after bfloat16 is supported on CUDA. if device.startswith('cuda') and torch.bfloat16 in (dtype, other_dtype): with self.assertRaises(RuntimeError): getattr(a, op)(b) continue # TODO Remove this skipping after bfloat16 can be handled nicely with other dtypes. # Skip only if either dtype or other_dtype is bfloat16. if (dtype == torch.bfloat16) != (other_dtype == torch.bfloat16): with self.assertRaises(RuntimeError): getattr(a, op)(b) continue # new tensor self.assertEqual(expected_res.bool(), getattr(a, op)(b)) # out c = torch.empty(0, dtype=torch.bool, device=device) getattr(torch, op)(a, b, out=c) self.assertEqual(expected_res.bool(), c.bool()) # in-place b = torch.tensor(b_, dtype=dtype, device=device) # Skip bfloat16 on CUDA. Remove this after bfloat16 is supported on CUDA. if device.startswith('cuda') and dtype == torch.bfloat16: with self.assertRaises(RuntimeError): getattr(a, op + '_')(b) continue getattr(a, op + '_')(b) self.assertEqual(expected_res, a) def test_logical_xor(self, device): self._test_logical(device, 'logical_xor', [10, 0, 1, 0], [1, 0, 0, 10], [0, 0, 1, 1]) def test_logical_and(self, device): self._test_logical(device, 'logical_and', [10, 0, 1, 0], [1, 0, 0, 10], [1, 0, 0, 0]) def test_logical_or(self, device): self._test_logical(device, 'logical_or', [10, 0, 1, 0], [1, 0, 0, 10], [1, 0, 1, 1]) def test_isinf(self, device): t1 = torch.Tensor([1, inf, 2, -inf, nan]).to(device) t2 = torch.ByteTensor([1, 2, 3]).to(device) t3 = torch.CharTensor([1, 2, 3]).to(device) t4 = torch.ShortTensor([1, 2, 3]).to(device) t5 = torch.IntTensor([1, 2, 3]).to(device) t6 = torch.LongTensor([1, 2, 3]).to(device) self.assertEqual(torch.isinf(t1), torch.tensor([0, 1, 0, 1, 0], dtype=torch.bool, device=device)) self.assertEqual(torch.isinf(t2), torch.tensor([0, 0, 0], dtype=torch.bool, device=device)) self.assertEqual(torch.isinf(t3), torch.tensor([0, 0, 0], dtype=torch.bool, device=device)) self.assertEqual(torch.isinf(t4), torch.tensor([0, 0, 0], dtype=torch.bool, device=device)) self.assertEqual(torch.isinf(t5), torch.tensor([0, 0, 0], dtype=torch.bool, device=device)) self.assertEqual(torch.isinf(t6), torch.tensor([0, 0, 0], dtype=torch.bool, device=device)) def test_clamp(self, device): m1 = torch.rand(100, device=device).mul(5).add(-2.5) # uniform in [-2.5, 2.5] # just in case we're extremely lucky. min_val = -1 max_val = 1 m1[1] = min_val m1[2] = max_val res1 = m1.clone() res1.clamp_(min_val, max_val) res2 = m1.clone() for i in iter_indices(res2): res2[i] = max(min_val, min(max_val, res2[i])) self.assertEqual(res1, res2) out = m1.clone() torch.clamp(m1, min=min_val, max=max_val, out=out) self.assertEqual(out, res1) res1 = torch.clamp(m1, min=min_val) res2 = m1.clone() for i in iter_indices(res2): res2[i] = max(min_val, res2[i]) self.assertEqual(res1, res2) torch.clamp(m1, min=min_val, out=out) self.assertEqual(out, res1) res1 = torch.clamp(m1, max=max_val) res2 = m1.clone() for i in iter_indices(res2): res2[i] = min(max_val, res2[i]) self.assertEqual(res1, res2) torch.clamp(m1, max=max_val, out=out) self.assertEqual(out, res1) # if the tensor contains nan case test_tens = torch.tensor([nan], device=device) res1 = test_tens.clone() res1.clamp_(min_val, max_val) res2 = test_tens.clone() for i in iter_indices(res2): res2[i] = max(min(res2[i], max_val), min_val) self.assertEqual(torch.isnan(res1), torch.isnan(res2)) out = test_tens.clone() torch.clamp(test_tens, min=min_val, max=max_val, out=out) self.assertEqual(torch.isnan(out), torch.isnan(res1)) res1 = torch.clamp(test_tens, min=min_val) res2 = test_tens.clone() for i in iter_indices(res2): res2[i] = max(res2[i], min_val) self.assertEqual(torch.isnan(res1), torch.isnan(res2)) torch.clamp(test_tens, min=min_val, out=out) self.assertEqual(torch.isnan(out), torch.isnan(res1)) res1 = torch.clamp(test_tens, max=max_val) res2 = test_tens.clone() for i in iter_indices(res2): res2[i] = min(res2[i], max_val) self.assertEqual(torch.isnan(res1), torch.isnan(res2)) torch.clamp(test_tens, max=max_val, out=out) self.assertEqual(torch.isnan(out), torch.isnan(res1)) error_msg = 'At least one of \'min\' or \'max\' must not be None' with self.assertRaisesRegex(RuntimeError, error_msg): m1.clamp() with self.assertRaisesRegex(RuntimeError, error_msg): m1.clamp_() def test_cat_empty_legacy(self, device): # FIXME: this is legacy behavior and should be removed # when we support empty tensors with arbitrary sizes dtype = torch.float32 x = torch.randn((4, 3, 32, 32), dtype=dtype, device=device) empty = torch.randn((0,), dtype=dtype, device=device) res1 = torch.cat([x, empty], dim=1) res2 = torch.cat([empty, x], dim=1) self.assertEqual(res1, res2) res1 = torch.cat([empty, empty], dim=1) self.assertEqual(res1, empty) with self.assertRaisesRegex(RuntimeError, 'non-empty list of Tensors'): torch.cat([], dim=1) def test_cat_empty(self, device): dtype = torch.float32 x = torch.randn((4, 3, 32, 32), dtype=dtype, device=device) empty = torch.randn((4, 0, 32, 32), dtype=dtype, device=device) res1 = torch.cat([x, empty], dim=1) res2 = torch.cat([empty, x], dim=1) self.assertEqual(res1, res2) res1 = torch.cat([empty, empty], dim=1) self.assertEqual(res1, empty) # check non-legacy-behavior (sizes don't match) empty = torch.randn((4, 0, 31, 32), dtype=dtype, device=device) self.assertRaises(RuntimeError, lambda: torch.cat([x, empty], dim=1)) self.assertRaises(RuntimeError, lambda: torch.cat([empty, x], dim=1)) # check non-legacy-behavior (dimensions don't match) empty = torch.randn((4, 0), dtype=dtype, device=device) self.assertRaises(RuntimeError, lambda: torch.cat([x, empty], dim=1)) self.assertRaises(RuntimeError, lambda: torch.cat([empty, x], dim=1)) def test_cat_out(self, device): x = torch.zeros((0), device=device) y = torch.randn((4, 6), device=device) with self.assertRaisesRegex( RuntimeError, r"unsupported operation:.* input tensor 0"): torch.cat([x, y], dim=0, out=x) with self.assertRaisesRegex( RuntimeError, r"unsupported operation:.* input tensor 1"): torch.cat([x, y], dim=0, out=y) z = torch.zeros((4, 6), device=device) with self.assertRaisesRegex( RuntimeError, r"unsupported operation:.* input tensor 1"): torch.cat([y, z], out=z[:2, :]) w = y.view(-1).clone() a = torch.cat([w[:2], w[4:6]]) b = torch.cat([w[:2], w[4:6]], out=w[6:10]) self.assertEqual(a, b) self.assertEqual(w[:6], y.view(-1)[:6]) def test_cat_out_channels_last(self, device): x = torch.randn((4, 3, 8, 8)) y = torch.randn(x.shape) res1 = torch.cat((x, y)) z = res1.clone().contiguous(memory_format=torch.channels_last) res2 = torch.cat((x, y), out=z) self.assertEqual(res1, res2) @onlyCUDA def test_cat_preserve_channels_last(self, device): x = torch.randn((4, 3, 8, 8), device=device) y = torch.randn(x.shape, device=device) res1 = torch.cat((x, y)) res2 = torch.cat((x.contiguous(memory_format=torch.channels_last), y.contiguous(memory_format=torch.channels_last))) self.assertEqual(res1, res2) self.assertTrue(res2.is_contiguous(memory_format=torch.channels_last)) @onlyCUDA @deviceCountAtLeast(2) def test_cat_different_devices(self, devices): cuda0 = torch.randn((3, 3), device=devices[0]) cuda1 = torch.randn((3, 3), device=devices[1]) with self.assertRaisesRegex(RuntimeError, "input tensors must be on the same device"): torch.cat((cuda0, cuda1)) cpu = torch.randn(3, 3) with self.assertRaisesRegex(RuntimeError, "input tensors must be on the same device"): torch.cat((cuda0, cpu)) with self.assertRaisesRegex(RuntimeError, "input tensors must be on the same device"): torch.cat((cpu, cuda0)) def test_is_set_to(self, device): t1 = torch.empty(3, 4, 9, 10, device=device) t2 = torch.empty(3, 4, 9, 10, device=device) t3 = torch.tensor([], device=device).set_(t1) t4 = t3.clone().resize_(12, 90) self.assertFalse(t1.is_set_to(t2)) self.assertTrue(t1.is_set_to(t3)) self.assertTrue(t3.is_set_to(t1), "is_set_to should be symmetric") self.assertFalse(t1.is_set_to(t4)) self.assertFalse(torch.Tensor().is_set_to(torch.Tensor()), "Tensors with no storages should not appear to be set " "to each other") t1 = torch.tensor([True, True], dtype=torch.bool, device=device) t2 = torch.tensor([0], dtype=torch.bool, device=device).set_(t1) self.assertTrue(t1.is_set_to(t2)) # test that sizes must match t1 = torch.empty([2, 3, 4], device=device) t2 = t1.view(4, 3, 2) self.assertFalse(t1.is_set_to(t2)) self.assertFalse(t2.is_set_to(t1)) # test that legacy empty size behavior used to be respected (i.e. all # empty tensors were logically collapsed to size [0]). t1 = torch.empty([2, 5, 0], device=device) t2 = t1.view([0]) self.assertFalse(t1.is_set_to(t2)) self.assertFalse(t2.is_set_to(t1)) @slowTest @skipCUDAIfNoMagma @skipCPUIfNoLapack def test_inverse_many_batches(self, device): from torch.testing._internal.common_utils import random_fullrank_matrix_distinct_singular_value matrices = random_fullrank_matrix_distinct_singular_value(5, 256, 256).to(device) matrices_inverse = torch.inverse(matrices) self.assertEqual(torch.matmul(matrices_inverse, matrices), torch.eye(5, dtype=torch.float64).to(device).expand_as(matrices)) matrices = random_fullrank_matrix_distinct_singular_value(3, 512, 512).to(device) matrices_inverse = torch.inverse(matrices) self.assertEqual(torch.matmul(matrices, matrices_inverse), torch.eye(3, dtype=torch.float64).to(device).expand_as(matrices)) @skipCUDAIfNoMagma @skipCPUIfNoLapack @dtypes(torch.double) def test_pinverse(self, device, dtype): from torch.testing._internal.common_utils import random_fullrank_matrix_distinct_singular_value as fullrank def run_test(M): # Testing against definition for pseudo-inverses MPI = torch.pinverse(M) if M.numel() > 0: self.assertEqual(M, M.matmul(MPI).matmul(M), 1e-8, 'pseudo-inverse condition 1') self.assertEqual(MPI, MPI.matmul(M).matmul(MPI), 1e-8, 'pseudo-inverse condition 2') self.assertEqual(M.matmul(MPI), (M.matmul(MPI)).transpose(-2, -1), 1e-8, 'pseudo-inverse condition 3') self.assertEqual(MPI.matmul(M), (MPI.matmul(M)).transpose(-2, -1), 1e-8, 'pseudo-inverse condition 4') else: self.assertEqual(M.shape, MPI.shape[:-2] + (MPI.shape[-1], MPI.shape[-2])) for sizes in [(5, 5), (3, 5, 5), (3, 7, 5, 5), # square matrices (3, 2), (5, 3, 2), (7, 5, 3, 2), # fat matrices (2, 3), (5, 2, 3), (7, 5, 2, 3), # thin matrices (0, 0), (0, 2), (2, 0), (3, 0, 0), (0, 3, 0), (0, 0, 3)]: # zero numel matrices M = torch.randn(*sizes, dtype=dtype, device=device) run_test(M) # Test inverse and pseudo-inverse for invertible matrix for sizes in [(5, 5), (3, 5, 5), (3, 7, 5, 5)]: matsize = sizes[-1] batchdims = sizes[:-2] M = fullrank(matsize, *batchdims, dtype=dtype, device=device) self.assertEqual(torch.eye(matsize, dtype=dtype, device=device).expand(sizes), M.pinverse().matmul(M), 1e-7, 'pseudo-inverse for invertible matrix') @skipCUDAIfNoMagma @skipCPUIfNoLapack def test_matrix_rank(self, device): a = torch.eye(10, device=device) self.assertEqual(torch.matrix_rank(a).item(), 10) self.assertEqual(torch.matrix_rank(a, True).item(), 10) a[5, 5] = 0 self.assertEqual(torch.matrix_rank(a).item(), 9) self.assertEqual(torch.matrix_rank(a, True).item(), 9) a = torch.randn(24, 42, device=device) self.assertEqual(torch.matrix_rank(a), torch.matrix_rank(a.t())) aaT = torch.mm(a, a.t()) self.assertEqual(torch.matrix_rank(aaT), torch.matrix_rank(aaT, True)) aTa = torch.mm(a.t(), a) self.assertEqual(torch.matrix_rank(aTa), torch.matrix_rank(aTa, True)) if TEST_NUMPY: from numpy.linalg import matrix_rank a = torch.randn(35, 75, device=device) self.assertEqual(torch.matrix_rank(a).item(), matrix_rank(a.cpu().numpy())) self.assertEqual(torch.matrix_rank(a, 0.01).item(), matrix_rank(a.cpu().numpy(), 0.01)) aaT = torch.mm(a, a.t()) self.assertEqual(torch.matrix_rank(aaT).item(), matrix_rank(aaT.cpu().numpy())) self.assertEqual(torch.matrix_rank(aaT, 0.01).item(), matrix_rank(aaT.cpu().numpy(), 0.01)) if np.lib.NumpyVersion(np.__version__) >= '1.14.0': self.assertEqual(torch.matrix_rank(aaT, True).item(), matrix_rank(aaT.cpu().numpy(), True)) self.assertEqual(torch.matrix_rank(aaT, 0.01, True).item(), matrix_rank(aaT.cpu().numpy(), 0.01, True)) @skipCUDAIfNoMagma @skipCPUIfNoLapack @dtypes(torch.double) def test_matrix_power(self, device, dtype): def run_test(M, sign=1): if sign == -1: M = M.inverse() MP2 = torch.matrix_power(M, 2) self.assertEqual(MP2, torch.matmul(M, M)) MP3 = torch.matrix_power(M, 3) self.assertEqual(MP3, torch.matmul(MP2, M)) MP4 = torch.matrix_power(M, 4) self.assertEqual(MP4, torch.matmul(MP2, MP2)) MP6 = torch.matrix_power(M, 6) self.assertEqual(MP6, torch.matmul(MP3, MP3)) MP0 = torch.matrix_power(M, 0) self.assertEqual(MP0, torch.eye(M.size(-2), dtype=dtype).expand_as(M)) # Single matrix M = torch.randn(5, 5, dtype=dtype, device=device) run_test(M) # Batch matrices M = torch.randn(3, 3, 3, dtype=dtype, device=device) run_test(M) # Many batch matrices M = torch.randn(2, 3, 3, 3, dtype=dtype, device=device) run_test(M) # This is for negative powers from torch.testing._internal.common_utils import random_fullrank_matrix_distinct_singular_value M = random_fullrank_matrix_distinct_singular_value(5, dtype=dtype, device=device) run_test(M, sign=-1) M = random_fullrank_matrix_distinct_singular_value(3, 3, dtype=dtype, device=device) run_test(M, sign=-1) M = random_fullrank_matrix_distinct_singular_value(3, 2, 3, dtype=dtype, device=device) run_test(M, sign=-1) @dtypes(torch.double) def test_chain_matmul(self, device, dtype): def product(matrices): for mat in matrices[1:]: matrices[0] = matrices[0].mm(mat) return matrices[0] def run_test(p): matrices = [] for (pi, pi_1) in zip(p[:-1], p[1:]): matrices.append(torch.randn(pi, pi_1, dtype=dtype, device=device)) self.assertEqual(torch.chain_matmul(*matrices), product(matrices)) run_test([10, 20, 30, 5]) run_test([15, 5, 10, 20, 25]) @slowTest @skipCUDAIfNoMagma @skipCPUIfNoLapack @dtypes(torch.double) def test_det_logdet_slogdet(self, device, dtype): def reference_slogdet(M): if TEST_NUMPY: sdet, logabsdet = np.linalg.slogdet(M.detach().cpu().numpy()) return M.new_tensor(sdet), M.new_tensor(logabsdet) else: # naive row reduction M = M.clone() l = M.size(0) multiplier = 1 for i in range(l): if M[i, 0].item() != 0: if i != 0: M[0], M[i] = M[i], M[0] multiplier = -1 break else: return 0 for i in range(1, l): row = M[i] for j in range(i): row -= row[j] / M[j, j] * M[j] M[i] = row sdet = M.diag().sign().prod() logabsdet = M.diag().abs_().log_().sum().add_(math.log(multiplier)) return sdet, logabsdet def test_single_det(M, target, desc): target_sdet, target_logabsdet = target det = M.det() logdet = M.logdet() sdet, logabsdet = M.slogdet() # Test det self.assertEqual(det, target_sdet * target_logabsdet.exp(), 1e-7, '{} (det)'.format(desc)) # Test slogdet # Compare the overall value rather than individual parts because of # precision issues when det is near zero. self.assertEqual(sdet * logabsdet.exp(), target_sdet * target_logabsdet.exp(), 1e-7, '{} (slogdet)'.format(desc)) # Test logdet # Compare logdet against our own pytorch slogdet because they should # be consistent, while it may behave slightly differently with other # slogdet implementations when det is near zero due to precision # issues. if sdet.item() < 0: self.assertTrue(logdet.item() != logdet.item(), '{} (logdet negative case)'.format(desc)) else: self.assertEqual(logdet.exp(), target_logabsdet.exp(), 1e-7, '{} (logdet non-negative case)'.format(desc)) eye = torch.eye(5, dtype=dtype, device=device) test_single_det(eye, (torch.ones((), dtype=dtype, device=device), torch.zeros((), dtype=dtype, device=device)), 'identity') def test(M): assert M.size(0) >= 5, 'this helper fn assumes M to be at least 5x5' M = M.to(device) ref_M_sdet, ref_M_logabsdet = reference_slogdet(M) test_single_det(M, (ref_M_sdet, ref_M_logabsdet), 'basic') if ref_M_logabsdet.exp().item() >= 1e-6: # skip singular M_inv = M.inverse() test_single_det(M_inv, reference_slogdet(M_inv), 'inverse') test_single_det(M, (ref_M_sdet, ref_M_logabsdet), 'transpose') for x in [0, 2, 4]: for scale in [-2, -0.1, 0, 10]: if scale > 0: target = ref_M_sdet, ref_M_logabsdet + math.log(scale) elif scale == 0: target = torch.zeros_like(ref_M_sdet), torch.full_like(ref_M_logabsdet, -inf) else: target = ref_M_sdet.neg(), ref_M_logabsdet + math.log(-scale) # dim 0 M_clone = M.clone() M_clone[:, x] *= scale test_single_det(M_clone, target, 'scale a row') # dim 1 M_clone = M.clone() M_clone[x, :] *= scale test_single_det(M_clone, target, 'scale a column') for x1, x2 in [(0, 3), (4, 1), (3, 2)]: assert x1 != x2, 'x1 and x2 needs to be different for this test' target = torch.zeros_like(ref_M_sdet), torch.full_like(ref_M_logabsdet, -inf) # dim 0 M_clone = M.clone() M_clone[:, x2] = M_clone[:, x1] test_single_det(M_clone, target, 'two rows are same') # dim 1 M_clone = M.clone() M_clone[x2, :] = M_clone[x1, :] test_single_det(M_clone, target, 'two columns are same') for scale1, scale2 in [(0.3, -1), (0, 2), (10, 0.1)]: det_scale = scale1 * scale2 * -1 if det_scale > 0: target = ref_M_sdet, ref_M_logabsdet + math.log(det_scale) elif det_scale == 0: target = torch.zeros_like(ref_M_sdet), torch.full_like(ref_M_logabsdet, -inf) else: target = ref_M_sdet.neg(), ref_M_logabsdet + math.log(-det_scale) # dim 0 M_clone = M.clone() t = M_clone[:, x1] * scale1 M_clone[:, x1] += M_clone[:, x2] * scale2 M_clone[:, x2] = t test_single_det(M_clone, target, 'exchanging rows') # dim 1 M_clone = M.clone() t = M_clone[x1, :] * scale1 M_clone[x1, :] += M_clone[x2, :] * scale2 M_clone[x2, :] = t test_single_det(M_clone, target, 'exchanging columns') def get_random_mat_scale(n): # For matrices with values i.i.d. with 0 mean, unit variance, and # subexponential tail, we have: # E[log det(A^2)] \approx log((n-1)!) # # Notice: # log Var[det(A)] = log E[det(A^2)] >= E[log det(A^2)] # # So: # stddev[det(A)] >= sqrt( (n-1)! ) # # We use this as an intuitive guideline to scale random generated # matrices so our closeness tests can work more robustly: # scale by sqrt( (n-1)! )^(-1/n) = ( (n-1)! )^(-1/(2n)) # # source: https://arxiv.org/pdf/1112.0752.pdf # TODO: technically we need subexponential distn for this to hold, # but we mostly use gaussian entries below. Consider switching # to Chi-sq if this turns out not stable enough, since Chi-sq # is easy enough to sample from. return math.factorial(n - 1) ** (-1.0 / (2 * n)) for n in [5, 10, 25]: scale = get_random_mat_scale(n) test(torch.randn(n, n, dtype=dtype, device=device) * scale) r = torch.randn(n, n, dtype=dtype, device=device) * scale # symmetric psd test(r.mm(r.t())) # symmetric pd r = torch.randn(n, n, dtype=dtype, device=device) * scale test(r.mm(r.t()) + torch.eye(n, dtype=dtype, device=device) * 1e-6) # symmetric r = torch.randn(n, n, dtype=dtype, device=device) * scale for i in range(n): for j in range(i): r[i, j] = r[j, i] test(r) # non-contiguous test((torch.randn(n, n, n + 1, dtype=dtype, device=device) * scale)[:, 2, 1:]) # det = 0 r = torch.randn(n, n, dtype=dtype, device=device) * scale u, s, v = r.svd() if reference_slogdet(u)[0] < 0: u = -u if reference_slogdet(v)[0] < 0: v = -v s[0] *= -1 s[-1] = 0 test(u.mm(s.diag()).mm(v)) # Small values to test numerical stability. Note that we don't scale # this matrix. r = torch.randn(512, 512, dtype=dtype, device=device) u, s, v = r.svd() s.fill_(1. / (100 * s.numel())) test(u.mm(s.diag()).mm(v)) @skipCUDAIfNoMagma @skipCPUIfNoLapack @dtypes(torch.double) def test_det_logdet_slogdet_batched(self, device, dtype): from torch.testing._internal.common_utils import (random_symmetric_matrix, random_symmetric_psd_matrix, random_symmetric_pd_matrix, random_square_matrix_of_rank) # mat_chars denotes matrix characteristics # possible values are: sym, sym_psd, sym_pd, sing, non_sym def run_test(matsize, batchdims, mat_chars): num_matrices = reduce(lambda x, y: x * y, batchdims, 1) list_of_matrices = [] for idx in range(num_matrices): mat_type = idx % len(mat_chars) if mat_chars[mat_type] == 'sym': list_of_matrices.append(random_symmetric_matrix(matsize, dtype=dtype, device=device)) elif mat_chars[mat_type] == 'sym_psd': list_of_matrices.append(random_symmetric_psd_matrix(matsize, dtype=dtype, device=device)) elif mat_chars[mat_type] == 'sym_pd': list_of_matrices.append(random_symmetric_pd_matrix(matsize, dtype=dtype, device=device)) elif mat_chars[mat_type] == 'sing': list_of_matrices.append(torch.ones(matsize, matsize, dtype=dtype, device=device)) elif mat_chars[mat_type] == 'non_sing': list_of_matrices.append(random_square_matrix_of_rank(matsize, matsize, dtype=dtype, device=device)) full_tensor = torch.stack(list_of_matrices, dim=0).reshape(batchdims + (matsize, matsize)) # Scaling adapted from `get_random_mat_scale` in _test_det_logdet_slogdet full_tensor *= (math.factorial(matsize - 1) ** (-1.0 / (2 * matsize))) for fn in [torch.det, torch.logdet, torch.slogdet]: expected_value = [] actual_value = fn(full_tensor) for full_idx in product(*map(lambda x: list(range(x)), batchdims)): expected_value.append(fn(full_tensor[full_idx])) if fn == torch.slogdet: sign_value = torch.stack([tup[0] for tup in expected_value], dim=0).reshape(batchdims) expected_value = torch.stack([tup[1] for tup in expected_value], dim=0).reshape(batchdims) self.assertEqual(sign_value, actual_value[0], allow_inf=True) self.assertEqual(expected_value, actual_value[1], allow_inf=True) else: expected_value = torch.stack(expected_value, dim=0).reshape(batchdims) self.assertEqual(actual_value, expected_value, allow_inf=True) for matsize, batchdims in product([3, 5], [(3,), (5, 3)]): run_test(matsize, batchdims, mat_chars=['sym_pd']) run_test(matsize, batchdims, mat_chars=['sing']) run_test(matsize, batchdims, mat_chars=['non_sing']) run_test(matsize, batchdims, mat_chars=['sym', 'sym_pd', 'sym_psd']) run_test(matsize, batchdims, mat_chars=['sing', 'non_sing']) def solve_test_helper(self, A_dims, b_dims, device, dtype): from torch.testing._internal.common_utils import random_fullrank_matrix_distinct_singular_value b = torch.randn(*b_dims, dtype=dtype, device=device) A = random_fullrank_matrix_distinct_singular_value(*A_dims, dtype=dtype, device=device) return b, A @skipCUDAIfNoMagma @skipCPUIfNoLapack @dtypes(torch.double) def test_solve(self, device, dtype): for (k, n) in zip([2, 3, 5], [3, 5, 7]): b, A = self.solve_test_helper((n,), (n, k), device, dtype) x = torch.solve(b, A)[0] self.assertLessEqual(b.dist(A.mm(x)), 1e-12) @skipCUDAIfNoMagma @skipCPUIfNoLapack @dtypes(torch.double) def test_solve_batched(self, device, dtype): def solve_batch_helper(A_dims, b_dims): b, A = self.solve_test_helper(A_dims, b_dims, device, dtype) x_exp_list = [] for i in range(b_dims[0]): x_exp_list.append(torch.solve(b[i], A[i])[0]) x_exp = torch.stack(x_exp_list) # Stacked output x_act = torch.solve(b, A)[0] # Actual output self.assertEqual(x_exp, x_act) # Equality check self.assertLessEqual(b.dist(torch.matmul(A, x_act)), 1e-12) # Correctness check for batchsize in [1, 3, 4]: solve_batch_helper((5, batchsize), (batchsize, 5, 10)) @skipCUDAIfNoMagma @skipCPUIfNoLapack @unittest.skipIf(not TEST_NUMPY, "NumPy not found") @dtypes(torch.double) def test_solve_batched_non_contiguous(self, device, dtype): from numpy.linalg import solve from torch.testing._internal.common_utils import random_fullrank_matrix_distinct_singular_value A = random_fullrank_matrix_distinct_singular_value(2, 2, dtype=dtype, device=device).permute(1, 0, 2) b = torch.randn(2, 2, 2, dtype=dtype, device=device).permute(2, 1, 0) x, _ = torch.solve(b, A) x_exp = torch.Tensor(solve(A.cpu().numpy(), b.cpu().numpy())).to(dtype=dtype, device=device) self.assertEqual(x, x_exp) @slowTest @skipCUDAIfNoMagma @skipCPUIfNoLapack @dtypes(torch.double) def test_solve_batched_many_batches(self, device, dtype): b, A = self.solve_test_helper((5, 256, 256), (5, 1), device, dtype) x, _ = torch.solve(b, A) self.assertEqual(torch.matmul(A, x), b.expand(A.shape[:-2] + (5, 1))) b, A = self.solve_test_helper((3,), (512, 512, 3, 1), device, dtype) x, _ = torch.solve(b, A) self.assertEqual(torch.matmul(A, x), b) @skipCUDAIfNoMagma @skipCPUIfNoLapack @unittest.skipIf(not TEST_NUMPY, "NumPy not found") @dtypes(torch.double) def test_solve_batched_broadcasting(self, device, dtype): from numpy.linalg import solve def run_test(A_dims, b_dims): A_matrix_size = A_dims[-1] A_batch_dims = A_dims[:-2] b, A = self.solve_test_helper((A_matrix_size,) + A_batch_dims, b_dims, device, dtype) x, _ = torch.solve(b, A) x_exp = torch.Tensor(solve(A.cpu().numpy(), b.cpu().numpy())).to(dtype=dtype, device=device) self.assertEqual(x, x_exp) # test against numpy.linalg.solve for upper in [True, False]: run_test((2, 1, 3, 4, 4), (2, 1, 3, 4, 6)) # no broadcasting run_test((2, 1, 3, 4, 4), (4, 6)) # broadcasting b run_test((4, 4), (2, 1, 3, 4, 2)) # broadcasting A run_test((1, 3, 1, 4, 4), (2, 1, 3, 4, 5)) # broadcasting A & b def cholesky_solve_test_helper(self, A_dims, b_dims, upper, device, dtype): from torch.testing._internal.common_utils import random_symmetric_pd_matrix b = torch.randn(*b_dims, dtype=dtype, device=device) A = random_symmetric_pd_matrix(*A_dims, dtype=dtype, device=device) L = torch.cholesky(A, upper=upper) return b, A, L @skipCUDAIfNoMagma @skipCPUIfNoLapack @dtypes(torch.double) def test_cholesky_solve(self, device, dtype): for (k, n), upper in product(zip([2, 3, 5], [3, 5, 7]), [True, False]): b, A, L = self.cholesky_solve_test_helper((n,), (n, k), upper, device, dtype) x = torch.cholesky_solve(b, L, upper=upper) self.assertLessEqual(b.dist(A.mm(x)), 1e-12) @skipCUDAIfNoMagma @skipCPUIfNoLapack @dtypes(torch.double) def test_cholesky_solve_batched(self, device, dtype): def cholesky_solve_batch_helper(A_dims, b_dims, upper): b, A, L = self.cholesky_solve_test_helper(A_dims, b_dims, upper, device, dtype) x_exp_list = [] for i in range(b_dims[0]): x_exp_list.append(torch.cholesky_solve(b[i], L[i], upper=upper)) x_exp = torch.stack(x_exp_list) # Stacked output x_act = torch.cholesky_solve(b, L, upper=upper) # Actual output self.assertEqual(x_act, x_exp) # Equality check self.assertLessEqual(b.dist(torch.matmul(A, x_act)), 2e-12) # Correctness check for upper, batchsize in product([True, False], [1, 3, 4]): cholesky_solve_batch_helper((5, batchsize), (batchsize, 5, 10), upper) @skipCUDAIfNoMagma @skipCPUIfNoLapack @unittest.skipIf(not TEST_NUMPY, "NumPy not found") @dtypes(torch.double) def test_cholesky_solve_batched_non_contiguous(self, device, dtype): from numpy.linalg import solve from torch.testing._internal.common_utils import random_symmetric_pd_matrix for upper in [True, False]: A = random_symmetric_pd_matrix(2, 2, dtype=dtype, device='cpu') b = torch.randn(2, 2, 2, dtype=dtype, device='cpu') x_exp = torch.Tensor(solve(A.permute(0, 2, 1).numpy(), b.permute(2, 1, 0).numpy())).to(dtype=dtype, device=device) A = A.to(device).permute(0, 2, 1) b = b.to(device).permute(2, 1, 0) assert not A.is_contiguous() and not b.is_contiguous(), "contiguous inputs" L = torch.cholesky(A, upper) x = torch.cholesky_solve(b, L, upper=upper) self.assertEqual(x, x_exp) @slowTest @skipCUDAIfNoMagma @skipCPUIfNoLapack @dtypes(torch.double) def test_cholesky_solve_batched_many_batches(self, device, dtype): for upper in [True, False]: b, A, L = self.cholesky_solve_test_helper((5, 256, 256), (5, 10), upper, device, dtype) x = torch.cholesky_solve(b, L, upper) self.assertEqual(torch.matmul(A, x), b.expand(A.shape[:-2] + (5, 10))) b, A, L = self.cholesky_solve_test_helper((5,), (512, 512, 5, 10), upper, device, dtype) x = torch.cholesky_solve(b, L, upper) self.assertEqual(torch.matmul(A, x), b) @skipCUDAIfNoMagma @skipCPUIfNoLapack @unittest.skipIf(not TEST_NUMPY, "NumPy not found") @dtypes(torch.double) def test_cholesky_solve_batched_broadcasting(self, device, dtype): from numpy.linalg import solve from torch.testing._internal.common_utils import random_symmetric_pd_matrix def run_test(A_dims, b_dims, upper): A_matrix_size = A_dims[-1] A_batch_dims = A_dims[:-2] A = random_symmetric_pd_matrix(A_matrix_size, *A_batch_dims, dtype=dtype, device='cpu') b = torch.randn(*b_dims, dtype=dtype, device='cpu') x_exp = torch.tensor(solve(A.numpy(), b.numpy()), dtype=dtype, device=device) A, b = A.to(dtype=dtype, device=device), b.to(dtype=dtype, device=device) L = torch.cholesky(A, upper) x = torch.cholesky_solve(b, L, upper=upper) self.assertEqual(x, x_exp) # test against numpy.linalg.solve for upper in [True, False]: run_test((2, 1, 3, 4, 4), (2, 1, 3, 4, 6), upper) # no broadcasting run_test((2, 1, 3, 4, 4), (4, 6), upper) # broadcasting b run_test((4, 4), (2, 1, 3, 4, 2), upper) # broadcasting A run_test((1, 3, 1, 4, 4), (2, 1, 3, 4, 5), upper) # broadcasting A & b @skipCUDAIfNoMagma @skipCPUIfNoLapack @dtypes(torch.double) def test_cholesky_inverse(self, device, dtype): from torch.testing._internal.common_utils import random_symmetric_pd_matrix a = random_symmetric_pd_matrix(5, dtype=dtype, device=device) # compute inverse directly inv0 = torch.inverse(a) # default case chol = torch.cholesky(a) inv1 = torch.cholesky_inverse(chol, False) self.assertLessEqual(inv0.dist(inv1), 1e-12) # upper Triangular Test chol = torch.cholesky(a, True) inv1 = torch.cholesky_inverse(chol, True) self.assertLessEqual(inv0.dist(inv1), 1e-12) # lower Triangular Test chol = torch.cholesky(a, False) inv1 = torch.cholesky_inverse(chol, False) self.assertLessEqual(inv0.dist(inv1), 1e-12) @slowTest @skipCUDAIf(True, "See issue #26789.") @skipCUDAIfNoMagma @skipCPUIfNoLapack @dtypes(torch.double) def test_cholesky_batched_many_batches(self, device, dtype): from torch.testing._internal.common_utils import random_symmetric_pd_matrix def cholesky_test_helper(n, batchsize, device, upper): A = random_symmetric_pd_matrix(n, batchsize, dtype=dtype, device=device) chol_fact = torch.cholesky(A, upper=upper) if upper: # Correctness check self.assertEqual(A, chol_fact.transpose(-2, -1).matmul(chol_fact)) # Upper triangular check self.assertEqual(chol_fact, chol_fact.triu()) else: # Correctness check self.assertEqual(A, chol_fact.matmul(chol_fact.transpose(-2, -1))) # Lower triangular check self.assertEqual(chol_fact, chol_fact.tril()) for upper, batchsize in product([True, False], [262144, 524288]): cholesky_test_helper(2, batchsize, device, upper) @skipCUDAIfNoMagma @skipCPUIfNoLapack @dtypes(torch.double) def test_cholesky_batched(self, device, dtype): from torch.testing._internal.common_utils import random_symmetric_pd_matrix def cholesky_test_helper(n, batch_dims, upper): A = random_symmetric_pd_matrix(n, *batch_dims, dtype=dtype, device=device) cholesky_exp = torch.stack([m.cholesky(upper=upper) for m in A.reshape(-1, n, n)]) cholesky_exp = cholesky_exp.reshape_as(A) self.assertEqual(cholesky_exp, torch.cholesky(A, upper=upper)) for upper, batchsize in product([True, False], [(3,), (3, 4), (2, 3, 4)]): cholesky_test_helper(3, batchsize, upper) @skipCUDAIfNoMagma @skipCPUIfNoLapack @dtypes(torch.double) def test_cholesky(self, device, dtype): x = torch.rand(10, 10, dtype=dtype, device=device) + 1e-1 A = torch.mm(x, x.t()) # default Case C = torch.cholesky(A) B = torch.mm(C, C.t()) self.assertEqual(A, B, 1e-14) # test Upper Triangular U = torch.cholesky(A, True) B = torch.mm(U.t(), U) self.assertEqual(A, B, 1e-14, 'cholesky (upper) did not allow rebuilding the original matrix') # test Lower Triangular L = torch.cholesky(A, False) B = torch.mm(L, L.t()) self.assertEqual(A, B, 1e-14, 'cholesky (lower) did not allow rebuilding the original matrix') def test_view(self, device): tensor = torch.rand(15, device=device) template = torch.rand(3, 5, device=device) empty = torch.empty(0, device=device) target = template.size() self.assertEqual(tensor.view_as(template).size(), target) self.assertEqual(tensor.view(3, 5).size(), target) self.assertEqual(tensor.view(torch.Size([3, 5])).size(), target) self.assertEqual(tensor.view(-1, 5).size(), target) self.assertEqual(tensor.view(3, -1).size(), target) tensor_view = tensor.view(5, 3) tensor_view.fill_(random.uniform(0, 1)) self.assertEqual(empty.view_as(empty), empty) self.assertEqual(empty.view(0), empty) self.assertEqual(empty.view(0, 3, 0, 1).size(), torch.Size([0, 3, 0, 1])) self.assertEqual(empty.view(0, 3, 0, 1).view(0), empty) # test size inference with empty tensors self.assertEqual(empty.view(-1).size(), torch.Size([0])) self.assertEqual(empty.view(10, 3, -1).size(), torch.Size([10, 3, 0])) with self.assertRaisesRegex(RuntimeError, r"because the unspecified dimension size -1 can be any value"): empty.view(-1, 0) with self.assertRaisesRegex(RuntimeError, r"because the unspecified dimension size -1 can be any value"): empty.view(3, 0, -1, 0) self.assertRaises(RuntimeError, lambda: tensor.view(15, 0)) self.assertRaises(RuntimeError, lambda: tensor.view(7, -1)) self.assertRaises(RuntimeError, lambda: tensor.view(15, -1, -1)) # test view when tensor is not contiguous in every dimension, but only # contiguous dimensions are touched. tensor = torch.rand(4, 2, 5, 1, 6, 2, 9, 3, device=device).transpose(-1, 2).transpose(-2, 3) # size: [ 4, 2, 3, 9, 6, 2, 1, 5] # stride: [3840, 1620, 1, 3, 54, 27, 324, 324] # contiguous dim chunks: [__________, ____, ____, __________, ____, ____] # merging 1 to chunk after: [__________, ____, ____, __________, __________] contig_tensor = tensor.clone() # [4, 2] => [8, 1] # [3] => [3] # [9] => [3, 3] # [6, 2] => [4, 1, 3] # [1, 5] => [5] view_size = [8, 1, 3, 3, 3, 4, 1, 3, 5] self.assertEqual(tensor.view(*view_size), contig_tensor.view(*view_size)) # [4, 2] => [2, 4] # [3] => [3] # [9] => [1, 9] # [6, 2] => [2, 2, 3] # [1, 5] => [5, 1] view_size = [2, 4, 3, 1, 9, 2, 2, 3, 5, 1] self.assertEqual(tensor.view(*view_size), contig_tensor.view(*view_size)) # adding size 1 dims view_size = [1, 1, 2, 1, 4, 3, 1, 1, 9, 1, 2, 1, 2, 3, 1, 5, 1, 1] self.assertEqual(tensor.view(*view_size), contig_tensor.view(*view_size)) # invalid views self.assertRaises(RuntimeError, lambda: tensor.view(-1)) # crossing [4, 2], [3] self.assertRaises(RuntimeError, lambda: tensor.view(24, 9, 6, 2, 1, 5)) # crossing [6, 2], [1, 5] self.assertRaises(RuntimeError, lambda: tensor.view(8, 3, 9, 6, 10)) # crossing [9], [6, 2] self.assertRaises(RuntimeError, lambda: tensor.view(8, 3, 54, 2, 1, 5)) # view with stride 0 dims tensor = torch.empty(1, 1, device=device).expand(3, 4) # all dims are contiguous contig_tensor = tensor.clone() self.assertEqual(tensor.view(-1), contig_tensor.view(-1)) self.assertEqual(tensor.view(1, -1, 1), contig_tensor.view(1, -1, 1)) self.assertEqual(tensor.view(-1, 1), contig_tensor.view(-1, 1)) self.assertEqual(tensor.view(6, 2, 1), contig_tensor.view(6, 2, 1)) self.assertEqual(tensor.view(1, 6, 2, 1), contig_tensor.view(1, 6, 2, 1)) def test_flip(self, device): data = torch.tensor([1, 2, 3, 4, 5, 6, 7, 8], device=device).view(2, 2, 2) self.assertEqual(torch.tensor([5, 6, 7, 8, 1, 2, 3, 4]).view(2, 2, 2), data.flip(0)) self.assertEqual(torch.tensor([3, 4, 1, 2, 7, 8, 5, 6]).view(2, 2, 2), data.flip(1)) self.assertEqual(torch.tensor([2, 1, 4, 3, 6, 5, 8, 7]).view(2, 2, 2), data.flip(2)) self.assertEqual(torch.tensor([7, 8, 5, 6, 3, 4, 1, 2]).view(2, 2, 2), data.flip(0, 1)) self.assertEqual(torch.tensor([8, 7, 6, 5, 4, 3, 2, 1]).view(2, 2, 2), data.flip(0, 1, 2)) # check for wrap dim self.assertEqual(torch.tensor([2, 1, 4, 3, 6, 5, 8, 7]).view(2, 2, 2), data.flip(-1)) # check for permute self.assertEqual(torch.tensor([6, 5, 8, 7, 2, 1, 4, 3]).view(2, 2, 2), data.flip(0, 2)) self.assertEqual(torch.tensor([6, 5, 8, 7, 2, 1, 4, 3]).view(2, 2, 2), data.flip(2, 0)) # not allow flip on the same dim more than once self.assertRaises(RuntimeError, lambda: data.flip(0, 1, 1)) # not allow empty list as input self.assertRaises(TypeError, lambda: data.flip()) # not allow size of flip dim > total dims self.assertRaises(IndexError, lambda: data.flip(0, 1, 2, 3)) # not allow dim > max dim self.assertRaises(IndexError, lambda: data.flip(3)) # test for non-contiguous case expanded_data = torch.arange(1, 4, device=device).view(3, 1).expand(3, 2) transposed_data = torch.arange(1, 9, device=device).view(2, 2, 2).transpose(0, 1) self.assertEqual(torch.tensor([3, 3, 2, 2, 1, 1]).view(3, 2), expanded_data.flip(0)) self.assertEqual(torch.tensor([8, 7, 4, 3, 6, 5, 2, 1]).view(2, 2, 2), transposed_data.flip(0, 1, 2)) # test for shape data = torch.randn(2, 3, 4, device=device) size = [2, 3, 4] test_dims = [] for i in range(1, 3): test_dims += combinations(range(len(size)), i) for ds in test_dims: self.assertEqual(size, list(data.flip(ds).size())) # test rectangular case data = torch.tensor([1, 2, 3, 4, 5, 6]).view(2, 3).to(device) flip0_result = torch.tensor([[4, 5, 6], [1, 2, 3]]).to(device) flip1_result = torch.tensor([[3, 2, 1], [6, 5, 4]]).to(device) self.assertEqual(flip0_result, data.flip(0)) self.assertEqual(flip1_result, data.flip(1)) # test empty tensor, should just return an empty tensor of the same shape data = torch.tensor([]) self.assertEqual(data, data.flip(0)) # test bool tensor a = torch.tensor([False, True]) self.assertEqual(a.flip(0), torch.tensor([True, False])) def test_rot90(self, device): data = torch.arange(1, 5, device=device).view(2, 2) self.assertEqual(torch.tensor([1, 2, 3, 4]).view(2, 2), data.rot90(0, [0, 1])) self.assertEqual(torch.tensor([2, 4, 1, 3]).view(2, 2), data.rot90(1, [0, 1])) self.assertEqual(torch.tensor([4, 3, 2, 1]).view(2, 2), data.rot90(2, [0, 1])) self.assertEqual(torch.tensor([3, 1, 4, 2]).view(2, 2), data.rot90(3, [0, 1])) # test for default args k=1, dims=[0, 1] self.assertEqual(data.rot90(), data.rot90(1, [0, 1])) # test for reversed order of dims self.assertEqual(data.rot90(3, [0, 1]), data.rot90(1, [1, 0])) # test for modulo of k self.assertEqual(data.rot90(5, [0, 1]), data.rot90(1, [0, 1])) self.assertEqual(data.rot90(3, [0, 1]), data.rot90(-1, [0, 1])) self.assertEqual(data.rot90(-5, [0, 1]), data.rot90(-1, [0, 1])) # test for dims out-of-range error self.assertRaises(RuntimeError, lambda: data.rot90(1, [0, -3])) self.assertRaises(RuntimeError, lambda: data.rot90(1, [0, 2])) # test tensor with more than 2D data = torch.arange(1, 9, device=device).view(2, 2, 2) self.assertEqual(torch.tensor([2, 4, 1, 3, 6, 8, 5, 7]).view(2, 2, 2), data.rot90(1, [1, 2])) self.assertEqual(data.rot90(1, [1, -1]), data.rot90(1, [1, 2])) # test for errors self.assertRaises(RuntimeError, lambda: data.rot90(1, [0, 3])) self.assertRaises(RuntimeError, lambda: data.rot90(1, [1, 1])) self.assertRaises(RuntimeError, lambda: data.rot90(1, [0, 1, 2])) self.assertRaises(RuntimeError, lambda: data.rot90(1, [0])) def test_signal_window_functions(self, device): if not TEST_SCIPY: raise unittest.SkipTest('Scipy not found') def test(name): torch_method = getattr(torch, name + '_window') for size in [1, 2, 5, 10, 50, 100, 1024, 2048]: for periodic in [True, False]: res = torch_method(size, periodic=periodic, device=device) # NB: scipy always returns a float32 result ref = torch.from_numpy(signal.get_window(name, size, fftbins=periodic)) self.assertEqual(res, ref, exact_dtype=False) with self.assertRaisesRegex(RuntimeError, r'not implemented for sparse types'): torch_method(3, layout=torch.sparse_coo) with self.assertRaisesRegex(RuntimeError, r'floating point'): torch_method(3, dtype=torch.long) self.assertTrue(torch_method(3, requires_grad=True).requires_grad) self.assertFalse(torch_method(3).requires_grad) for window in ['hann', 'hamming', 'bartlett', 'blackman']: test(window) def test_broadcast(self, device): # all functions fns = { "dist", "atan2", "pow", "lerp", "add", "sub", "mul", "div", "fmod", "remainder", "eq", "ge", "gt", "le", "lt", "max", "min", "ne", "addcdiv", "addcmul", "masked_scatter", "masked_select", "masked_fill", "map", "map2", "copy" } # functions with three tensor arguments fns_3_args = {"map2"} fns_value_kwarg = {"addcdiv", "addcmul"} for fn in fns: (dims_small, dims_large, dims_full) = self._select_broadcastable_dims() full1d = torch.randn(*dims_full, device=device).flatten().float() small = torch.randn(*dims_small, device=device).float() large = torch.randn(*dims_large, device=device).float() small_expanded = small.expand(*dims_full) large_expanded = large.expand(*dims_full) small2 = None small2_expanded = None if fn in fns_3_args or fn in fns_value_kwarg: # create another smaller tensor (dims_small2, _, _) = self._select_broadcastable_dims(dims_full) small2 = torch.randn(*dims_small2, device=device).float() small2_expanded = small2.expand(*dims_full) if small.is_cuda and fn in ['map', 'map2']: # map and map2 are not implementd on CUDA tensors continue if hasattr(large_expanded, fn): # run through tensor versions of functions # and verify fully expanded inputs give same results expanded = {large: large_expanded, small: small_expanded, small2: small2_expanded} def tensorfn(myfn, t1, t2): if fn == "lerp": return myfn(t1, 0.5) elif fn == "masked_select": return myfn(t1 < 0) elif fn == "masked_scatter": return myfn(t1 < 0.5, full1d) elif fn == "masked_fill": return myfn(t1 < 0.5, 1.0) elif fn in fns_3_args: return myfn(1, t1, t2) elif fn in fns_value_kwarg: return myfn(t1, t2, value=1) else: return myfn(t1) # test various orders for first, second, third in [(large, small, small2), (small, large, small2), (small2, small, large), (small2, large, small)]: if first is None: break # ignore last iter when small2 is None method_expanded = getattr(expanded[first], fn) method = getattr(first, fn) r1 = tensorfn(method_expanded, expanded[second], expanded[third]) r2 = tensorfn(method, second, third) self.assertEqual(r1, r2) # now for torch. versions of functions if hasattr(torch, fn): fntorch = getattr(torch, fn) expanded = {large: large_expanded, small: small_expanded, small2: small2_expanded} def torchfn(t1, t2, t3): if fn == "lerp": return fntorch(t1, t2, 0.5) elif fn == "masked_select": return fntorch(t1, t2 < 0) elif fn == "masked_scatter": return fntorch(t1, t2 < 0.5, full1d) elif fn == "masked_fill": return fntorch(t1, t2 < 0.5, 1.0) elif fn in fns_3_args: return fntorch(t1, 1.0, t2, t3) elif fn in fns_value_kwarg: return fntorch(t1, t2, t3, value=1.0) else: return fntorch(t1, t2) # test various orders for first, second, third in [(large, small, small2), (small, large, small2), (small2, small, large), (small2, large, small)]: if first is None: break # ignore last iter when small2 is None r1 = torchfn(expanded[first], expanded[second], expanded[third]) r2 = torchfn(first, second, third) self.assertEqual(r1, r2) # now for in place functions # in-place tensor is not broadcastable; test only guaranteed # to work by broadcasting other argument(s) if not hasattr(large_expanded, fn + "_"): continue # need to clone largeExpanded so we can reuse, since functions are in-place large_expanded_clone = large_expanded.clone() def tensorfn_inplace(t0, t1, t2=None): t0_fn = getattr(t0, fn + "_") if fn == "lerp": return t0_fn(t1, 0.5) elif fn == "masked_scatter": return t0_fn(t1 < 0.5, full1d) elif fn == "masked_fill": return t0_fn(t1 < 0.5, 1.0) elif fn == "map": return t0_fn(t1, lambda x, y: x + y) elif fn == "map2": return t0_fn(t1, t2, lambda x, y, z: x + y + z) elif fn in fns_3_args: return t0_fn(1.0, t1, t2) elif fn in fns_value_kwarg: return t0_fn(t1, t2, value=1.0) else: return t0_fn(t1) # in-place pointwise operations don't actually work if the in-place # tensor is 0-strided (numpy has the same issue) if (0 not in large_expanded.stride() and 0 not in large_expanded_clone.stride()): r1 = tensorfn_inplace(large_expanded, small_expanded, small2_expanded) r2 = tensorfn_inplace(large_expanded_clone, small, small2) self.assertEqual(r1, r2) def broadcastable(t0, t1, t2=None): try: t1.expand_as(t0) if t2 is not None: t2.expand_as(t0) except RuntimeError: return False return True def _test_in_place_broadcastable(t0, t1, t2=None): if not broadcastable(t0, t1, t2): same_size = t0.numel() == t1.numel() and (t0.numel() == t2.numel() if t2 is not None else True) if not same_size: self.assertRaises(RuntimeError, lambda: tensorfn_inplace(t0, t1, t2)) else: tensorfn_inplace(t0, t1, t2) if fn not in fns_3_args and fn not in fns_value_kwarg: _test_in_place_broadcastable(small, large_expanded) _test_in_place_broadcastable(small, large) else: _test_in_place_broadcastable(small2, small_expanded, large_expanded) _test_in_place_broadcastable(small2, small, large) def test_broadcast_fused_matmul(self, device): fns = ["baddbmm", "addbmm", "addmm", "addmv", "addr"] for fn in fns: batch_dim = random.randint(1, 8) n_dim = random.randint(1, 8) m_dim = random.randint(1, 8) p_dim = random.randint(1, 8) def dims_full_for_fn(): if fn == "baddbmm": return ([batch_dim, n_dim, p_dim], [batch_dim, n_dim, m_dim], [batch_dim, m_dim, p_dim]) elif fn == "addbmm": return ([n_dim, p_dim], [batch_dim, n_dim, m_dim], [batch_dim, m_dim, p_dim]) elif fn == "addmm": return ([n_dim, p_dim], [n_dim, m_dim], [m_dim, p_dim]) elif fn == "addmv": return ([n_dim], [n_dim, m_dim], [m_dim]) elif fn == "addr": return ([n_dim, m_dim], [n_dim], [m_dim]) else: raise AssertionError("unknown function") (t0_dims_full, t1_dims, t2_dims) = dims_full_for_fn() (t0_dims_small, _, _) = self._select_broadcastable_dims(t0_dims_full) t0_small = torch.randn(*t0_dims_small, device=device).float() t1 = torch.randn(*t1_dims, device=device).float() t2 = torch.randn(*t2_dims, device=device).float() t0_full = t0_small.expand(*t0_dims_full).to(device) fntorch = getattr(torch, fn) r0 = fntorch(t0_small, t1, t2) r1 = fntorch(t0_full, t1, t2) self.assertEqual(r0, r1) def test_broadcast_batched_matmul(self, device): n_dim = random.randint(1, 8) m_dim = random.randint(1, 8) p_dim = random.randint(1, 8) full_batch_dims = [random.randint(1, 3) for i in range(random.randint(1, 3))] (batch_dims_small, _, _) = self._select_broadcastable_dims(full_batch_dims) def verify_batched_matmul(full_lhs, one_dimensional): if not one_dimensional: lhs_dims = [n_dim, m_dim] rhs_dims = [m_dim, p_dim] result_dims = [n_dim, p_dim] else: lhs_dims = [n_dim, m_dim] if full_lhs else [m_dim] rhs_dims = [m_dim, p_dim] if not full_lhs else [m_dim] result_dims = [n_dim] if full_lhs else [p_dim] lhs_mat_dims = lhs_dims if len(lhs_dims) != 1 else [1, m_dim] rhs_mat_dims = rhs_dims if len(rhs_dims) != 1 else [m_dim, 1] full_mat_dims = lhs_mat_dims if full_lhs else rhs_mat_dims dim0_dims = rhs_dims if full_lhs else lhs_dims small_dims = batch_dims_small + (rhs_mat_dims if full_lhs else lhs_mat_dims) small = torch.randn(*(small_dims), device=device).float() dim0 = torch.randn(*(dim0_dims), device=device).float() full = torch.randn(*(full_batch_dims + full_mat_dims), device=device).float() if not one_dimensional: (lhsTensors, rhsTensors) = ((full,), (small, dim0)) if full_lhs else ((small, dim0), (full,)) else: (lhsTensors, rhsTensors) = ((full,), (dim0,)) if full_lhs else ((dim0,), (full,)) def maybe_squeeze_result(l, r, result): if len(lhs_dims) == 1 and l.dim() != 1: return result.squeeze(-2) elif len(rhs_dims) == 1 and r.dim() != 1: return result.squeeze(-1) else: return result for lhs in lhsTensors: lhs_expanded = lhs.expand(*(torch.Size(full_batch_dims) + torch.Size(lhs_mat_dims))) lhs_expanded_matmul_fn = lhs_expanded.matmul for rhs in rhsTensors: rhs_expanded = ((rhs if len(rhs_dims) != 1 else rhs.unsqueeze(-1)). expand(*(torch.Size(full_batch_dims) + torch.Size(rhs_mat_dims)))) truth = maybe_squeeze_result(lhs_expanded, rhs_expanded, lhs_expanded_matmul_fn(rhs_expanded)) for l in (lhs, lhs_expanded): for r in (rhs, rhs_expanded): l_matmul_fn = l.matmul result = maybe_squeeze_result(l, r, l_matmul_fn(r)) self.assertEqual(truth, result) # test torch.matmul function as well torch_result = maybe_squeeze_result(l, r, torch.matmul(l, r)) self.assertEqual(truth, torch_result) # test torch.matmul with out out = torch.zeros_like(torch_result) torch.matmul(l, r, out=out) self.assertEqual(truth, maybe_squeeze_result(l, r, out)) # compare to bmm bmm_result = (torch.bmm(lhs_expanded.contiguous().view(-1, *lhs_mat_dims), rhs_expanded.contiguous().view(-1, *rhs_mat_dims))) self.assertEqual(truth.view(-1, *result_dims), bmm_result.view(-1, *result_dims)) for indices in product((True, False), repeat=2): verify_batched_matmul(*indices) def test_contiguous(self, device): x = torch.randn(1, 16, 5, 5, device=device) self.assertTrue(x.is_contiguous()) stride = list(x.stride()) stride[0] = 20 # change the stride in dimension 0. the tensor is still contiguous because size[0] is 1 x.set_(x.storage(), 0, x.size(), stride) self.assertTrue(x.is_contiguous()) def test_index(self, device): def consec(size, start=1): sequence = torch.ones(int(torch.Tensor(size).prod(0))).cumsum(0) sequence.add_(start - 1) return sequence.view(*size) reference = consec((3, 3, 3)).to(device) # empty tensor indexing self.assertEqual(reference[torch.LongTensor().to(device)], reference.new(0, 3, 3)) self.assertEqual(reference[0], consec((3, 3)), 0) self.assertEqual(reference[1], consec((3, 3), 10), 0) self.assertEqual(reference[2], consec((3, 3), 19), 0) self.assertEqual(reference[0, 1], consec((3,), 4), 0) self.assertEqual(reference[0:2], consec((2, 3, 3)), 0) self.assertEqual(reference[2, 2, 2], 27, 0) self.assertEqual(reference[:], consec((3, 3, 3)), 0) # indexing with Ellipsis self.assertEqual(reference[..., 2], torch.Tensor([[3, 6, 9], [12, 15, 18], [21, 24, 27]]), 0) self.assertEqual(reference[0, ..., 2], torch.Tensor([3, 6, 9]), 0) self.assertEqual(reference[..., 2], reference[:, :, 2], 0) self.assertEqual(reference[0, ..., 2], reference[0, :, 2], 0) self.assertEqual(reference[0, 2, ...], reference[0, 2], 0) self.assertEqual(reference[..., 2, 2, 2], 27, 0) self.assertEqual(reference[2, ..., 2, 2], 27, 0) self.assertEqual(reference[2, 2, ..., 2], 27, 0) self.assertEqual(reference[2, 2, 2, ...], 27, 0) self.assertEqual(reference[...], reference, 0) reference_5d = consec((3, 3, 3, 3, 3)).to(device) self.assertEqual(reference_5d[..., 1, 0], reference_5d[:, :, :, 1, 0], 0) self.assertEqual(reference_5d[2, ..., 1, 0], reference_5d[2, :, :, 1, 0], 0) self.assertEqual(reference_5d[2, 1, 0, ..., 1], reference_5d[2, 1, 0, :, 1], 0) self.assertEqual(reference_5d[...], reference_5d, 0) # LongTensor indexing reference = consec((5, 5, 5)).to(device) idx = torch.LongTensor([2, 4]).to(device) self.assertEqual(reference[idx], torch.stack([reference[2], reference[4]])) # TODO: enable one indexing is implemented like in numpy # self.assertEqual(reference[2, idx], torch.stack([reference[2, 2], reference[2, 4]])) # self.assertEqual(reference[3, idx, 1], torch.stack([reference[3, 2], reference[3, 4]])[:, 1]) # None indexing self.assertEqual(reference[2, None], reference[2].unsqueeze(0)) self.assertEqual(reference[2, None, None], reference[2].unsqueeze(0).unsqueeze(0)) self.assertEqual(reference[2:4, None], reference[2:4].unsqueeze(1)) self.assertEqual(reference[None, 2, None, None], reference.unsqueeze(0)[:, 2].unsqueeze(0).unsqueeze(0)) self.assertEqual(reference[None, 2:5, None, None], reference.unsqueeze(0)[:, 2:5].unsqueeze(2).unsqueeze(2)) # indexing 0-length slice self.assertEqual(torch.empty(0, 5, 5), reference[slice(0)]) self.assertEqual(torch.empty(0, 5), reference[slice(0), 2]) self.assertEqual(torch.empty(0, 5), reference[2, slice(0)]) self.assertEqual(torch.tensor([]), reference[2, 1:1, 2]) # indexing with step reference = consec((10, 10, 10)).to(device) self.assertEqual(reference[1:5:2], torch.stack([reference[1], reference[3]], 0)) self.assertEqual(reference[1:6:2], torch.stack([reference[1], reference[3], reference[5]], 0)) self.assertEqual(reference[1:9:4], torch.stack([reference[1], reference[5]], 0)) self.assertEqual(reference[2:4, 1:5:2], torch.stack([reference[2:4, 1], reference[2:4, 3]], 1)) self.assertEqual(reference[3, 1:6:2], torch.stack([reference[3, 1], reference[3, 3], reference[3, 5]], 0)) self.assertEqual(reference[None, 2, 1:9:4], torch.stack([reference[2, 1], reference[2, 5]], 0).unsqueeze(0)) self.assertEqual(reference[:, 2, 1:6:2], torch.stack([reference[:, 2, 1], reference[:, 2, 3], reference[:, 2, 5]], 1)) lst = [list(range(i, i + 10)) for i in range(0, 100, 10)] tensor = torch.DoubleTensor(lst).to(device) for _i in range(100): idx1_start = random.randrange(10) idx1_end = idx1_start + random.randrange(1, 10 - idx1_start + 1) idx1_step = random.randrange(1, 8) idx1 = slice(idx1_start, idx1_end, idx1_step) if random.randrange(2) == 0: idx2_start = random.randrange(10) idx2_end = idx2_start + random.randrange(1, 10 - idx2_start + 1) idx2_step = random.randrange(1, 8) idx2 = slice(idx2_start, idx2_end, idx2_step) lst_indexed = list(map(lambda l: l[idx2], lst[idx1])) tensor_indexed = tensor[idx1, idx2] else: lst_indexed = lst[idx1] tensor_indexed = tensor[idx1] self.assertEqual(torch.DoubleTensor(lst_indexed), tensor_indexed) self.assertRaises(ValueError, lambda: reference[1:9:0]) self.assertRaises(ValueError, lambda: reference[1:9:-1]) self.assertRaises(IndexError, lambda: reference[1, 1, 1, 1]) self.assertRaises(IndexError, lambda: reference[1, 1, 1, 1:1]) self.assertRaises(IndexError, lambda: reference[3, 3, 3, 3, 3, 3, 3, 3]) self.assertRaises(IndexError, lambda: reference[0.0]) self.assertRaises(TypeError, lambda: reference[0.0:2.0]) self.assertRaises(IndexError, lambda: reference[0.0, 0.0:2.0]) self.assertRaises(IndexError, lambda: reference[0.0, :, 0.0:2.0]) self.assertRaises(IndexError, lambda: reference[0.0, ..., 0.0:2.0]) self.assertRaises(IndexError, lambda: reference[0.0, :, 0.0]) def delitem(): del reference[0] self.assertRaises(TypeError, delitem) @dtypes(torch.half, torch.double) def test_advancedindex(self, device, dtype): # Tests for Integer Array Indexing, Part I - Purely integer array # indexing def consec(size, start=1): # Creates the sequence in float since CPU half doesn't support the # needed operations. Converts to dtype before returning. numel = reduce(lambda x, y: x * y, size, 1) sequence = torch.ones(numel, dtype=torch.float, device=device).cumsum(0) sequence.add_(start - 1) return sequence.view(*size).to(dtype=dtype) # pick a random valid indexer type def ri(indices): choice = random.randint(0, 2) if choice == 0: return torch.LongTensor(indices).to(device) elif choice == 1: return list(indices) else: return tuple(indices) def validate_indexing(x): self.assertEqual(x[[0]], consec((1,))) self.assertEqual(x[ri([0]), ], consec((1,))) self.assertEqual(x[ri([3]), ], consec((1,), 4)) self.assertEqual(x[[2, 3, 4]], consec((3,), 3)) self.assertEqual(x[ri([2, 3, 4]), ], consec((3,), 3)) self.assertEqual(x[ri([0, 2, 4]), ], torch.tensor([1, 3, 5], dtype=dtype, device=device)) def validate_setting(x): x[[0]] = -2 self.assertEqual(x[[0]], torch.tensor([-2], dtype=dtype, device=device)) x[[0]] = -1 self.assertEqual(x[ri([0]), ], torch.tensor([-1], dtype=dtype, device=device)) x[[2, 3, 4]] = 4 self.assertEqual(x[[2, 3, 4]], torch.tensor([4, 4, 4], dtype=dtype, device=device)) x[ri([2, 3, 4]), ] = 3 self.assertEqual(x[ri([2, 3, 4]), ], torch.tensor([3, 3, 3], dtype=dtype, device=device)) x[ri([0, 2, 4]), ] = torch.tensor([5, 4, 3], dtype=dtype, device=device) self.assertEqual(x[ri([0, 2, 4]), ], torch.tensor([5, 4, 3], dtype=dtype, device=device)) # Only validates indexing and setting for halfs if dtype == torch.half: reference = consec((10,)) validate_indexing(reference) validate_setting(reference) return # Case 1: Purely Integer Array Indexing reference = consec((10,)) validate_indexing(reference) # setting values validate_setting(reference) # Tensor with stride != 1 # strided is [1, 3, 5, 7] reference = consec((10,)) strided = torch.tensor((), dtype=dtype, device=device) strided.set_(reference.storage(), storage_offset=0, size=torch.Size([4]), stride=[2]) self.assertEqual(strided[[0]], torch.tensor([1], dtype=dtype, device=device)) self.assertEqual(strided[ri([0]), ], torch.tensor([1], dtype=dtype, device=device)) self.assertEqual(strided[ri([3]), ], torch.tensor([7], dtype=dtype, device=device)) self.assertEqual(strided[[1, 2]], torch.tensor([3, 5], dtype=dtype, device=device)) self.assertEqual(strided[ri([1, 2]), ], torch.tensor([3, 5], dtype=dtype, device=device)) self.assertEqual(strided[ri([[2, 1], [0, 3]]), ], torch.tensor([[5, 3], [1, 7]], dtype=dtype, device=device)) # stride is [4, 8] strided = torch.tensor((), dtype=dtype, device=device) strided.set_(reference.storage(), storage_offset=4, size=torch.Size([2]), stride=[4]) self.assertEqual(strided[[0]], torch.tensor([5], dtype=dtype, device=device)) self.assertEqual(strided[ri([0]), ], torch.tensor([5], dtype=dtype, device=device)) self.assertEqual(strided[ri([1]), ], torch.tensor([9], dtype=dtype, device=device)) self.assertEqual(strided[[0, 1]], torch.tensor([5, 9], dtype=dtype, device=device)) self.assertEqual(strided[ri([0, 1]), ], torch.tensor([5, 9], dtype=dtype, device=device)) self.assertEqual(strided[ri([[0, 1], [1, 0]]), ], torch.tensor([[5, 9], [9, 5]], dtype=dtype, device=device)) # reference is 1 2 # 3 4 # 5 6 reference = consec((3, 2)) self.assertEqual(reference[ri([0, 1, 2]), ri([0])], torch.tensor([1, 3, 5], dtype=dtype, device=device)) self.assertEqual(reference[ri([0, 1, 2]), ri([1])], torch.tensor([2, 4, 6], dtype=dtype, device=device)) self.assertEqual(reference[ri([0]), ri([0])], consec((1,))) self.assertEqual(reference[ri([2]), ri([1])], consec((1,), 6)) self.assertEqual(reference[[ri([0, 0]), ri([0, 1])]], torch.tensor([1, 2], dtype=dtype, device=device)) self.assertEqual(reference[[ri([0, 1, 1, 0, 2]), ri([1])]], torch.tensor([2, 4, 4, 2, 6], dtype=dtype, device=device)) self.assertEqual(reference[[ri([0, 0, 1, 1]), ri([0, 1, 0, 0])]], torch.tensor([1, 2, 3, 3], dtype=dtype, device=device)) rows = ri([[0, 0], [1, 2]]) columns = [0], self.assertEqual(reference[rows, columns], torch.tensor([[1, 1], [3, 5]], dtype=dtype, device=device)) rows = ri([[0, 0], [1, 2]]) columns = ri([1, 0]) self.assertEqual(reference[rows, columns], torch.tensor([[2, 1], [4, 5]], dtype=dtype, device=device)) rows = ri([[0, 0], [1, 2]]) columns = ri([[0, 1], [1, 0]]) self.assertEqual(reference[rows, columns], torch.tensor([[1, 2], [4, 5]], dtype=dtype, device=device)) # setting values reference[ri([0]), ri([1])] = -1 self.assertEqual(reference[ri([0]), ri([1])], torch.tensor([-1], dtype=dtype, device=device)) reference[ri([0, 1, 2]), ri([0])] = torch.tensor([-1, 2, -4], dtype=dtype, device=device) self.assertEqual(reference[ri([0, 1, 2]), ri([0])], torch.tensor([-1, 2, -4], dtype=dtype, device=device)) reference[rows, columns] = torch.tensor([[4, 6], [2, 3]], dtype=dtype, device=device) self.assertEqual(reference[rows, columns], torch.tensor([[4, 6], [2, 3]], dtype=dtype, device=device)) # Verify still works with Transposed (i.e. non-contiguous) Tensors reference = torch.tensor([[0, 1, 2, 3], [4, 5, 6, 7], [8, 9, 10, 11]], dtype=dtype, device=device).t_() # Transposed: [[0, 4, 8], # [1, 5, 9], # [2, 6, 10], # [3, 7, 11]] self.assertEqual(reference[ri([0, 1, 2]), ri([0])], torch.tensor([0, 1, 2], dtype=dtype, device=device)) self.assertEqual(reference[ri([0, 1, 2]), ri([1])], torch.tensor([4, 5, 6], dtype=dtype, device=device)) self.assertEqual(reference[ri([0]), ri([0])], torch.tensor([0], dtype=dtype, device=device)) self.assertEqual(reference[ri([2]), ri([1])], torch.tensor([6], dtype=dtype, device=device)) self.assertEqual(reference[[ri([0, 0]), ri([0, 1])]], torch.tensor([0, 4], dtype=dtype, device=device)) self.assertEqual(reference[[ri([0, 1, 1, 0, 3]), ri([1])]], torch.tensor([4, 5, 5, 4, 7], dtype=dtype, device=device)) self.assertEqual(reference[[ri([0, 0, 1, 1]), ri([0, 1, 0, 0])]], torch.tensor([0, 4, 1, 1], dtype=dtype, device=device)) rows = ri([[0, 0], [1, 2]]) columns = [0], self.assertEqual(reference[rows, columns], torch.tensor([[0, 0], [1, 2]], dtype=dtype, device=device)) rows = ri([[0, 0], [1, 2]]) columns = ri([1, 0]) self.assertEqual(reference[rows, columns], torch.tensor([[4, 0], [5, 2]], dtype=dtype, device=device)) rows = ri([[0, 0], [1, 3]]) columns = ri([[0, 1], [1, 2]]) self.assertEqual(reference[rows, columns], torch.tensor([[0, 4], [5, 11]], dtype=dtype, device=device)) # setting values reference[ri([0]), ri([1])] = -1 self.assertEqual(reference[ri([0]), ri([1])], torch.tensor([-1], dtype=dtype, device=device)) reference[ri([0, 1, 2]), ri([0])] = torch.tensor([-1, 2, -4], dtype=dtype, device=device) self.assertEqual(reference[ri([0, 1, 2]), ri([0])], torch.tensor([-1, 2, -4], dtype=dtype, device=device)) reference[rows, columns] = torch.tensor([[4, 6], [2, 3]], dtype=dtype, device=device) self.assertEqual(reference[rows, columns], torch.tensor([[4, 6], [2, 3]], dtype=dtype, device=device)) # stride != 1 # strided is [[1 3 5 7], # [9 11 13 15]] reference = torch.arange(0., 24, dtype=dtype, device=device).view(3, 8) strided = torch.tensor((), dtype=dtype, device=device) strided.set_(reference.storage(), 1, size=torch.Size([2, 4]), stride=[8, 2]) self.assertEqual(strided[ri([0, 1]), ri([0])], torch.tensor([1, 9], dtype=dtype, device=device)) self.assertEqual(strided[ri([0, 1]), ri([1])], torch.tensor([3, 11], dtype=dtype, device=device)) self.assertEqual(strided[ri([0]), ri([0])], torch.tensor([1], dtype=dtype, device=device)) self.assertEqual(strided[ri([1]), ri([3])], torch.tensor([15], dtype=dtype, device=device)) self.assertEqual(strided[[ri([0, 0]), ri([0, 3])]], torch.tensor([1, 7], dtype=dtype, device=device)) self.assertEqual(strided[[ri([1]), ri([0, 1, 1, 0, 3])]], torch.tensor([9, 11, 11, 9, 15], dtype=dtype, device=device)) self.assertEqual(strided[[ri([0, 0, 1, 1]), ri([0, 1, 0, 0])]], torch.tensor([1, 3, 9, 9], dtype=dtype, device=device)) rows = ri([[0, 0], [1, 1]]) columns = [0], self.assertEqual(strided[rows, columns], torch.tensor([[1, 1], [9, 9]], dtype=dtype, device=device)) rows = ri([[0, 1], [1, 0]]) columns = ri([1, 2]) self.assertEqual(strided[rows, columns], torch.tensor([[3, 13], [11, 5]], dtype=dtype, device=device)) rows = ri([[0, 0], [1, 1]]) columns = ri([[0, 1], [1, 2]]) self.assertEqual(strided[rows, columns], torch.tensor([[1, 3], [11, 13]], dtype=dtype, device=device)) # setting values # strided is [[10, 11], # [17, 18]] reference = torch.arange(0., 24, dtype=dtype, device=device).view(3, 8) strided = torch.tensor((), dtype=dtype, device=device) strided.set_(reference.storage(), 10, size=torch.Size([2, 2]), stride=[7, 1]) self.assertEqual(strided[ri([0]), ri([1])], torch.tensor([11], dtype=dtype, device=device)) strided[ri([0]), ri([1])] = -1 self.assertEqual(strided[ri([0]), ri([1])], torch.tensor([-1], dtype=dtype, device=device)) reference = torch.arange(0., 24, dtype=dtype, device=device).view(3, 8) strided = torch.tensor((), dtype=dtype, device=device) strided.set_(reference.storage(), 10, size=torch.Size([2, 2]), stride=[7, 1]) self.assertEqual(strided[ri([0, 1]), ri([1, 0])], torch.tensor([11, 17], dtype=dtype, device=device)) strided[ri([0, 1]), ri([1, 0])] = torch.tensor([-1, 2], dtype=dtype, device=device) self.assertEqual(strided[ri([0, 1]), ri([1, 0])], torch.tensor([-1, 2], dtype=dtype, device=device)) reference = torch.arange(0., 24, dtype=dtype, device=device).view(3, 8) strided = torch.tensor((), dtype=dtype, device=device) strided.set_(reference.storage(), 10, size=torch.Size([2, 2]), stride=[7, 1]) rows = ri([[0], [1]]) columns = ri([[0, 1], [0, 1]]) self.assertEqual(strided[rows, columns], torch.tensor([[10, 11], [17, 18]], dtype=dtype, device=device)) strided[rows, columns] = torch.tensor([[4, 6], [2, 3]], dtype=dtype, device=device) self.assertEqual(strided[rows, columns], torch.tensor([[4, 6], [2, 3]], dtype=dtype, device=device)) # Tests using less than the number of dims, and ellipsis # reference is 1 2 # 3 4 # 5 6 reference = consec((3, 2)) self.assertEqual(reference[ri([0, 2]), ], torch.tensor([[1, 2], [5, 6]], dtype=dtype, device=device)) self.assertEqual(reference[ri([1]), ...], torch.tensor([[3, 4]], dtype=dtype, device=device)) self.assertEqual(reference[..., ri([1])], torch.tensor([[2], [4], [6]], dtype=dtype, device=device)) # verify too many indices fails with self.assertRaises(IndexError): reference[ri([1]), ri([0, 2]), ri([3])] # test invalid index fails reference = torch.empty(10, dtype=dtype, device=device) # can't test cuda because it is a device assert if not reference.is_cuda: for err_idx in (10, -11): with self.assertRaisesRegex(IndexError, r'out of'): reference[err_idx] with self.assertRaisesRegex(IndexError, r'out of'): reference[torch.LongTensor([err_idx]).to(device)] with self.assertRaisesRegex(IndexError, r'out of'): reference[[err_idx]] if TEST_NUMPY: # we use numpy to compare against, to verify that our advanced # indexing semantics are the same, and also for ease of test # writing def tensor_indices_to_np(tensor, indices): # convert the Torch Tensor to a numpy array tensor = tensor.to(device='cpu') npt = tensor.numpy() # convert indices idxs = tuple(i.tolist() if isinstance(i, torch.LongTensor) else i for i in indices) return npt, idxs def get_numpy(tensor, indices): npt, idxs = tensor_indices_to_np(tensor, indices) # index and return as a Torch Tensor return torch.tensor(npt[idxs], dtype=dtype, device=device) def set_numpy(tensor, indices, value): if not isinstance(value, int): if self.device_type != 'cpu': value = value.cpu() value = value.numpy() npt, idxs = tensor_indices_to_np(tensor, indices) npt[idxs] = value return npt def assert_get_eq(tensor, indexer): self.assertEqual(tensor[indexer], get_numpy(tensor, indexer)) def assert_set_eq(tensor, indexer, val): pyt = tensor.clone() numt = tensor.clone() pyt[indexer] = val numt = torch.tensor(set_numpy(numt, indexer, val), dtype=dtype, device=device) self.assertEqual(pyt, numt) def assert_backward_eq(tensor, indexer): cpu = tensor.float().clone().detach().requires_grad_(True) outcpu = cpu[indexer] gOcpu = torch.rand_like(outcpu) outcpu.backward(gOcpu) dev = cpu.to(device).detach().requires_grad_(True) outdev = dev[indexer] outdev.backward(gOcpu.to(device)) self.assertEqual(cpu.grad, dev.grad) def get_set_tensor(indexed, indexer): set_size = indexed[indexer].size() set_count = indexed[indexer].numel() set_tensor = torch.randperm(set_count).view(set_size).double().to(device) return set_tensor # Tensor is 0 1 2 3 4 # 5 6 7 8 9 # 10 11 12 13 14 # 15 16 17 18 19 reference = torch.arange(0., 20, dtype=dtype, device=device).view(4, 5) indices_to_test = [ # grab the second, fourth columns [slice(None), [1, 3]], # first, third rows, [[0, 2], slice(None)], # weird shape [slice(None), [[0, 1], [2, 3]]], # negatives [[-1], [0]], [[0, 2], [-1]], [slice(None), [-1]], ] # only test dupes on gets get_indices_to_test = indices_to_test + [[slice(None), [0, 1, 1, 2, 2]]] for indexer in get_indices_to_test: assert_get_eq(reference, indexer) if self.device_type != 'cpu': assert_backward_eq(reference, indexer) for indexer in indices_to_test: assert_set_eq(reference, indexer, 44) assert_set_eq(reference, indexer, get_set_tensor(reference, indexer)) reference = torch.arange(0., 160, dtype=dtype, device=device).view(4, 8, 5) indices_to_test = [ [slice(None), slice(None), [0, 3, 4]], [slice(None), [2, 4, 5, 7], slice(None)], [[2, 3], slice(None), slice(None)], [slice(None), [0, 2, 3], [1, 3, 4]], [slice(None), [0], [1, 2, 4]], [slice(None), [0, 1, 3], [4]], [slice(None), [[0, 1], [1, 0]], [[2, 3]]], [slice(None), [[0, 1], [2, 3]], [[0]]], [slice(None), [[5, 6]], [[0, 3], [4, 4]]], [[0, 2, 3], [1, 3, 4], slice(None)], [[0], [1, 2, 4], slice(None)], [[0, 1, 3], [4], slice(None)], [[[0, 1], [1, 0]], [[2, 1], [3, 5]], slice(None)], [[[0, 1], [1, 0]], [[2, 3]], slice(None)], [[[0, 1], [2, 3]], [[0]], slice(None)], [[[2, 1]], [[0, 3], [4, 4]], slice(None)], [[[2]], [[0, 3], [4, 1]], slice(None)], # non-contiguous indexing subspace [[0, 2, 3], slice(None), [1, 3, 4]], # less dim, ellipsis [[0, 2], ], [[0, 2], slice(None)], [[0, 2], Ellipsis], [[0, 2], slice(None), Ellipsis], [[0, 2], Ellipsis, slice(None)], [[0, 2], [1, 3]], [[0, 2], [1, 3], Ellipsis], [Ellipsis, [1, 3], [2, 3]], [Ellipsis, [2, 3, 4]], [Ellipsis, slice(None), [2, 3, 4]], [slice(None), Ellipsis, [2, 3, 4]], # ellipsis counts for nothing [Ellipsis, slice(None), slice(None), [0, 3, 4]], [slice(None), Ellipsis, slice(None), [0, 3, 4]], [slice(None), slice(None), Ellipsis, [0, 3, 4]], [slice(None), slice(None), [0, 3, 4], Ellipsis], [Ellipsis, [[0, 1], [1, 0]], [[2, 1], [3, 5]], slice(None)], [[[0, 1], [1, 0]], [[2, 1], [3, 5]], Ellipsis, slice(None)], [[[0, 1], [1, 0]], [[2, 1], [3, 5]], slice(None), Ellipsis], ] for indexer in indices_to_test: assert_get_eq(reference, indexer) assert_set_eq(reference, indexer, 212) assert_set_eq(reference, indexer, get_set_tensor(reference, indexer)) if torch.cuda.is_available(): assert_backward_eq(reference, indexer) reference = torch.arange(0., 1296, dtype=dtype, device=device).view(3, 9, 8, 6) indices_to_test = [ [slice(None), slice(None), slice(None), [0, 3, 4]], [slice(None), slice(None), [2, 4, 5, 7], slice(None)], [slice(None), [2, 3], slice(None), slice(None)], [[1, 2], slice(None), slice(None), slice(None)], [slice(None), slice(None), [0, 2, 3], [1, 3, 4]], [slice(None), slice(None), [0], [1, 2, 4]], [slice(None), slice(None), [0, 1, 3], [4]], [slice(None), slice(None), [[0, 1], [1, 0]], [[2, 3]]], [slice(None), slice(None), [[0, 1], [2, 3]], [[0]]], [slice(None), slice(None), [[5, 6]], [[0, 3], [4, 4]]], [slice(None), [0, 2, 3], [1, 3, 4], slice(None)], [slice(None), [0], [1, 2, 4], slice(None)], [slice(None), [0, 1, 3], [4], slice(None)], [slice(None), [[0, 1], [3, 4]], [[2, 3], [0, 1]], slice(None)], [slice(None), [[0, 1], [3, 4]], [[2, 3]], slice(None)], [slice(None), [[0, 1], [3, 2]], [[0]], slice(None)], [slice(None), [[2, 1]], [[0, 3], [6, 4]], slice(None)], [slice(None), [[2]], [[0, 3], [4, 2]], slice(None)], [[0, 1, 2], [1, 3, 4], slice(None), slice(None)], [[0], [1, 2, 4], slice(None), slice(None)], [[0, 1, 2], [4], slice(None), slice(None)], [[[0, 1], [0, 2]], [[2, 4], [1, 5]], slice(None), slice(None)], [[[0, 1], [1, 2]], [[2, 0]], slice(None), slice(None)], [[[2, 2]], [[0, 3], [4, 5]], slice(None), slice(None)], [[[2]], [[0, 3], [4, 5]], slice(None), slice(None)], [slice(None), [3, 4, 6], [0, 2, 3], [1, 3, 4]], [slice(None), [2, 3, 4], [1, 3, 4], [4]], [slice(None), [0, 1, 3], [4], [1, 3, 4]], [slice(None), [6], [0, 2, 3], [1, 3, 4]], [slice(None), [2, 3, 5], [3], [4]], [slice(None), [0], [4], [1, 3, 4]], [slice(None), [6], [0, 2, 3], [1]], [slice(None), [[0, 3], [3, 6]], [[0, 1], [1, 3]], [[5, 3], [1, 2]]], [[2, 2, 1], [0, 2, 3], [1, 3, 4], slice(None)], [[2, 0, 1], [1, 2, 3], [4], slice(None)], [[0, 1, 2], [4], [1, 3, 4], slice(None)], [[0], [0, 2, 3], [1, 3, 4], slice(None)], [[0, 2, 1], [3], [4], slice(None)], [[0], [4], [1, 3, 4], slice(None)], [[1], [0, 2, 3], [1], slice(None)], [[[1, 2], [1, 2]], [[0, 1], [2, 3]], [[2, 3], [3, 5]], slice(None)], # less dim, ellipsis [Ellipsis, [0, 3, 4]], [Ellipsis, slice(None), [0, 3, 4]], [Ellipsis, slice(None), slice(None), [0, 3, 4]], [slice(None), Ellipsis, [0, 3, 4]], [slice(None), slice(None), Ellipsis, [0, 3, 4]], [slice(None), [0, 2, 3], [1, 3, 4]], [slice(None), [0, 2, 3], [1, 3, 4], Ellipsis], [Ellipsis, [0, 2, 3], [1, 3, 4], slice(None)], [[0], [1, 2, 4]], [[0], [1, 2, 4], slice(None)], [[0], [1, 2, 4], Ellipsis], [[0], [1, 2, 4], Ellipsis, slice(None)], [[1], ], [[0, 2, 1], [3], [4]], [[0, 2, 1], [3], [4], slice(None)], [[0, 2, 1], [3], [4], Ellipsis], [Ellipsis, [0, 2, 1], [3], [4]], ] for indexer in indices_to_test: assert_get_eq(reference, indexer) assert_set_eq(reference, indexer, 1333) assert_set_eq(reference, indexer, get_set_tensor(reference, indexer)) indices_to_test += [ [slice(None), slice(None), [[0, 1], [1, 0]], [[2, 3], [3, 0]]], [slice(None), slice(None), [[2]], [[0, 3], [4, 4]]], ] for indexer in indices_to_test: assert_get_eq(reference, indexer) assert_set_eq(reference, indexer, 1333) if self.device_type != 'cpu': assert_backward_eq(reference, indexer) def test_advancedindex_big(self, device): reference = torch.arange(0, 123344, dtype=torch.int, device=device) self.assertEqual(reference[[0, 123, 44488, 68807, 123343], ], torch.tensor([0, 123, 44488, 68807, 123343], dtype=torch.int)) @dtypes(torch.double) def test_kthvalue(self, device, dtype): SIZE = 50 x = torch.rand(SIZE, SIZE, SIZE, dtype=dtype, device=device) x0 = x.clone() k = random.randint(1, SIZE) res1val, res1ind = torch.kthvalue(x, k, keepdim=False) res2val, res2ind = torch.sort(x) self.assertEqual(res1val[:, :], res2val[:, :, k - 1], 0) self.assertEqual(res1ind[:, :], res2ind[:, :, k - 1], 0) # test use of result tensors k = random.randint(1, SIZE) res1val = torch.tensor([], dtype=dtype, device=device) res1ind = torch.tensor([], dtype=torch.long, device=device) torch.kthvalue(x, k, keepdim=False, out=(res1val, res1ind)) res2val, res2ind = torch.sort(x) self.assertEqual(res1val[:, :], res2val[:, :, k - 1], 0) self.assertEqual(res1ind[:, :], res2ind[:, :, k - 1], 0) # test non-default dim k = random.randint(1, SIZE) res1val, res1ind = torch.kthvalue(x, k, 0, keepdim=False) res2val, res2ind = torch.sort(x, 0) self.assertEqual(res1val, res2val[k - 1], 0) self.assertEqual(res1ind, res2ind[k - 1], 0) # non-contiguous y = x.narrow(1, 0, 1) y0 = y.contiguous() k = random.randint(1, SIZE) res1val, res1ind = torch.kthvalue(y, k) res2val, res2ind = torch.kthvalue(y0, k) self.assertEqual(res1val, res2val, 0) self.assertEqual(res1ind, res2ind, 0) # check that the input wasn't modified self.assertEqual(x, x0, 0) # simple test case (with repetitions) y = torch.tensor((3., 5, 4, 1, 1, 5), dtype=dtype, device=device) self.assertEqual(torch.kthvalue(y, 3)[0], 3, 0) self.assertEqual(torch.kthvalue(y, 2)[0], 1, 0) # simple test case (with NaN) SIZE = 50 x = torch.rand(SIZE, SIZE, SIZE, dtype=dtype, device=device) x[torch.arange(SIZE), :, torch.randint(50, (50,))] = nan ks = [random.randint(1, SIZE), 1, SIZE, SIZE - 1] res2val, res2ind = torch.sort(x) for k in ks: res1val, res1ind = torch.kthvalue(x, k, keepdim=False) self.assertEqual(res1val[:, :], res2val[:, :, k - 1], 0) self.assertEqual(res1ind[:, :], res2ind[:, :, k - 1], 0) @skipCUDAIfNoMagma @skipCPUIfNoLapack @unittest.skipIf(not TEST_NUMPY, "NumPy not found") @dtypes(torch.double) def test_lu_solve_batched_non_contiguous(self, device, dtype): from numpy.linalg import solve from torch.testing._internal.common_utils import random_fullrank_matrix_distinct_singular_value A = random_fullrank_matrix_distinct_singular_value(2, 2, dtype=dtype, device='cpu') b = torch.randn(2, 2, 2, dtype=dtype, device='cpu') x_exp = torch.as_tensor(solve(A.permute(0, 2, 1).numpy(), b.permute(2, 1, 0).numpy())).to(device) A = A.to(device).permute(0, 2, 1) b = b.to(device).permute(2, 1, 0) assert not A.is_contiguous() and not b.is_contiguous(), "contiguous inputs" LU_data, LU_pivots = torch.lu(A) x = torch.lu_solve(b, LU_data, LU_pivots) self.assertEqual(x, x_exp) def lu_solve_test_helper(self, A_dims, b_dims, pivot, device, dtype): from torch.testing._internal.common_utils import random_fullrank_matrix_distinct_singular_value b = torch.randn(*b_dims, dtype=dtype, device=device) A = random_fullrank_matrix_distinct_singular_value(*A_dims, dtype=dtype, device=device) LU_data, LU_pivots, info = torch.lu(A, get_infos=True, pivot=pivot) self.assertEqual(info, torch.zeros_like(info)) return b, A, LU_data, LU_pivots @skipCPUIfNoLapack @skipCUDAIfNoMagma @dtypes(torch.double) def test_lu_solve(self, device, dtype): def sub_test(pivot): for k, n in zip([2, 3, 5], [3, 5, 7]): b, A, LU_data, LU_pivots = self.lu_solve_test_helper((n,), (n, k), pivot, device, dtype) x = torch.lu_solve(b, LU_data, LU_pivots) self.assertLessEqual(b.dist(A.mm(x)), 1e-12) sub_test(True) if self.device_type == 'cuda': sub_test(False) @skipCUDAIfNoMagma @skipCPUIfNoLapack @dtypes(torch.double) def test_lu_solve_batched(self, device, dtype): def sub_test(pivot): def lu_solve_batch_test_helper(A_dims, b_dims, pivot): b, A, LU_data, LU_pivots = self.lu_solve_test_helper(A_dims, b_dims, pivot, device, dtype) x_exp_list = [] for i in range(b_dims[0]): x_exp_list.append(torch.lu_solve(b[i], LU_data[i], LU_pivots[i])) x_exp = torch.stack(x_exp_list) # Stacked output x_act = torch.lu_solve(b, LU_data, LU_pivots) # Actual output self.assertEqual(x_exp, x_act) # Equality check self.assertLessEqual(b.dist(torch.matmul(A, x_act)), 1e-12) # Correctness check for batchsize in [1, 3, 4]: lu_solve_batch_test_helper((5, batchsize), (batchsize, 5, 10), pivot) # Tests tensors with 0 elements b = torch.randn(3, 0, 3, dtype=dtype, device=device) A = torch.randn(3, 0, 0, dtype=dtype, device=device) LU_data, LU_pivots = torch.lu(A) self.assertEqual(torch.empty_like(b), b.lu_solve(LU_data, LU_pivots)) sub_test(True) if self.device_type == 'cuda': sub_test(False) @slowTest @skipCUDAIfNoMagma @skipCPUIfNoLapack @dtypes(torch.double) def test_lu_solve_batched_many_batches(self, device, dtype): def run_test(A_dims, b_dims): b, A, LU_data, LU_pivots = self.lu_solve_test_helper(A_dims, b_dims, True, device, dtype) x = torch.lu_solve(b, LU_data, LU_pivots) b_ = torch.matmul(A, x) self.assertEqual(b_, b.expand_as(b_)) run_test((5, 65536), (65536, 5, 10)) run_test((5, 262144), (262144, 5, 10)) @skipCUDAIfNoMagma @skipCPUIfNoLapack @unittest.skipIf(not TEST_NUMPY, "NumPy not found") @dtypes(torch.double) def test_lu_solve_batched_broadcasting(self, device, dtype): from numpy.linalg import solve from torch.testing._internal.common_utils import random_fullrank_matrix_distinct_singular_value def run_test(A_dims, b_dims, pivot=True): A_matrix_size = A_dims[-1] A_batch_dims = A_dims[:-2] A = random_fullrank_matrix_distinct_singular_value(A_matrix_size, *A_batch_dims, dtype=dtype) b = torch.randn(*b_dims, dtype=dtype) x_exp = torch.as_tensor(solve(A.numpy(), b.numpy())).to(dtype=dtype, device=device) A, b = A.to(device), b.to(device) LU_data, LU_pivots = torch.lu(A, pivot=pivot) x = torch.lu_solve(b, LU_data, LU_pivots) self.assertEqual(x, x_exp) # test against numpy.linalg.solve run_test((2, 1, 3, 4, 4), (2, 1, 3, 4, 6)) # no broadcasting run_test((2, 1, 3, 4, 4), (4, 6)) # broadcasting b run_test((4, 4), (2, 1, 3, 4, 2)) # broadcasting A run_test((1, 3, 1, 4, 4), (2, 1, 3, 4, 5)) # broadcasting A & b def test_dim_reduction(self, device): example = [[-1, 2, 1], [5, 3, 6]] types = [torch.double, torch.float, torch.int64, torch.int32, torch.int16] if self.device_type == 'cuda': # 'cpu' and 'xla' do not support half types.append(torch.half) sum_dtype = { torch.double: torch.double, torch.float: torch.float, torch.half: torch.half, torch.int64: torch.int64, torch.int32: torch.int64, torch.int16: torch.int64, } # This won't test for 256bit instructions, since we usually # only work on 1 cacheline (1024bit) at a time and these # examples aren't big enough to trigger that. for dtype in types: x = torch.tensor(example, device=device, dtype=dtype) self.assertEqual(x.sum().item(), 16) self.assertEqual(x.sum(0), torch.tensor([4, 5, 7], dtype=sum_dtype[dtype])) self.assertEqual(x.sum(1), torch.tensor([2, 14], dtype=sum_dtype[dtype])) y = torch.tensor(example, device=device, dtype=sum_dtype[dtype]) torch.sum(x, 0, out=y) self.assertEqual(x.sum(0), y) # Mean not supported for Int types for dtype in types[:2]: x = torch.tensor(example, device=device, dtype=dtype) self.assertEqual(x.mean().item(), 16.0 / 6) self.assertEqual(x.mean(0), torch.tensor([2.0, 2.5, 7.0 / 2], dtype=dtype)) self.assertEqual(x.mean(1), torch.tensor([2.0 / 3, 14.0 / 3], dtype=dtype)) self.assertEqual(x.mean(), x.mean((0, 1))) prod_dtype = { torch.double: torch.double, torch.float: torch.float, torch.half: torch.half, torch.int64: torch.int64, torch.int32: torch.int64, torch.int16: torch.int64 } for dtype in types: x = torch.tensor(example, device=device, dtype=dtype) self.assertEqual(x.prod().item(), -180) self.assertEqual(x.prod(0), torch.tensor([-5, 6, 6], dtype=prod_dtype[dtype])) self.assertEqual(x.prod(1), torch.tensor([-2, 90], dtype=prod_dtype[dtype])) for dtype in types: x = torch.tensor(example, device=device, dtype=dtype) self.assertEqual(x.max().item(), 6) self.assertEqual(x.max(0), (torch.tensor([5, 3, 6], dtype=dtype), torch.tensor([1, 1, 1], dtype=torch.int64))) self.assertEqual(x.max(1), (torch.tensor([2, 6], dtype=dtype), torch.tensor([1, 2], dtype=torch.int64))) for dtype in types: x = torch.tensor(example, device=device, dtype=dtype) self.assertEqual(x.min().item(), -1) self.assertEqual(x.min(0), (torch.tensor([-1, 2, 1], dtype=dtype), torch.tensor([0, 0, 0], dtype=torch.int64))) self.assertEqual(x.min(1), (torch.tensor([-1, 3], dtype=dtype), torch.tensor([0, 1], dtype=torch.int64))) for dtype in types: x = torch.tensor(example, device=device, dtype=dtype) self.assertEqual(x.argmax().item(), 5) self.assertEqual(x.argmax(dim=None).item(), 5) self.assertEqual(x.argmax(dim=0), torch.tensor([1, 1, 1], dtype=torch.int64)) self.assertEqual(x.argmax(dim=1), torch.tensor([1, 2], dtype=torch.int64)) self.assertEqual(x.argmax(dim=0, keepdim=True), torch.tensor([[1, 1, 1]], dtype=torch.int64)) # test that non-contiguous tensors work self.assertEqual(x[:, :2].argmax().item(), 2) for dtype in types: x = torch.tensor(example, device=device, dtype=dtype) self.assertEqual(x.argmin().item(), 0) self.assertEqual(x.argmin(dim=None).item(), 0) self.assertEqual(x.argmin(dim=0), torch.tensor([0, 0, 0], dtype=torch.int64)) self.assertEqual(x.argmin(dim=1), torch.tensor([0, 1], dtype=torch.int64)) self.assertEqual(x.argmin(dim=1, keepdim=True), torch.tensor([[0], [1]], dtype=torch.int64)) # test that non-contiguous tensors work self.assertEqual(x[:, :2].argmin().item(), 0) dim_red_fns = [ "mean", "median", "mode", "norm", "prod", "std", "sum", "var", "max", "min"] def normfn_attr(t, dim, keepdim=False, out=None): attr = torch.norm return attr(t, 2, dim, keepdim, out=out) for fn_name in dim_red_fns: fn_attr = getattr(torch, fn_name) if fn_name != "norm" else normfn_attr def fn(x, dim, keepdim=False, out=None): ans = fn_attr(x, dim, keepdim=keepdim, out=out) return ans if not istuple(ans) else ans[0] def fn_tuple(x, dim, keepdim=False, out=None): return fn_attr(x, dim, keepdim=keepdim, out=out) def test_multidim(x, dim): self.assertEqual(fn(x, dim).unsqueeze(dim), fn(x, dim, keepdim=True)) self.assertEqual(x.ndimension() - 1, fn(x, dim).ndimension()) self.assertEqual(x.ndimension(), fn(x, dim, keepdim=True).ndimension()) # general case x = torch.randn(3, 4, 5, device=device) dim = random.randint(0, 2) test_multidim(x, dim) # check 1-d behavior x = torch.randn(1, device=device) dim = 0 self.assertEqual(fn(x, dim).shape, ()) self.assertEqual(fn(x, dim, keepdim=True).shape, (1,)) # check reducing of a singleton dimension dims = [3, 4, 5] singleton_dim = random.randint(0, 2) dims[singleton_dim] = 1 x = torch.randn(dims, device=device) test_multidim(x, singleton_dim) # check reducing with output kwargs if fn_name in ['median', 'mode', 'max', 'min']: y = torch.randn(5, 3, device=device) values = torch.randn(5, 3, device=device) indices = torch.zeros(5, 3, device=device).long() - 1 fn_tuple(y, 1, keepdim=False, out=(values[:, 1], indices[:, 1])) values_expected, indices_expected = fn_tuple(y, 1, keepdim=False) self.assertEqual(values[:, 1], values_expected, '{} values with out= kwarg'.format(fn_name)) self.assertEqual(indices[:, 1], indices_expected, '{} indices with out= kwarg'.format(fn_name)) continue x = torch.randn(5, 3, device=device) y = torch.randn(5, 3, device=device) fn(y, 1, keepdim=False, out=x[:, 1]) expected = fn(y, 1, keepdim=False) self.assertEqual(x[:, 1], expected, '{} with out= kwarg'.format(fn_name)) @slowTest def test_argminmax_large_axis(self, device): # Regression test for gh-32863 # Requires > 8 GB of memory. So, if allocation fails just skip it. try: x = torch.zeros((2, 2**32), device=device, dtype=torch.int8) x[:, -1] = 1 self.assertEqual(x.argmax(1), [x.shape[1] - 1] * 2) x[:, -1] = -1 self.assertEqual(x.argmin(1), [x.shape[1] - 1] * 2) except RuntimeError as e: if 'memory' in str(e): raise unittest.SkipTest('Insufficient memory') raise def test_remainder_overflow(self, device): # Check Integer Overflows x = torch.tensor(23500, dtype=torch.int64, device=device) q = 392486996410368 self.assertEqual(x % q, x) self.assertEqual(-x % q, q - x) self.assertEqual(x % -q, x - q) self.assertEqual(-x % -q, -x) def test_rpow(self, device): m = torch.randn(10, 10, device=device) self.assertEqual(torch.pow(2, m), 2**m) # test with scalar m = torch.randn(1, device=device).squeeze() assert m.dim() == 0, "m is intentionally a scalar" self.assertEqual(torch.pow(2, m), 2**m) @skipCUDAIfNoMagma @skipCPUIfNoLapack @dtypes(torch.double) def test_symeig(self, device, dtype): from torch.testing._internal.common_utils import random_symmetric_matrix def run_test(dims, eigenvectors, upper): x = random_symmetric_matrix(*dims, dtype=dtype, device=device) oute = torch.empty(dims[1:] + dims[:1], dtype=dtype, device=device) outv = torch.empty(dims[1:] + dims[:1] * 2, dtype=dtype, device=device) torch.symeig(x, eigenvectors=eigenvectors, upper=upper, out=(oute, outv)) if eigenvectors: x_recon = torch.matmul(torch.matmul(outv, torch.diag_embed(oute)), outv.transpose(-2, -1)) self.assertEqual(x, x_recon, 1e-8, 'Incorrect reconstruction using V @ diag(e) @ V.T') else: eigvals, _ = torch.symeig(x, eigenvectors=True, upper=upper) self.assertEqual(eigvals, oute, 'Eigenvalues mismatch') self.assertEqual(torch.empty(0, device=device, dtype=dtype), outv, 'Eigenvector matrix not empty') rese, resv = x.symeig(eigenvectors=eigenvectors, upper=upper) self.assertEqual(rese, oute, "outputs of symeig and symeig with out don't match") self.assertEqual(resv, outv, "outputs of symeig and symeig with out don't match") # test non-contiguous x = random_symmetric_matrix(*dims, dtype=dtype, device=device) n_dim = len(dims) + 1 # Reverse the batch dimensions and the matrix dimensions and then concat them x = x.permute(tuple(range(n_dim - 3, -1, -1)) + (n_dim - 1, n_dim - 2)) assert not x.is_contiguous(), "x is intentionally non-contiguous" rese, resv = torch.symeig(x, eigenvectors=eigenvectors, upper=upper) if eigenvectors: x_recon = torch.matmul(torch.matmul(resv, torch.diag_embed(rese)), resv.transpose(-2, -1)) self.assertEqual(x, x_recon, 1e-8, 'Incorrect reconstruction using V @ diag(e) @ V.T') else: eigvals, _ = torch.symeig(x, eigenvectors=True, upper=upper) self.assertEqual(eigvals, rese, 'Eigenvalues mismatch') self.assertEqual(torch.empty(0, device=device, dtype=dtype), resv, 'Eigenvector matrix not empty') batch_dims_set = [(), (3,), (3, 5), (5, 3, 5)] for batch_dims, eigenvectors, upper in product(batch_dims_set, (True, False), (True, False)): run_test((5,) + batch_dims, eigenvectors, upper) @skipCUDAIfNoMagma @skipCPUIfNoLapack @dtypes(torch.double) def test_svd(self, device, dtype): def run_test(dims, some, compute_uv): x = torch.randn(*dims, dtype=dtype, device=device) outu = torch.tensor((), dtype=dtype, device=device) outs = torch.tensor((), dtype=dtype, device=device) outv = torch.tensor((), dtype=dtype, device=device) torch.svd(x, some=some, compute_uv=compute_uv, out=(outu, outs, outv)) if compute_uv: if some: x_recon = torch.matmul(outu, torch.matmul(outs.diag_embed(), outv.transpose(-2, -1))) self.assertEqual(x, x_recon, 1e-8, 'Incorrect reconstruction using U @ diag(S) @ V.T') else: narrow_u = outu[..., :min(*dims[-2:])] narrow_v = outv[..., :min(*dims[-2:])] x_recon = torch.matmul(narrow_u, torch.matmul(outs.diag_embed(), narrow_v.transpose(-2, -1))) self.assertEqual(x, x_recon, 1e-8, 'Incorrect reconstruction using U @ diag(S) @ V.T') else: _, singvals, _ = torch.svd(x, compute_uv=True) self.assertEqual(singvals, outs, 'Singular values mismatch') self.assertEqual(outu, torch.zeros_like(outu), 'U not zero') self.assertEqual(outv, torch.zeros_like(outv), 'V not zero') resu, ress, resv = torch.svd(x, some=some, compute_uv=compute_uv) self.assertEqual(resu, outu, 'outputs of svd and svd with out differ') self.assertEqual(ress, outs, 'outputs of svd and svd with out differ') self.assertEqual(resv, outv, 'outputs of svd and svd with out differ') # test non-contiguous x = torch.randn(*dims, dtype=dtype, device=device) n_dim = len(dims) # Reverse the batch dimensions and the matrix dimensions and then concat them x = x.permute(tuple(range(n_dim - 3, -1, -1)) + (n_dim - 1, n_dim - 2)) assert not x.is_contiguous(), "x is intentionally non-contiguous" resu, ress, resv = torch.svd(x, some=some, compute_uv=compute_uv) if compute_uv: if some: x_recon = torch.matmul(resu, torch.matmul(ress.diag_embed(), resv.transpose(-2, -1))) self.assertEqual(x, x_recon, 1e-8, 'Incorrect reconstruction using U @ diag(S) @ V.T') else: narrow_u = resu[..., :min(*dims[-2:])] narrow_v = resv[..., :min(*dims[-2:])] x_recon = torch.matmul(narrow_u, torch.matmul(ress.diag_embed(), narrow_v.transpose(-2, -1))) self.assertEqual(x, x_recon, 1e-8, 'Incorrect reconstruction using U @ diag(S) @ V.T') else: _, singvals, _ = torch.svd(x, compute_uv=True) self.assertEqual(singvals, ress, 'Singular values mismatch') self.assertEqual(resu, torch.zeros_like(resu), 'U not zero') self.assertEqual(resv, torch.zeros_like(resv), 'V not zero') shapes = [(3, 3), (5, 3, 3), (7, 5, 3, 3), # square matrices (7, 3), (5, 7, 3), (7, 5, 7, 3), # fat matrices (3, 7), (5, 3, 7), (7, 5, 3, 7)] # thin matrices for dims, some, compute_uv in product(shapes, [True, False], [True, False]): run_test(dims, some, compute_uv) @skipCUDAIfNoMagma @skipCPUIfNoLapack def test_svd_no_singularvectors(self, device): for size in [(5, 5), (5, 20), (20, 5)]: a = torch.randn(*size, device=device) u, s_expect, v = torch.svd(a) u, s_actual, v = torch.svd(a, compute_uv=False) self.assertEqual(s_expect, s_actual, "Singular values don't match") @skipCUDAIfNoMagma @skipCPUIfNoLapack def test_svd_lowrank(self, device): import torch from torch.testing._internal.common_utils import random_lowrank_matrix, random_sparse_matrix dtype = torch.double def run_subtest(actual_rank, matrix_size, batches, device, svd_lowrank, **options): density = options.pop('density', 1) if isinstance(matrix_size, int): rows = columns = matrix_size else: rows, columns = matrix_size if density == 1: a_input = random_lowrank_matrix(actual_rank, rows, columns, *batches, device=device, dtype=dtype) a = a_input else: assert batches == () a_input = random_sparse_matrix(rows, columns, density, device=device, dtype=dtype) a = a_input.to_dense() q = min(*size) u, s, v = svd_lowrank(a_input, q=q, **options) # check if u, s, v is a SVD u, s, v = u[..., :q], s[..., :q], v[..., :q] A = u.matmul(s.diag_embed()).matmul(v.transpose(-2, -1)) self.assertEqual(A, a) # check if svd_lowrank produces same singular values as torch.svd U, S, V = torch.svd(a) self.assertEqual(s.shape, S.shape) self.assertEqual(u.shape, U.shape) self.assertEqual(v.shape, V.shape) self.assertEqual(s, S) if density == 1: # actual_rank is known only for dense inputs # # check if pairs (u, U) and (v, V) span the same # subspaces, respectively u, s, v = u[..., :actual_rank], s[..., :actual_rank], v[..., :actual_rank] U, S, V = U[..., :actual_rank], S[..., :actual_rank], V[..., :actual_rank] self.assertEqual(u.transpose(-2, -1).matmul(U).det().abs(), torch.ones(batches, device=device, dtype=dtype)) self.assertEqual(v.transpose(-2, -1).matmul(V).det().abs(), torch.ones(batches, device=device, dtype=dtype)) all_batches = [(), (1,), (3,), (2, 3)] for actual_rank, size, all_batches in [ (2, (17, 4), all_batches), (4, (17, 4), all_batches), (4, (17, 17), all_batches), (10, (100, 40), all_batches), (7, (1000, 1000), [()]), ]: # dense input for batches in all_batches: run_subtest(actual_rank, size, batches, device, torch.svd_lowrank) if size != size[::-1]: run_subtest(actual_rank, size[::-1], batches, device, torch.svd_lowrank) # sparse input for size in [(17, 4), (4, 17), (17, 17), (100, 40), (40, 100), (1000, 1000)]: for density in [0.005, 0.1]: run_subtest(None, size, (), device, torch.svd_lowrank, density=density) # jitting support jitted = torch.jit.script(torch.svd_lowrank) actual_rank, size, batches = 2, (17, 4), () run_subtest(actual_rank, size, batches, device, jitted) @skipCUDAIfNoMagma @skipCPUIfNoLapack def test_pca_lowrank(self, device): from torch.testing._internal.common_utils import random_lowrank_matrix, random_sparse_matrix dtype = torch.double def run_subtest(guess_rank, actual_rank, matrix_size, batches, device, pca, **options): density = options.pop('density', 1) if isinstance(matrix_size, int): rows = columns = matrix_size else: rows, columns = matrix_size if density == 1: a_input = random_lowrank_matrix(actual_rank, rows, columns, *batches, device=device, dtype=dtype) a = a_input else: a_input = random_sparse_matrix(rows, columns, density, device=device, dtype=dtype) a = a_input.to_dense() u, s, v = pca(a_input, q=guess_rank, **options) self.assertEqual(s.shape[-1], guess_rank) self.assertEqual(u.shape[-2], rows) self.assertEqual(u.shape[-1], guess_rank) self.assertEqual(v.shape[-1], guess_rank) self.assertEqual(v.shape[-2], columns) A1 = u.matmul(s.diag_embed()).matmul(v.transpose(-2, -1)) ones_m1 = torch.ones(batches + (rows, 1), dtype=a.dtype, device=device) c = a.sum(axis=-2) / rows c = c.reshape(batches + (1, columns)) A2 = a - ones_m1.matmul(c) self.assertEqual(A1, A2) if density == 1: # actual rank is known only for dense input detect_rank = (s.abs() > 1e-5).sum(axis=-1) self.assertEqual(actual_rank * torch.ones(batches, device=device, dtype=torch.int64), detect_rank) U, S, V = torch.svd(A2) self.assertEqual(s[..., :actual_rank], S[..., :actual_rank]) all_batches = [(), (1,), (3,), (2, 3)] for actual_rank, size, all_batches in [ (2, (17, 4), all_batches), (2, (100, 4), all_batches), (6, (100, 40), all_batches), (12, (1000, 1000), [()]), ]: for batches in all_batches: for guess_rank in [ actual_rank, actual_rank + 2, actual_rank + 6, ]: if guess_rank <= min(*size): run_subtest(guess_rank, actual_rank, size, batches, device, torch.pca_lowrank) run_subtest(guess_rank, actual_rank, size[::-1], batches, device, torch.pca_lowrank) # sparse input for guess_rank, size in [ (4, (17, 4)), (4, (4, 17)), (16, (17, 17)), (21, (100, 40)), (20, (40, 100)), (600, (1000, 1000))]: for density in [0.005, 0.1]: run_subtest(guess_rank, None, size, (), device, torch.pca_lowrank, density=density) # jitting support jitted = torch.jit.script(torch.pca_lowrank) guess_rank, actual_rank, size, batches = 2, 2, (17, 4), () run_subtest(guess_rank, actual_rank, size, batches, device, jitted) def test_lerp(self, device): start_end_shapes = [(), (5,), (5, 5), (5, 5, 5)] for shapes in product(start_end_shapes, start_end_shapes): start = torch.randn(shapes[0], device=device) end = torch.randn(shapes[1], device=device) # Tensor weights for weight in [torch.randn(shapes[0], device=device), random.random()]: actual = torch.lerp(start, end, weight) actual_method = start.lerp(end, weight) self.assertEqual(actual, actual_method) actual_out = torch.Tensor().to(device) torch.lerp(start, end, weight, out=actual_out) self.assertEqual(actual, actual_out) expected = start + weight * (end - start) self.assertEqual(expected, actual) def test_diagflat(self, device): dtype = torch.float32 # Basic sanity test x = torch.randn((100,), dtype=dtype, device=device) result = torch.diagflat(x) expected = torch.diag(x) self.assertEqual(result, expected) # Test offset x = torch.randn((100,), dtype=dtype, device=device) result = torch.diagflat(x, 17) expected = torch.diag(x, 17) self.assertEqual(result, expected) # Test where input has more than one dimension x = torch.randn((2, 3, 4), dtype=dtype, device=device) result = torch.diagflat(x) expected = torch.diag(x.contiguous().view(-1)) self.assertEqual(result, expected) # Noncontig input x = torch.randn((2, 3, 4), dtype=dtype, device=device).transpose(2, 0) self.assertFalse(x.is_contiguous()) result = torch.diagflat(x) expected = torch.diag(x.contiguous().view(-1)) self.assertEqual(result, expected) @skipCUDAIfNoMagma @skipCPUIfNoLapack @unittest.skipIf(not TEST_NUMPY, "Numpy not found") def test_norm(self, device): # full reduction x = torch.randn(25, device=device) xn = x.cpu().numpy() for p in [0, 1, 2, 3, 4, inf, -inf]: res = x.norm(p).item() expected = np.linalg.norm(xn, p) self.assertEqual(res, expected, "full reduction failed for {}-norm".format(p)) # one dimension x = torch.randn(25, 25, device=device) xn = x.cpu().numpy() for p in [0, 1, 2, 3, 4, inf, -inf]: res = x.norm(p, 1).cpu().numpy() expected = np.linalg.norm(xn, p, 1) self.assertEqual(res.shape, expected.shape) self.assertTrue(np.allclose(res, expected), "dim reduction failed for {}-norm".format(p)) # matrix norm for p in ['fro', 'nuc']: res = x.norm(p).cpu().numpy() expected = np.linalg.norm(xn, p) self.assertEqual(res.shape, expected.shape) self.assertTrue(np.allclose(res, expected), "dim reduction failed for {}-norm".format(p)) # larger tensor sanity check self.assertEqual(2 * torch.norm(torch.ones(10000)), torch.norm(torch.ones(40000))) @skipCUDAIfNoMagma @unittest.skipIf(not TEST_NUMPY, "Numpy not found") def test_nuclear_norm_axes_small_brute_force(self, device): def check_single_nuclear_norm(x, axes): if self.device_type != 'cpu' and randrange(100) < 95: return # too many cpu <==> device copies a = np.array(x.cpu(), copy=False) expected = np.linalg.norm(a, "nuc", axis=axes) ans = torch.norm(x, "nuc", dim=axes) self.assertTrue(ans.is_contiguous()) self.assertEqual(ans.shape, expected.shape) self.assertTrue(np.allclose(ans.cpu(), expected, rtol=1e-02, atol=1e-03, equal_nan=True)) out = torch.zeros(expected.shape, dtype=x.dtype, device=x.device) ans = torch.norm(x, "nuc", dim=axes, out=out) self.assertIs(ans, out) self.assertTrue(ans.is_contiguous()) self.assertEqual(ans.shape, expected.shape) self.assertTrue(np.allclose(ans.cpu(), expected, rtol=1e-02, atol=1e-03, equal_nan=True)) for n in range(1, 3): for m in range(1, 3): for axes in permutations([0, 1], 2): # 2d, inner dimensions C x = torch.randn(n, m, device=device) check_single_nuclear_norm(x, axes) # 2d, inner dimensions Fortran x = torch.randn(m, n, device=device).transpose(-1, -2) check_single_nuclear_norm(x, axes) # 2d, inner dimensions non-contiguous x = torch.randn(n, 2 * m, device=device)[:, ::2] check_single_nuclear_norm(x, axes) # 2d, all dimensions non-contiguous x = torch.randn(7 * n, 2 * m, device=device)[::7, ::2] check_single_nuclear_norm(x, axes) for o in range(1, 3): for axes in permutations([0, 1, 2], 2): # 3d, inner dimensions C x = torch.randn(o, n, m, device=device) check_single_nuclear_norm(x, axes) # 3d, inner dimensions Fortran x = torch.randn(o, m, n, device=device).transpose(-1, -2) check_single_nuclear_norm(x, axes) # 3d, inner dimensions non-contiguous x = torch.randn(o, n, 2 * m, device=device)[:, :, ::2] check_single_nuclear_norm(x, axes) # 3d, all dimensions non-contiguous x = torch.randn(7 * o, 5 * n, 2 * m, device=device)[::7, ::5, ::2] check_single_nuclear_norm(x, axes) for r in range(1, 3): for axes in permutations([0, 1, 2, 3], 2): # 4d, inner dimensions C x = torch.randn(r, o, n, m, device=device) check_single_nuclear_norm(x, axes) # 4d, inner dimensions Fortran x = torch.randn(r, o, n, m, device=device).transpose(-1, -2) check_single_nuclear_norm(x, axes) # 4d, inner dimensions non-contiguous x = torch.randn(r, o, n, 2 * m, device=device)[:, :, :, ::2] check_single_nuclear_norm(x, axes) # 4d, all dimensions non-contiguous x = torch.randn(7 * r, 5 * o, 11 * n, 2 * m, device=device)[::7, ::5, ::11, ::2] check_single_nuclear_norm(x, axes) @skipCUDAIfNoMagma def test_nuclear_norm_exceptions(self, device): for lst in [], [1], [1, 2]: for axes in (), (0,), (0, 1): x = torch.tensor(lst, dtype=torch.double, device=device) self.assertRaises(RuntimeError, torch.norm, x, "nuc", axes) x = torch.tensor([[0, 1, 2], [3, 4, 5]], dtype=torch.double, device=device) self.assertRaisesRegex(RuntimeError, "duplicate or invalid", torch.norm, x, "nuc", (0, 0)) self.assertRaisesRegex(RuntimeError, "duplicate or invalid", torch.norm, x, "nuc", (0, 2)) def test_dist(self, device): def run_test(x, y): for p in [0, 1, 2, 3, 4, inf, -inf]: dist_xy = torch.dist(x, y, p) dist_xy_norm = torch.norm(x - y, p) self.assertEqual(dist_xy, dist_xy_norm) run_test(torch.randn(5, device=device), torch.randn(5, device=device)) x = torch.zeros(3, device=device) y = torch.zeros(3, device=device) y[1] = 1. run_test(x, y) @skipCUDAIfNoMagma @skipCPUIfNoLapack def test_geqrf(self, device): a = torch.randn(5, 5, device=device) b, c = torch.geqrf(a) b_placeholder, c_placeholder = torch.empty_like(b), torch.empty_like(c) torch.geqrf(a, out=(b_placeholder, c_placeholder)) self.assertEqual(b, b_placeholder) self.assertEqual(c, c_placeholder) def triangular_solve_test_helper(self, A_dims, b_dims, upper, unitriangular, device, dtype): triangle_function = torch.triu if upper else torch.tril b = torch.randn(*b_dims, dtype=dtype, device=device) A = torch.randn(*A_dims, dtype=dtype, device=device) A_triangular = triangle_function(A) if unitriangular: A_triangular.diagonal(dim1=-2, dim2=-1).fill_(1.) return b, A_triangular @skipCUDAIfNoMagma @skipCPUIfNoLapack @dtypes(torch.double) def test_triangular_solve(self, device, dtype): for (k, n), (upper, unitriangular, transpose) in product(zip([2, 3, 5], [3, 5, 7]), product([True, False], repeat=3)): b, A = self.triangular_solve_test_helper((n, n), (n, k), upper, unitriangular, device, dtype) x = torch.triangular_solve(b, A, upper=upper, unitriangular=unitriangular, transpose=transpose)[0] if transpose: self.assertLessEqual(b.dist(A.t().mm(x)), 4e-12) else: self.assertLessEqual(b.dist(A.mm(x)), 4e-12) @skipCPUIfNoLapack @skipCUDAIfNoMagma @dtypes(torch.double) def test_triangular_solve_batched(self, device, dtype): def triangular_solve_batch_helper(A_dims, b_dims, upper, unitriangular, transpose): b, A = self.triangular_solve_test_helper(A_dims, b_dims, upper, unitriangular, device, dtype) x_exp_list = [] for i in range(b_dims[0]): x_exp_list.append(torch.triangular_solve(b[i], A[i], upper=upper, unitriangular=unitriangular, transpose=transpose)[0]) x_exp = torch.stack(x_exp_list) # Stacked output x_act = torch.triangular_solve(b, A, upper=upper, unitriangular=unitriangular, transpose=transpose)[0] # Actual output self.assertEqual(x_act, x_exp) # Equality check if transpose: self.assertLessEqual(b.dist(torch.matmul(A.transpose(-2, -1), x_act)), 3e-12) # Correctness check else: self.assertLessEqual(b.dist(torch.matmul(A, x_act)), 3e-12) # Correctness check for (upper, unitriangular, transpose), batchsize in product(product([True, False], repeat=3), [1, 3, 4]): triangular_solve_batch_helper((batchsize, 5, 5), (batchsize, 5, 10), upper, unitriangular, transpose) @slowTest @skipCUDAIfNoMagma @skipCPUIfNoLapack @dtypes(torch.double) def test_triangular_solve_batched_many_batches(self, device, dtype): for upper, transpose, unitriangular in product([True, False], repeat=3): b, A = self.triangular_solve_test_helper((256, 256, 5, 5), (5, 1), upper, unitriangular, device, dtype) x, _ = torch.triangular_solve(b, A, upper=upper, transpose=transpose, unitriangular=unitriangular) if transpose: A = A.transpose(-2, -1) self.assertEqual(torch.matmul(A, x), b.expand(A.shape[:-2] + (5, 1))) b, A = self.triangular_solve_test_helper((3, 3), (512, 512, 3, 1), upper, unitriangular, device, dtype) x, _ = torch.triangular_solve(b, A, upper=upper, transpose=transpose, unitriangular=unitriangular) if transpose: A = A.transpose(-2, -1) self.assertEqual(torch.matmul(A, x), b) @skipCUDAIfNoMagma @skipCPUIfNoLapack @unittest.skipIf(not TEST_SCIPY, "SciPy not found") @dtypes(torch.double) def test_triangular_solve_batched_broadcasting(self, device, dtype): from scipy.linalg import solve_triangular as tri_solve def scipy_tri_solve_batched(A, B, upper, trans, diag): batch_dims_A, batch_dims_B = A.shape[:-2], B.shape[:-2] single_dim_A, single_dim_B = A.shape[-2:], B.shape[-2:] expand_dims = tuple(torch._C._infer_size(torch.Size(batch_dims_A), torch.Size(batch_dims_B))) expand_A = np.broadcast_to(A, expand_dims + single_dim_A) expand_B = np.broadcast_to(B, expand_dims + single_dim_B) flat_A = expand_A.reshape((-1,) + single_dim_A) flat_B = expand_B.reshape((-1,) + single_dim_B) flat_X = np.vstack([tri_solve(a, b, lower=(not upper), trans=int(trans), unit_diagonal=diag) for a, b in zip(flat_A, flat_B)]) return flat_X.reshape(expand_B.shape) def run_test(A_dims, b_dims, device, upper, transpose, unitriangular): b, A = self.triangular_solve_test_helper(A_dims, b_dims, upper, unitriangular, device, dtype) x_exp = torch.as_tensor(scipy_tri_solve_batched(A.cpu().numpy(), b.cpu().numpy(), upper, transpose, unitriangular)) x = torch.triangular_solve(b, A, upper=upper, transpose=transpose, unitriangular=unitriangular)[0] self.assertEqual(x, x_exp.to(device)) for upper, transpose, unitriangular in product([True, False], repeat=3): # test against scipy.linalg.solve_triangular run_test((2, 1, 3, 4, 4), (2, 1, 3, 4, 6), device, upper, transpose, unitriangular) # no broadcasting run_test((2, 1, 3, 4, 4), (4, 6), device, upper, transpose, unitriangular) # broadcasting b run_test((4, 4), (2, 1, 3, 4, 2), device, upper, transpose, unitriangular) # broadcasting A run_test((1, 3, 1, 4, 4), (2, 1, 3, 4, 5), device, upper, transpose, unitriangular) # broadcasting A & b @skipCUDAIfNoMagma @skipCPUIfNoLapack @dtypes(torch.double) def test_lstsq(self, device, dtype): def _test_underdetermined(a, b, expectedNorm): # underdetermined systems are only supported on CPU if self.device_type != 'cpu': return m = a.size()[0] n = a.size()[1] assert(m <= n) a_copy = a.clone() b_copy = b.clone() res1 = torch.lstsq(b, a)[0] self.assertEqual(a, a_copy, 0) self.assertEqual(b, b_copy, 0) self.assertEqual((torch.mm(a, res1) - b).norm(), expectedNorm, 1e-8) ta = torch.tensor((), dtype=dtype, device=device) tb = torch.tensor((), dtype=dtype, device=device) res2 = torch.lstsq(b, a, out=(tb, ta))[0] self.assertEqual(a, a_copy, 0) self.assertEqual(b, b_copy, 0) self.assertEqual((torch.mm(a, res1) - b).norm(), expectedNorm, 1e-8) res3 = torch.lstsq(b, a, out=(b, a))[0] self.assertEqual((torch.mm(a_copy, b) - b_copy).norm(), expectedNorm, 1e-8) self.assertEqual(res1, tb, 0) self.assertEqual(res1, b, 0) self.assertEqual(res1, res2, 0) self.assertEqual(res1, res3, 0) def _test_overdetermined(a, b, expectedNorm): m = a.size()[0] n = a.size()[1] assert(m > n) def check_norm(a, b, expected_norm, gels_result): # Checks |ax - b| and the residual info from the result # The first n rows is the least square solution. # Rows n to m-1 contain residual information. x = gels_result[:n] resid_info = gels_result[n:] resid_norm = (torch.mm(a, x) - b).norm() self.assertEqual(resid_norm, expectedNorm, 1e-8) self.assertEqual(resid_info.norm(), resid_norm, 1e-8) a_copy = a.clone() b_copy = b.clone() res1 = torch.lstsq(b, a)[0] self.assertEqual(a, a_copy, 0) self.assertEqual(b, b_copy, 0) check_norm(a, b, expectedNorm, res1) ta = torch.tensor((), dtype=dtype, device=device) tb = torch.tensor((), dtype=dtype, device=device) res2 = torch.lstsq(b, a, out=(tb, ta))[0] self.assertEqual(a, a_copy, 0) self.assertEqual(b, b_copy, 0) check_norm(a, b, expectedNorm, res2) res3 = torch.lstsq(b, a, out=(b, a))[0] check_norm(a_copy, b_copy, expectedNorm, res3) self.assertEqual(res1, tb, 0) self.assertEqual(res1, b, 0) self.assertEqual(res1, res2, 0) self.assertEqual(res1, res3, 0) # basic test expectedNorm = 0 a = torch.tensor(((1.44, -9.96, -7.55, 8.34), (-7.84, -0.28, 3.24, 8.09), (-4.39, -3.24, 6.27, 5.28), (4.53, 3.83, -6.64, 2.06)), dtype=dtype, device=device).t() b = torch.tensor(((8.58, 8.26, 8.48, -5.28), (9.35, -4.43, -0.70, -0.26)), dtype=dtype, device=device).t() _test_underdetermined(a, b, expectedNorm) # test overdetermined expectedNorm = 17.390200628863 a = torch.tensor(((1.44, -9.96, -7.55, 8.34, 7.08, -5.45), (-7.84, -0.28, 3.24, 8.09, 2.52, -5.70), (-4.39, -3.24, 6.27, 5.28, 0.74, -1.19), (4.53, 3.83, -6.64, 2.06, -2.47, 4.70)), dtype=dtype, device=device).t() b = torch.tensor(((8.58, 8.26, 8.48, -5.28, 5.72, 8.93), (9.35, -4.43, -0.70, -0.26, -7.36, -2.52)), dtype=dtype, device=device).t() _test_overdetermined(a, b, expectedNorm) # test underdetermined expectedNorm = 0 a = torch.tensor(((1.44, -9.96, -7.55), (-7.84, -0.28, 3.24), (-4.39, -3.24, 6.27), (4.53, 3.83, -6.64)), dtype=dtype, device=device).t() b = torch.tensor(((8.58, 8.26, 8.48), (9.35, -4.43, -0.70)), dtype=dtype, device=device).t() _test_underdetermined(a, b, expectedNorm) # test reuse expectedNorm = 0 a = torch.tensor(((1.44, -9.96, -7.55, 8.34), (-7.84, -0.28, 3.24, 8.09), (-4.39, -3.24, 6.27, 5.28), (4.53, 3.83, -6.64, 2.06)), dtype=dtype, device=device).t() b = torch.tensor(((8.58, 8.26, 8.48, -5.28), (9.35, -4.43, -0.70, -0.26)), dtype=dtype, device=device).t() ta = torch.tensor((), dtype=dtype, device=device) tb = torch.tensor((), dtype=dtype, device=device) torch.lstsq(b, a, out=(tb, ta)) self.assertEqual((torch.mm(a, tb) - b).norm(), expectedNorm, 1e-8) torch.lstsq(b, a, out=(tb, ta)) self.assertEqual((torch.mm(a, tb) - b).norm(), expectedNorm, 1e-8) torch.lstsq(b, a, out=(tb, ta)) self.assertEqual((torch.mm(a, tb) - b).norm(), expectedNorm, 1e-8) @skipCUDAIfNoMagma @skipCPUIfNoLapack def test_qr(self, device): def run_test(tensor_dims, some): A = torch.randn(*tensor_dims, device=device) Q, R = torch.qr(A, some=some) # Check0: Q[-2:] = (m, n_columns), R[-2:] = (n_columns, n) m, n = tensor_dims[-2:] n_columns = m if (not some) and m > n else min(m, n) self.assertEqual(Q.size(-2), m) self.assertEqual(R.size(-1), n) self.assertEqual(Q.size(-1), n_columns) # Check1: A = QR self.assertEqual(A, torch.matmul(Q, R)) # Check2: A = QR (with out) Q_out, R_out = torch.Tensor().to(device), torch.Tensor().to(device) torch.qr(A, some=some, out=(Q_out, R_out)) self.assertEqual(A, torch.matmul(Q_out, R_out)) # Check3: Q == Q_out, R == R_out self.assertEqual(Q, Q_out) self.assertEqual(R, R_out) # Check4: Q^{T}Q = I, triu(R) = R self.assertEqual(torch.matmul(Q.transpose(-2, -1), Q), torch.eye(n_columns, device=device).expand(Q.shape[:-2] + (n_columns, n_columns))) self.assertEqual(R.triu(), R) tensor_dims_list = [(3, 5), (5, 5), (5, 3), # Single matrix (7, 3, 5), (7, 5, 5), (7, 5, 3), # 3-dim Tensors (7, 5, 3, 5), (7, 5, 5, 5), (7, 5, 5, 3)] # 4-dim Tensors for tensor_dims, some in product(tensor_dims_list, [True, False]): run_test(tensor_dims, some) @slowTest def test_randperm(self, device): if device == 'cpu': rng_device = None else: rng_device = [device] # Test core functionality. On CUDA, for small n, randperm is offloaded to CPU instead. For large n, randperm is # executed on GPU. for n in (100, 50000, 100000): # Ensure both integer and floating-point numbers are tested. Half follows an execution path that is # different from others on CUDA. for dtype in (torch.long, torch.half, torch.float): if n > 2049 and dtype == torch.half: # Large n for torch.half will raise an exception, do not test here. continue with torch.random.fork_rng(devices=rng_device): res1 = torch.randperm(n, dtype=dtype, device=device) res2 = torch.empty(0, dtype=dtype, device=device) torch.randperm(n, out=res2, dtype=dtype, device=device) self.assertEqual(res1, res2, 0) # Default type is long for n in (100, 10000): self.assertEqual(torch.randperm(n, device=device).dtype, torch.long) # randperm of 0 elements is an empty tensor res1 = torch.randperm(0) res2 = torch.tensor(5, dtype=dtype, device=device) torch.randperm(0, out=res2) self.assertEqual(res1.numel(), 0) self.assertEqual(res2.numel(), 0) # Test exceptions when n is too large for a floating point type for dtype, small_n, large_n in ((torch.half, 2**11 + 1, 2**11 + 2), (torch.float, 2**24 + 1, 2**24 + 2), (torch.double, 2**25, # 2**53 + 1 is too large to run 2**53 + 2)): res = torch.empty(0, dtype=dtype, device=device) torch.randperm(small_n, out=res) # No exception expected self.assertRaises(RuntimeError, lambda: torch.randperm(large_n, out=res, device=device)) # Test non-contiguous tensors for n in (4, 5, 6, 10, 20): non_contiguous_tensor = torch.zeros((2, 3), dtype=torch.long, device=device).t() self.assertFalse(non_contiguous_tensor.is_contiguous()) with torch.random.fork_rng(devices=rng_device): res = torch.randperm(n, dtype=torch.long, device=device) torch.randperm(n, out=non_contiguous_tensor) self.assertEqual(non_contiguous_tensor, res) def test_random_neg_values(self, device): signed_types = ['torch.DoubleTensor', 'torch.FloatTensor', 'torch.LongTensor', 'torch.IntTensor', 'torch.ShortTensor'] for tname in signed_types: res = torch.rand(SIZE, SIZE).type(tname).to(device) res.random_(-10, -1) self.assertLessEqual(res.max().item(), 9) self.assertGreaterEqual(res.min().item(), -10) @slowTest def test_triu_tril(self, device): def gen_mask(shape, diagonal, device, upper): mask = torch.zeros(*shape[-2:]).byte() for i in range(shape[-2]): for j in range(shape[-1]): cond = j - i < diagonal if upper else j - i > diagonal if cond: mask[i, j] = 1 return mask.expand(*shape).to(device) torch_functions = {True: torch.triu, False: torch.tril} if TEST_NUMPY: numpy_functions = {True: np.triu, False: np.tril} # TODO: remove this when bool and half are supported for torch.where def bool_half_compat_where(pred, true_tensor, false_tensor, dtype): if dtype == torch.bool or dtype == torch.half: return torch.where(pred.byte(), true_tensor.byte(), false_tensor.byte()).to(dtype=dtype) else: return torch.where(pred, true_tensor, false_tensor) def run_test(shape, device, diagonal, dtype): x = torch.empty(*shape, device=device, dtype=dtype).fill_(2) for upper in [True, False]: # normal test with mask torch_tri_func = torch_functions[upper] res1 = torch_tri_func(x, diagonal=diagonal) res2 = torch.empty(0, device=device, dtype=dtype) torch_tri_func(x, diagonal=diagonal, out=res2) exp_mask = gen_mask(shape, diagonal, device, upper) expected = bool_half_compat_where(exp_mask, torch.tensor(0).type_as(x), x, dtype) self.assertEqual(res1, res2, 0) self.assertEqual(expected, res1, 0) # non-contiguous and expanded tensors test if 0 not in shape: for s in range(-len(shape), -1): # non-contiguous tensors x_nc = x.clone().transpose(s, s + 1) exp_mask = gen_mask(x_nc.size(), diagonal, device, upper) if 1 not in shape: assert not x_nc.is_contiguous(), "x is intentionally non-contiguous" exp_nc = bool_half_compat_where(exp_mask, torch.tensor(0).type_as(x), x_nc, dtype) self.assertEqual(torch_tri_func(x_nc, diagonal), exp_nc, 0) x_nc_is_contiguous = x_nc.is_contiguous() if upper: self.assertEqual(x_nc.triu_(diagonal), exp_nc, 0) else: self.assertEqual(x_nc.tril_(diagonal), exp_nc, 0) self.assertTrue(x_nc.is_contiguous() == x_nc_is_contiguous, "contiguity of x_nc should not be changed") # expanded tensors expanded_size = (x.size(0),) + x.size() x_expanded = x.clone().expand(*expanded_size) if x.size(0) != 1: assert 0 in x_expanded.stride(), "x intentionally has 0 in its stride" output = torch_tri_func(x_expanded, diagonal) self.assertEqual(output, expected.expand(expanded_size), 0) if x.size(0) != 1: self.assertTrue(0 in x_expanded.stride(), "geometry of x_expanded should be the same") if upper: self.assertEqual(output, x_expanded.triu_(diagonal), 0) else: self.assertEqual(output, x_expanded.tril_(diagonal), 0) if not TEST_NUMPY: continue # numpy test numpy_tri_func = numpy_functions[upper] self.assertEqual(numpy_tri_func(x.to('cpu').numpy(), diagonal), res1.cpu().numpy()) diagonals = [-2, -1, 0, 1, 2] shapes = [(3, 3), (5, 3, 3), (7, 5, 3, 3), # square matrices (7, 3), (5, 7, 3), (7, 5, 7, 3), # fat matrices (3, 7), (5, 3, 7), (7, 5, 3, 7), # thin matrices (3, 0), (0, 3, 3), (3, 3, 0, 0), # no numel matrices (3, 1), (5, 3, 1), (7, 5, 3, 1), # very fat matrices (1, 3), (5, 1, 3), (7, 5, 1, 3), # very thin matrices (1, 3, 3, 3), (3, 1, 3, 3, 3)] # unsqueezed batch dimensions dtypes = [dtype for dtype in torch.testing.get_all_dtypes() if dtype != torch.bfloat16] for s, d, dtype in product(shapes, diagonals, dtypes): run_test(s, device, d, dtype) @skipCUDANonDefaultStreamIf(True) def test_multinomial_alias(self, device): # Get probs vector to use in setup def get_probs(length, is_contiguous): probs = torch.softmax(torch.randn(length), 0) if not is_contiguous: probs = torch.softmax(torch.randn(length, 2), 0)[:, 1] assert not (is_contiguous ^ probs.is_contiguous()), "contiguity requirement not met" return probs.to(device) for is_contiguous in [True, False]: probs = get_probs(4, is_contiguous) alias_table, prob_table = torch._multinomial_alias_setup(probs) for n_samples in [-1, 1, 10]: if n_samples > 0: samples = torch._multinomial_alias_draw(prob_table, alias_table, n_samples) self.assertEqual(prob_table.size(), torch.Size([4]), "size mismatch: probability table") self.assertEqual(alias_table.size(), torch.Size([4]), "size mismatch: alias table") self.assertEqual(samples.size(), torch.Size([n_samples]), "wrong number of samples") else: with self.assertRaisesRegex(RuntimeError, "cannot sample <= 0 samples"): torch._multinomial_alias_draw(prob_table, alias_table, n_samples) with self.assertRaisesRegex(RuntimeError, "expected 1-D"): probs = probs.view(2, 2) torch._multinomial_alias_setup(probs) with self.assertRaisesRegex(RuntimeError, "expected 1-D"): a_t, p_t = torch._multinomial_alias_setup(probs) torch._multinomial_alias_draw(p_t.view(2, 2), a_t.view(2, 2)) MAX_SAMPLES = 200000 for probs in [get_probs(4, True), torch.tensor([0.8, 0.2], device=device), torch.tensor([0.7, 0.2, 0.1], device=device)]: # Check how different the alias distribution and the original distribution are alias_dist = torch.zeros_like(probs) alias_table, prob_table = torch._multinomial_alias_setup(probs) alias_samples = torch._multinomial_alias_draw(prob_table, alias_table, MAX_SAMPLES) alias_dist = torch.unique(alias_samples, return_counts=True)[1].to(dtype=probs.dtype) / MAX_SAMPLES self.assertTrue(torch.allclose(alias_dist, probs, rtol=0.02, atol=0.0), "Actual: {}\nExpected: {}".format(alias_dist, probs)) for probs in [torch.tensor([0.2501, 0.25, 0.2499, 0.25], device=device), torch.tensor([0.8, 0.199, 0.001], device=device), torch.tensor([0.25001, 0.25, 0.24999, 0.25], device=device), torch.tensor([0.33, 0.34, 0.33], device=device), torch.tensor([0.8, 0.1999, 0.0001], device=device)]: # Check the difference between the original probabilities and the reconstructed # probabilities from the alias and probability tables output by _multinomial_alias_setup alias_table, prob_table = torch._multinomial_alias_setup(probs) actual = torch.zeros_like(probs) for i, vals in enumerate(zip(alias_table, prob_table)): idx, p = vals actual[i] += p actual[idx] += 1. - p actual = actual / len(probs) self.assertEqual(actual, probs, 1e-6) # Some special cases test_cases = [torch.tensor([1.0, 0.0, 0.0], device=device), torch.tensor([0.0, 1.0], device=device)] for probs in test_cases: alias_table, prob_table = torch._multinomial_alias_setup(probs) alias_samples = torch._multinomial_alias_draw(prob_table, alias_table, MAX_SAMPLES) self.assertEqual(alias_samples.unique(), probs.nonzero().squeeze(-1)) @skipCUDAIfNoMagma @skipCPUIfNoLapack def test_lapack_empty(self, device): # FIXME: these are just a selection of LAPACK functions -- we need a general strategy here. # The LAPACK functions themselves generally do NOT work with zero sized dimensions, although # numpy/sci often has a direct wrapper (e.g. lu_factor) and a wrapper that "does the right thing" # (e.g. lu). We often name our functions identically to the lapack function, so it will take work # to name / migrate-to better wrappers. def fn(torchfn, *args): return torchfn(*tuple(torch.randn(shape, device=device) if isinstance(shape, tuple) else shape for shape in args)) # inverse, pinverse self.assertEqual((0, 0), fn(torch.inverse, (0, 0)).shape) self.assertEqual((5, 0), fn(torch.pinverse, (0, 5)).shape) self.assertEqual((0, 5), fn(torch.pinverse, (5, 0)).shape) self.assertEqual((0, 0), fn(torch.pinverse, (0, 0)).shape) # det, logdet, slogdet self.assertEqual(torch.tensor(1., device=device), fn(torch.det, (0, 0))) self.assertEqual(torch.tensor(0., device=device), fn(torch.logdet, (0, 0))) self.assertEqual((torch.tensor(1., device=device), torch.tensor(0., device=device)), fn(torch.slogdet, (0, 0))) # eig, symeig evalues, evectors = fn(torch.eig, (0, 0), True) self.assertEqual([(0, 2), (0, 0)], [evalues.shape, evectors.shape]) evalues, evectors = fn(torch.symeig, (0, 0), True) self.assertEqual([(0,), (0, 0)], [evalues.shape, evectors.shape]) # qr q, r = fn(torch.qr, (3, 0), True) self.assertEqual([(3, 0), (0, 0)], [q.shape, r.shape]) q, r = fn(torch.qr, (0, 3), True) self.assertEqual([(0, 0), (0, 3)], [q.shape, r.shape]) q, r = fn(torch.qr, (3, 0), False) self.assertEqual([(3, 3), (3, 0)], [q.shape, r.shape]) # lstsq self.assertRaises(RuntimeError, lambda: torch.lstsq(torch.randn(0, 0), torch.randn(0, 0))) self.assertRaises(RuntimeError, lambda: torch.lstsq(torch.randn(0,), torch.randn(0, 0))) def test_roll(self, device): numbers = torch.arange(1, 9, device=device) single_roll = numbers.roll(1, 0) expected = torch.tensor([8, 1, 2, 3, 4, 5, 6, 7], device=device) self.assertEqual(single_roll, expected, "{} did not equal expected result".format(single_roll)) roll_backwards = numbers.roll(-2, 0) expected = torch.tensor([3, 4, 5, 6, 7, 8, 1, 2], device=device) self.assertEqual(roll_backwards, expected, "{} did not equal expected result".format(roll_backwards)) data = numbers.view(2, 2, 2) rolled = data.roll(1, 0) expected = torch.tensor([5, 6, 7, 8, 1, 2, 3, 4], device=device).view(2, 2, 2) self.assertEqual(expected, rolled, "{} did not equal expected result: {}".format(rolled, expected)) data = data.view(2, 4) # roll a loop until back where started loop_rolled = data.roll(2, 0).roll(4, 1) self.assertEqual(data, loop_rolled, "{} did not equal the original: {}".format(loop_rolled, data)) # multiple inverse loops self.assertEqual(data, data.roll(-20, 0).roll(-40, 1)) self.assertEqual(torch.tensor([8, 1, 2, 3, 4, 5, 6, 7], device=device), numbers.roll(1, 0)) # test non-contiguous # strided equivalent to numbers.as_strided(size=(4, 2), stride=(1, 4)) strided = numbers.view(2, 4).transpose(0, 1) self.assertFalse(strided.is_contiguous(), "this test needs a non-contiguous tensor") expected = torch.tensor([4, 8, 1, 5, 2, 6, 3, 7]).view(4, 2) rolled = strided.roll(1, 0) self.assertEqual(expected, rolled, "non contiguous tensor rolled to {} instead of {} ".format(rolled, expected)) # test roll with no dimension specified expected = numbers.roll(1, 0).view(2, 4) self.assertEqual(expected, data.roll(1), "roll with no dims should flatten and roll.") self.assertEqual(expected, data.roll(1, dims=None), "roll with no dims should flatten and roll.") # test roll over multiple dimensions expected = torch.tensor([[7, 8, 5, 6], [3, 4, 1, 2]], device=device) double_rolled = data.roll(shifts=(2, -1), dims=(1, 0)) self.assertEqual(double_rolled, expected, "should be able to roll over two dimensions, got {}".format(double_rolled)) self.assertRaisesRegex(RuntimeError, "required", lambda: data.roll(shifts=(), dims=())) self.assertRaisesRegex(RuntimeError, "required", lambda: data.roll(shifts=(), dims=1)) # shifts/dims should align self.assertRaisesRegex(RuntimeError, "align", lambda: data.roll(shifts=(1, 2), dims=(1,))) self.assertRaisesRegex(RuntimeError, "align", lambda: data.roll(shifts=(1,), dims=(1, 2))) # test bool tensor t = torch.zeros(6, dtype=torch.bool, device=device) t[0] = True t[3] = True self.assertEqual(torch.tensor([False, True, False, False, True, False]), t.roll(1, 0)) def test_nonzero_empty(self, device): def assert_tuple_empty(tup, dim): self.assertEqual(dim, len(tup)) for t in tup: self.assertEqual(torch.Size([0]), t.shape) x = torch.randn(0, 2, 0, 5, 0, device=device) y = torch.nonzero(x) z = torch.nonzero(x, as_tuple=True) self.assertEqual(0, y.numel()) self.assertEqual(torch.Size([0, 5]), y.shape) assert_tuple_empty(z, 5) x = torch.tensor(0.5, device=device) y = torch.nonzero(x) # nonzero with as_tuple returns a # tuple of len 1 for a zero-dim tensor. # This is done to match Numpy behavior. z = torch.nonzero(x, as_tuple=True) self.assertEqual(1, len(z)) self.assertEqual(torch.zeros(1, dtype=torch.long), z[0]) x = torch.zeros((), device=device) y = torch.nonzero(x) z = torch.nonzero(x, as_tuple=True) self.assertEqual(torch.Size([0, 0]), y.shape) self.assertEqual(1, len(z)) self.assertEqual(torch.empty(0, dtype=torch.long), z[0]) @dtypes(torch.float, torch.double, torch.complex64, torch.complex128) def test_normal(self, device, dtype): def helper(self, device, dtype, ptype, t_transform, std_transform): q = torch.empty(100, 100, dtype=dtype, device=device) q.normal_() self.assertEqual(t_transform(q).mean(), 0, 0.2) self.assertEqual(t_transform(q).std(), std_transform(1), 0.2) q.normal_(2, 3) self.assertEqual(t_transform(q).mean(), 2, 0.3) self.assertEqual(t_transform(q).std(), std_transform(3), 0.3) q = torch.empty(100, 100, dtype=dtype, device=device) q_row1 = q[0:1].clone() q[99:100].normal_() self.assertEqual(t_transform(q[99:100]).mean(), 0, 0.2) self.assertEqual(t_transform(q[99:100]).std(), std_transform(1), 0.2) self.assertEqual(t_transform(q[0:1]).clone(), t_transform(q_row1)) mean = torch.empty(100, 100, dtype=dtype, device=device) mean[:50].fill_(ptype(0)) mean[50:].fill_(ptype(1)) std = torch.empty(100, 100, dtype=torch.float, device=device) std[:, :50] = 4 std[:, 50:] = 1 r = torch.normal(mean) self.assertEqual(r.dtype, dtype) self.assertEqual(str(r.device), device) self.assertEqual(t_transform(r[:50]).mean(), 0, 0.2) self.assertEqual(t_transform(r[50:]).mean(), 1, 0.2) self.assertEqual(t_transform(r).std(), std_transform(1), 0.2) r.fill_(42) r = torch.normal(mean, 3) self.assertEqual(r.dtype, dtype) self.assertEqual(str(r.device), device) self.assertEqual(t_transform(r[:50]).mean(), 0, 0.2) self.assertEqual(t_transform(r[50:]).mean(), 1, 0.2) self.assertEqual(t_transform(r).std(), std_transform(3), 0.2) r.fill_(42) torch.normal(mean, 3, out=r) self.assertEqual(r.dtype, dtype) self.assertEqual(str(r.device), device) self.assertEqual(t_transform(r[:50]).mean(), 0, 0.2) self.assertEqual(t_transform(r[50:]).mean(), 1, 0.2) self.assertEqual(t_transform(r).std(), std_transform(3), 0.2) r.fill_(42) r = torch.normal(2, std) self.assertFalse(r.dtype.is_complex) self.assertEqual(str(r.device), device) self.assertEqual(r.mean(), 2, 0.2) self.assertEqual(r[:, :50].std(), 4, 0.3) self.assertEqual(r[:, 50:].std(), 1, 0.2) r.fill_(42) torch.normal(2, std, out=r) self.assertFalse(r.dtype.is_complex) self.assertEqual(str(r.device), device) self.assertEqual(r.mean(), 2, 0.2) self.assertEqual(r[:, :50].std(), 4, 0.3) self.assertEqual(r[:, 50:].std(), 1, 0.2) r.fill_(42) r = torch.normal(mean, std) self.assertEqual(r.dtype, dtype) self.assertEqual(str(r.device), device) self.assertEqual(t_transform(r[:50]).mean(), 0, 0.2) self.assertEqual(t_transform(r[50:]).mean(), 1, 0.2) self.assertEqual(t_transform(r[:, :50]).std(), std_transform(4), 0.3) self.assertEqual(t_transform(r[:, 50:]).std(), std_transform(1), 0.2) r.fill_(42) torch.normal(mean, std, out=r) self.assertEqual(r.dtype, dtype) self.assertEqual(str(r.device), device) self.assertEqual(t_transform(r[:50]).mean(), 0, 0.2) self.assertEqual(t_transform(r[50:]).mean(), 1, 0.2) self.assertEqual(t_transform(r[:, :50]).std(), std_transform(4), 0.3) self.assertEqual(t_transform(r[:, 50:]).std(), std_transform(1), 0.2) r.fill_(42) r = torch.normal(2, 3, (100, 100), dtype=dtype, device=device) self.assertEqual(r.dtype, dtype) self.assertEqual(str(r.device), device) self.assertEqual(t_transform(r).mean(), 2, 0.3) self.assertEqual(t_transform(r).std(), std_transform(3), 0.3) r.fill_(42) torch.normal(2, 3, (100, 100), dtype=dtype, device=device, out=r) self.assertEqual(r.dtype, dtype) self.assertEqual(str(r.device), device) self.assertEqual(t_transform(r).mean(), 2, 0.3) self.assertEqual(t_transform(r).std(), std_transform(3), 0.3) if dtype.is_complex: helper(self, device, dtype, lambda x: complex(x, x), lambda t: t.real().to(torch.float), lambda mean: mean / math.sqrt(2)) helper(self, device, dtype, lambda x: complex(x, x), lambda t: t.imag().to(torch.float), lambda mean: mean / math.sqrt(2)) self.assertRaisesRegex( RuntimeError, "normal expects standard deviation to be non-complex", lambda: torch.normal(0, torch.empty(100, 100, dtype=dtype, device=device))) out = torch.empty(100, 100, dtype=dtype, device=device) self.assertRaisesRegex( RuntimeError, "normal expects standard deviation to be non-complex", lambda: torch.normal(0, torch.empty(100, 100, dtype=dtype, device=device), out=out)) else: helper(self, device, dtype, lambda x: x, lambda t: t, lambda mean: mean) @dtypes(torch.float, torch.double, torch.complex64, torch.complex128) def test_randn(self, device, dtype): torch.manual_seed(123456) res1 = torch.randn(SIZE, SIZE, dtype=dtype, device=device) res2 = torch.tensor([], dtype=dtype, device=device) torch.manual_seed(123456) torch.randn(SIZE, SIZE, out=res2) self.assertEqual(res1, res2) def test_empty_strided(self, device): for shape in [(2, 3, 4), (0, 2, 0)]: # some of these cases are pretty strange, just verifying that if as_strided # allows them then empty_strided can as well. for strides in [(12, 4, 1), (2, 4, 6), (0, 0, 0)]: empty_strided = torch.empty_strided(shape, strides, device=device) # as_strided checks the storage size is big enough to support such a strided tensor; # instead of repeating this calculation, we just use empty_strided which does the same # calculation when setting the storage size. as_strided = torch.empty(empty_strided.storage().size(), device=device).as_strided(shape, strides) self.assertEqual(empty_strided.shape, as_strided.shape) self.assertEqual(empty_strided.stride(), as_strided.stride()) def test_sign(self, device): for dtype in torch.testing.get_all_math_dtypes(device): # Include NaN for floating point numbers if dtype.is_floating_point: dt_info = torch.finfo(dtype) # Create tensor (with NaN checking) a = torch.tensor([float('nan'), -12, 0, 71, dt_info.min, dt_info.max], device=device, dtype=dtype) a_target = torch.tensor([0, -1, 0, 1, -1, 1], device=device, dtype=dtype) else: dt_info = torch.iinfo(dtype) # If unsigned type, everything should be >= 0 if dt_info.min == 0: a = torch.tensor([12, 0, 71, dt_info.min, dt_info.max], device=device, dtype=dtype) a_target = torch.tensor([1, 0, 1, 0, 1], device=device, dtype=dtype) else: a = torch.tensor([-12, 0, 71, dt_info.min, dt_info.max], device=device, dtype=dtype) a_target = torch.tensor([-1, 0, 1, -1, 1], device=device, dtype=dtype) self.assertEqual(a.sign(), a_target, 'sign device={} dtype={}'.format(device, dtype)) self.assertEqual(torch.sign(a), a_target, 'sign device={} dtype={}'.format(device, dtype)) out = torch.empty_like(a) torch.sign(a, out=out) self.assertEqual(out, a_target, 'sign_out device={} dtype={}'.format(device, dtype)) a.sign_() self.assertEqual(a, a_target, 'sign_ device={} dtype={}'.format(device, dtype)) # Include test for bool dtype a_bool = torch.tensor([True, True, False, float('nan')], device=device).bool() a_bool_target = torch.tensor([True, True, False, True], device=device).bool() self.assertEqual(a_bool.sign(), a_bool_target, 'sign device={} dtype=bool'.format(device)) self.assertEqual(torch.sign(a_bool), a_bool_target, 'sign device={} dtype=bool'.format(device)) a_out = torch.empty_like(a_bool) torch.sign(a_bool, out=a_out) self.assertEqual(a_out, a_bool_target, 'sign_out device={} dtype=bool'.format(device)) a_bool.sign_() self.assertEqual(a_bool, a_bool_target, 'sign_ device={} dtype=bool'.format(device)) def test_logical_any(self, device): x = torch.zeros([2, 3, 400], dtype=torch.uint8, device=device) self.assertEqual( torch.tensor(0, dtype=torch.uint8, device=device), x.any()) self.assertEqual( torch.zeros([1, 3, 400], dtype=torch.uint8, device=device), x.any(0, keepdim=True)) self.assertEqual( torch.zeros([2, 1, 400], dtype=torch.uint8, device=device), x.any(1, keepdim=True)) self.assertEqual( torch.zeros([2, 3, 1], dtype=torch.uint8, device=device), x.any(2, keepdim=True)) # set the last element to 0 x[-1][-1][-1] = 1 self.assertEqual( torch.tensor(1, dtype=torch.uint8, device=device), x.any()) y = torch.zeros([1, 3, 400], dtype=torch.uint8, device=device) y[-1][-1][-1] = 1 self.assertEqual(y, x.any(0, keepdim=True)) y = torch.zeros([2, 1, 400], dtype=torch.uint8, device=device) y[-1][-1][-1] = 1 self.assertEqual(y, x.any(1, keepdim=True)) y = torch.zeros([2, 3, 1], dtype=torch.uint8, device=device) y[-1][-1][-1] = 1 self.assertEqual(y, x.any(2, keepdim=True)) def test_logical_all(self, device): x = torch.ones([2, 3, 400], dtype=torch.uint8, device=device) self.assertEqual( torch.tensor(1, dtype=torch.uint8, device=device), x.all()) self.assertEqual( torch.ones([1, 3, 400], dtype=torch.uint8, device=device), x.all(0, keepdim=True)) self.assertEqual( torch.ones([2, 1, 400], dtype=torch.uint8, device=device), x.all(1, keepdim=True)) self.assertEqual( torch.ones([2, 3, 1], dtype=torch.uint8, device=device), x.all(2, keepdim=True)) # set the last element to 0 x[-1][-1][-1] = 0 self.assertEqual( torch.tensor(0, dtype=torch.uint8, device=device), x.all()) y = torch.ones([1, 3, 400], dtype=torch.uint8, device=device) y[-1][-1][-1] = 0 self.assertEqual(y, x.all(0, keepdim=True)) y = torch.ones([2, 1, 400], dtype=torch.uint8, device=device) y[-1][-1][-1] = 0 self.assertEqual(y, x.all(1, keepdim=True)) y = torch.ones([2, 3, 1], dtype=torch.uint8, device=device) y[-1][-1][-1] = 0 self.assertEqual(y, x.all(2, keepdim=True)) def test_log_normal(self, device): a = torch.tensor([10], dtype=torch.float, device=device).log_normal_() self.assertEqual(a.dtype, torch.float) self.assertEqual(a.size(), torch.Size([1])) def test_geometric(self, device): a = torch.tensor([10], dtype=torch.float, device=device).geometric_(0.5) self.assertEqual(a.dtype, torch.float) self.assertEqual(a.size(), torch.Size([1])) def test_exponential(self, device): a = torch.tensor([10], dtype=torch.float, device=device).exponential_(0.5) self.assertEqual(a.dtype, torch.float) self.assertEqual(a.size(), torch.Size([1])) expected = torch.tensor([10], dtype=torch.float, device=device).exponential_(0) actual = torch.tensor([0.0], dtype=torch.float, device=device) self.assertTrue(torch.allclose(expected, actual, rtol=0, atol=0)) # fail with negative lambda self.assertRaises(RuntimeError, lambda: torch.tensor( [10], dtype=torch.float, device=device).exponential_(-0.5)) def test_pairwise_distance_empty(self, device): shape = (2, 0) x = torch.randn(shape, device=device) y = torch.randn(shape, device=device) self.assertEqual(torch.zeros(2, device=device), torch.pairwise_distance(x, y)) self.assertEqual(torch.zeros((2, 1), device=device), torch.pairwise_distance(x, y, keepdim=True)) shape = (0, 2) x = torch.randn(shape, device=device) y = torch.randn(shape, device=device) self.assertEqual(torch.zeros(0, device=device), torch.pairwise_distance(x, y)) self.assertEqual(torch.zeros((0, 1), device=device), torch.pairwise_distance(x, y, keepdim=True)) def test_pdist_empty(self, device): shape = (0, 2) x = torch.randn(shape, device=device) self.assertEqual(torch.empty(0, device=device), torch.pdist(x)) shape = (1, 2) x = torch.randn(shape, device=device) self.assertEqual(torch.empty(0, device=device), torch.pdist(x)) shape = (3, 0) x = torch.randn(shape, device=device) self.assertEqual(torch.zeros(3, device=device), torch.pdist(x)) def test_cdist_empty(self, device): x = torch.randn((0, 5), device=device) y = torch.randn((4, 5), device=device) self.assertEqual(torch.empty(0, 4, device=device), torch.cdist(x, y)) x = torch.randn((2, 5), device=device) y = torch.randn((0, 5), device=device) self.assertEqual(torch.empty(2, 0, device=device), torch.cdist(x, y)) x = torch.randn((2, 0), device=device) y = torch.randn((3, 0), device=device) self.assertEqual(torch.zeros(2, 3, device=device), torch.cdist(x, y)) x = torch.randn((2, 0), device=device) y = torch.randn((0, 0), device=device) self.assertEqual(torch.empty(2, 0, device=device), torch.cdist(x, y)) def _brute_cdist(self, x, y, p=2): r1 = x.shape[-2] r2 = y.shape[-2] if r1 == 0 or r2 == 0: return torch.empty(r1, r2, device=x.device) return torch.norm(x[..., None, :] - y[..., None, :, :], p=p, dim=-1) def test_cdist_norm(self, device): for r1 in [3, 4, 5, 6]: for m in [2, 3, 4, 10]: for r2 in [4, 6, 7, 8]: for p in [0, 1, 2, 3, 1.5, 2.5, float('inf')]: x = torch.randn(r1, m, device=device) y = torch.randn(r2, m, device=device) if p == 2: for cm in ['use_mm_for_euclid_dist', 'donot_use_mm_for_euclid_dist']: actual = torch.cdist(x, y, p=2, compute_mode=cm) expected = self._brute_cdist(x, y, p=2) self.assertTrue(torch.allclose(expected, actual, rtol=0, atol=0.02)) else: actual = torch.cdist(x, y, p=p) expected = self._brute_cdist(x, y, p=p) self.assertTrue(torch.allclose(expected, actual)) def test_cdist_norm_batch(self, device): for r1 in [3, 4, 5, 6]: for m in [2, 3, 4, 10]: for r2 in [4, 6, 7, 8]: for p in [0, 1, 2, 3, 1.5, 2.5, float('inf')]: x = torch.randn(2, 3, 6, r1, m, device=device) y = torch.randn(2, 3, 6, r2, m, device=device) if p == 2: for cm in ['use_mm_for_euclid_dist', 'donot_use_mm_for_euclid_dist']: actual = torch.cdist(x, y, p=2, compute_mode=cm) expected = self._brute_cdist(x, y, p=2) self.assertTrue(torch.allclose(expected, actual, rtol=0, atol=0.02)) else: actual = torch.cdist(x, y, p=p) expected = self._brute_cdist(x, y, p=p) self.assertTrue(torch.allclose(expected, actual)) def test_cdist_large(self, device): for cm in ['use_mm_for_euclid_dist_if_necessary', 'use_mm_for_euclid_dist', 'donot_use_mm_for_euclid_dist']: x = torch.randn(1000, 10, device=device) y = torch.randn(1000, 10, device=device) actual = torch.cdist(x, y, p=2, compute_mode=cm) expected = self._brute_cdist(x, y, p=2) self.assertTrue(torch.allclose(expected, actual)) @slowTest def test_cdist_large_batch(self, device): for cm in ['use_mm_for_euclid_dist_if_necessary', 'use_mm_for_euclid_dist', 'donot_use_mm_for_euclid_dist']: x = torch.randn(4, 3, 1000, 10, device=device) y = torch.randn(4, 3, 1000, 10, device=device) actual = torch.cdist(x, y, p=2, compute_mode=cm) expected = self._brute_cdist(x, y, p=2) self.assertTrue(torch.allclose(expected, actual)) def test_cdist_non_contiguous(self, device): for cm in ['use_mm_for_euclid_dist', 'donot_use_mm_for_euclid_dist']: x = torch.randn(5, 7, device=device).transpose(-1, -2) y = torch.randn(5, 3, device=device).transpose(-1, -2) actual = torch.cdist(x, y, p=2, compute_mode=cm) expected = self._brute_cdist(x, y, p=2) self.assertFalse(x.is_contiguous()) self.assertFalse(y.is_contiguous()) self.assertTrue(torch.allclose(expected, actual)) x = torch.randn(7, 5, device=device) y = torch.randn(5, 3, device=device).t() actual = torch.cdist(x, y, p=2, compute_mode=cm) expected = self._brute_cdist(x, y, p=2) self.assertTrue(x.is_contiguous()) self.assertFalse(y.is_contiguous()) self.assertTrue(torch.allclose(expected, actual)) x = torch.randn(5, 7, device=device).t() y = torch.randn(3, 5, device=device) actual = torch.cdist(x, y, p=2, compute_mode=cm) expected = self._brute_cdist(x, y, p=2) self.assertFalse(x.is_contiguous()) self.assertTrue(y.is_contiguous()) self.assertTrue(torch.allclose(expected, actual)) def test_cdist_non_contiguous_batch(self, device): for cm in ['use_mm_for_euclid_dist', 'donot_use_mm_for_euclid_dist']: x = torch.randn(4, 3, 2, 5, 7, device=device).transpose(-1, -2) y = torch.randn(4, 3, 2, 5, 3, device=device).transpose(-1, -2) actual = torch.cdist(x, y, p=2, compute_mode=cm) expected = self._brute_cdist(x, y, p=2) self.assertFalse(x.is_contiguous()) self.assertFalse(y.is_contiguous()) self.assertTrue(torch.allclose(expected, actual)) x = torch.randn(7, 2, 7, 5, device=device) y = torch.randn(7, 2, 5, 3, device=device).transpose(-1, -2) actual = torch.cdist(x, y, p=2, compute_mode=cm) expected = self._brute_cdist(x, y, p=2) self.assertTrue(x.is_contiguous()) self.assertFalse(y.is_contiguous()) self.assertTrue(torch.allclose(expected, actual)) x = torch.randn(4, 5, 7, device=device).transpose(-1, -2) y = torch.randn(4, 3, 5, device=device) actual = torch.cdist(x, y, p=2, compute_mode=cm) expected = self._brute_cdist(x, y, p=2) self.assertFalse(x.is_contiguous()) self.assertTrue(y.is_contiguous()) self.assertTrue(torch.allclose(expected, actual)) def test_multinomial_constraints(self, device): x = torch.empty(1, 2, 3, dtype=torch.double, device=device) self.assertRaisesRegex( RuntimeError, "prob_dist must be 1 or 2 dim", lambda: torch.multinomial(x, 2)) x = torch.empty(1, 2, dtype=torch.long, device=device) self.assertRaisesRegex( RuntimeError, "multinomial only supports floating-point dtypes for input", lambda: torch.multinomial(x, 2)) x = torch.empty(1, 2, dtype=torch.double, device=device) y = torch.empty(1, 2, dtype=torch.double, device=device) self.assertRaisesRegex( RuntimeError, "multinomial expects Long tensor out", lambda: torch.multinomial(x, 2, out=y)) x = torch.empty(2, dtype=torch.double, device=device) self.assertRaisesRegex( RuntimeError, "cannot sample n_sample <= 0 samples", lambda: torch.multinomial(x, 0)) x = torch.empty(2, dtype=torch.double, device=device) self.assertRaisesRegex( RuntimeError, "cannot sample n_sample <= 0 samples", lambda: torch.multinomial(x, -1)) x = torch.empty(2, dtype=torch.double, device=device) self.assertRaisesRegex( RuntimeError, "cannot sample n_sample > prob_dist", lambda: torch.multinomial(x, 3, False)) x = torch.empty(16777217, dtype=torch.double, device=device) self.assertRaisesRegex( RuntimeError, "number of categories cannot exceed", lambda: torch.multinomial(x, 3)) def test_add(self, device): # [res] torch.add([res,] tensor1, tensor2) m1 = torch.randn(100, 100, device=device) v1 = torch.randn(100, device=device) # contiguous res1 = torch.add(m1[4], v1) res2 = res1.clone().zero_() for i in range(m1.size(1)): res2[i] = m1[4, i] + v1[i] self.assertEqual(res1, res2) m1 = torch.randn(100, 100, device=device) v1 = torch.randn(100, device=device) # non-contiguous res1 = torch.add(m1[:, 4], v1) res2 = res1.clone().zero_() for i in range(m1.size(0)): res2[i] = m1[i, 4] + v1[i] self.assertEqual(res1, res2) # [res] torch.add([res,] tensor, value) m1 = torch.randn(10, 10, device=device) # contiguous res1 = m1.clone() res1[3].add_(2) res2 = m1.clone() for i in range(m1.size(1)): res2[3, i] = res2[3, i] + 2 self.assertEqual(res1, res2) # non-contiguous m1 = torch.randn(10, 10, device=device) res1 = m1.clone() res1[:, 3].add_(2) res2 = m1.clone() for i in range(m1.size(0)): res2[i, 3] = res2[i, 3] + 2 self.assertEqual(res1, res2) # inter-type m1 = torch.randn(10, 10, device=device) self.assertEqual(m1 + 3, m1 + torch.tensor(3)) self.assertEqual(3 + m1, torch.tensor(3) + m1) one = torch.tensor(1, dtype=torch.uint8, device=device) self.assertEqual(torch.add(one, 1), 2) self.assertEqual(torch.add(one, 1).dtype, torch.uint8) # contiguous + non-contiguous m1 = torch.randn(10, 10, device=device) m2 = torch.randn(10, 10, device=device).t() res = m1 + m2 self.assertTrue(res.is_contiguous()) self.assertEqual(res, m1 + m2.contiguous()) # 1d + empty m1 = torch.tensor([1.0], dtype=torch.float, device=device) m2 = torch.tensor([], dtype=torch.float, device=device) self.assertEqual(m1 + m2, []) # bool m1 = torch.tensor([True, False, False, True, False, False], dtype=torch.bool, device=device) m2 = torch.tensor([True, True, False, False, False, True], dtype=torch.bool, device=device) expected = torch.tensor([True, True, False, True, False, True], dtype=torch.bool, device=device) self.assertEqual(m1 + m2, expected) # fused multiply add a = torch.zeros(2, 3, dtype=torch.bool, device=device) res = torch.add(a, a, alpha=0) expected = torch.zeros(2, 3, device=device).bool() self.assertEqual(res, expected) # bfloat16 m1 = torch.tensor([1., 2.], dtype=torch.bfloat16) m2 = torch.tensor([3., 4.], dtype=torch.bfloat16) self.assertEqual(m1 + m2, torch.tensor([4., 6.], dtype=torch.bfloat16)) # mismatched alpha m1 = torch.tensor([1], dtype=torch.int8, device=device) m2 = torch.tensor([2], dtype=torch.int8, device=device) self.assertRaisesRegex(RuntimeError, r"Boolean alpha only supported for Boolean results\.", lambda: torch.add(m1, m2, alpha=True)) self.assertRaisesRegex(RuntimeError, r"For integral input tensors, argument alpha must not be a floating point number\.", lambda: torch.add(m1, m2, alpha=1.0)) def test_sub_typing(self, device): m1 = torch.tensor([True, False, False, True, False, False], dtype=torch.bool, device=device) m2 = torch.tensor([True, True, False, False, False, True], dtype=torch.bool, device=device) self.assertRaisesRegex(RuntimeError, r"Subtraction, the `\-` operator, with two bool tensors is not supported. " r"Use the `\^` or `logical_xor\(\)` operator instead.", lambda: m1 - m2) self.assertRaisesRegex(RuntimeError, r"Subtraction, the `\-` operator, with a bool tensor is not supported. " r"If you are trying to invert a mask, use the `\~` or `logical_not\(\)` operator instead.", lambda: 1 - m1) self.assertRaisesRegex(RuntimeError, r"Subtraction, the `\-` operator, with a bool tensor is not supported. " r"If you are trying to invert a mask, use the `\~` or `logical_not\(\)` operator instead.", lambda: m2 - 1) # mismatched alpha m1 = torch.tensor([1], dtype=torch.int8, device=device) m2 = torch.tensor([2], dtype=torch.int8, device=device) self.assertRaisesRegex(RuntimeError, r"Boolean alpha only supported for Boolean results\.", lambda: torch.sub(m1, m2, alpha=True)) self.assertRaisesRegex(RuntimeError, r"For integral input tensors, argument alpha must not be a floating point number\.", lambda: torch.sub(m1, m2, alpha=1.0)) def test_mul(self, device): m1 = torch.randn(10, 10, device=device) res1 = m1.clone() res1[:, 3].mul_(2) res2 = m1.clone() for i in range(res1.size(0)): res2[i, 3] = res2[i, 3] * 2 self.assertEqual(res1, res2) a1 = torch.tensor([True, False, False, True], dtype=torch.bool, device=device) a2 = torch.tensor([True, False, True, False], dtype=torch.bool, device=device) self.assertEqual(a1 * a2, torch.tensor([True, False, False, False], dtype=torch.bool, device=device)) if device == 'cpu': a1 = torch.tensor([0.1, 0.1], dtype=torch.bfloat16, device=device) a2 = torch.tensor([1.1, 0.1], dtype=torch.bfloat16, device=device) self.assertEqual(a1 * a2, torch.tensor([0.11, 0.01], dtype=torch.bfloat16, device=device), 0.01) self.assertEqual(a1.mul(a2), a1 * a2) def test_cumsum(self, device): x = torch.rand(100, 100, device=device) res1 = torch.cumsum(x, 1) res2 = torch.Tensor().to(device) torch.cumsum(x, 1, out=res2) self.assertEqual(res1, res2) a = torch.tensor([[True, False, True], [False, False, False], [True, True, True]], device=device) b = a.byte() aRes = torch.cumsum(a, 0) bRes = torch.cumsum(b, 0) self.assertEqual(aRes, bRes) self.assertEqual(aRes, torch.tensor([[1, 0, 1], [1, 0, 1], [2, 1, 2]])) aRes = torch.cumsum(a, 1) bRes = torch.cumsum(b, 1) self.assertEqual(aRes, bRes) self.assertEqual(aRes, torch.tensor([[1, 1, 2], [0, 0, 0], [1, 2, 3]])) # Check that cummulative sum over a zero length dimension doesn't crash on backprop. # Also check that cumsum over other dimensions in a tensor with a zero-length # dimensiuon also works # Also include a basic suite of similar tests for other bases cases. shapes = [[2, 0], [2, 1, 4], [0, 2, 3], [1], [5]] for shape in shapes: for dim in range(len(shape)): raw_tensor = torch.zeros(*shape, requires_grad=True) integrated = raw_tensor.cumsum(dim=dim) # Check that backward does not crash integrated.sum().backward() # Check that output maintained correct shape self.assertEqual(raw_tensor.shape, raw_tensor.grad.shape) # Check a scalar example raw_tensor = torch.tensor(3., requires_grad=True) integrated = raw_tensor.cumsum(dim=-1) self.assertEqual(raw_tensor, integrated) # Check that backward does not crash integrated.sum().backward() # Check that output maintained correct shape self.assertEqual(raw_tensor.shape, raw_tensor.grad.shape) def test_cumprod(self, device): x = torch.rand(100, 100, device=device) res1 = torch.cumprod(x, 1) res2 = torch.Tensor().to(device) torch.cumprod(x, 1, out=res2) self.assertEqual(res1, res2) a = torch.tensor([[True, False, True], [False, False, False], [True, True, True]], dtype=torch.bool, device=device) b = a.byte() aRes = torch.cumprod(a, 0) bRes = torch.cumprod(b, 0) self.assertEqual(aRes, bRes) self.assertEqual(aRes, torch.tensor([[1, 0, 1], [0, 0, 0], [0, 0, 0]])) aRes = torch.cumprod(a, 1) bRes = torch.cumprod(b, 1) self.assertEqual(aRes, bRes) self.assertEqual(aRes, torch.tensor([[1, 0, 0], [0, 0, 0], [1, 1, 1]])) # Check that cummulative prod over a zero length dimension doesn't crash on backprop. # Also check that cumprod over other dimensions in a tensor with a zero-length # dimensiuon also works # Also include a basic suite of similar tests for other bases cases. shapes = [[2, 0], [2, 1, 4], [0, 2, 3], [1], [5]] for shape in shapes: for dim in range(len(shape)): raw_tensor = torch.zeros(*shape, requires_grad=True) integrated = raw_tensor.cumprod(dim=dim) # Check that backward does not crash integrated.sum().backward() # Check that output maintained correct shape self.assertEqual(raw_tensor.shape, raw_tensor.grad.shape) # Check a scalar example raw_tensor = torch.tensor(3., requires_grad=True) integrated = raw_tensor.cumprod(dim=-1) self.assertEqual(raw_tensor, integrated) # Check that backward does not crash integrated.sum().backward() # Check that output maintained correct shape self.assertEqual(raw_tensor.shape, raw_tensor.grad.shape) def test_cummax_cummin(self, device): def test_ops(op, string_of_function_name, expected_output1, expected_output2): x = torch.rand(100, 100, device=device) out1 = op(x, 1) res2 = torch.empty(0, device=device) indices2 = torch.empty(0, dtype=torch.int64, device=device) op(x, 1, out=(res2, indices2)) self.assertEqual(out1[0], res2) self.assertEqual(out1[1], indices2) a = torch.tensor([[True, False, True], [False, False, False], [True, True, True]], dtype=torch.bool, device=device) b = a.byte() aRes = op(a, 0) bRes = op(b, 0) self.assertEqual(aRes[0], bRes[0].bool()) self.assertEqual(aRes[0], expected_output1.bool()) # test inf and nan input x = torch.tensor([4, inf, 1.5, -inf, 0, nan, 1]) xRes = op(x, 0)[0] self.assertEqual(xRes, expected_output2, allow_inf=True) # op shouldn't support values, indices with a dtype, device type or layout # different from that of input tensor t = torch.randn(10) values = torch.empty(0, dtype=torch.int16) indices = torch.empty(0, dtype=torch.int64) with self.assertRaisesRegex( RuntimeError, 'expected scalar_type Float but found Short'): op(t, 0, out=(values, indices)) # Check that op over a zero length dimension doesn't crash on backprop. # Also check that op over other dimensions in a tensor with a zero-length # dimension also works # Also include a basic suite of similar tests for other bases cases. shapes = [[2, 0], [2, 1, 4], [0, 2, 3], [1], [5]] for shape in shapes: for dim in range(len(shape)): raw_tensor = torch.zeros(*shape, requires_grad=True) integrated = getattr(raw_tensor, string_of_function_name)(dim=dim) # Check that backward does not crash integrated[0].sum().backward() # Check that output maintained correct shape self.assertEqual(raw_tensor.shape, raw_tensor.grad.shape) # Check a scalar example raw_tensor = torch.tensor(3., requires_grad=True) integrated = getattr(raw_tensor, string_of_function_name)(dim=-1) # Check that backward does not crash integrated[0].sum().backward() # Check that output maintained correct shape self.assertEqual(raw_tensor.shape, raw_tensor.grad.shape) expected_out = torch.tensor([4, inf, inf, inf, inf, nan, nan]) test_ops(torch.cummax, "cummax", torch.tensor([[1, 0, 1], [1, 0, 1], [1, 1, 1]]), expected_out) expected_out = torch.tensor([4, 4, 1.5, -inf, -inf, nan, nan]) test_ops(torch.cummin, "cummin", torch.tensor([[1, 0, 1], [0, 0, 0], [0, 0, 0]]), expected_out) def test_std_mean(self, device): x = torch.rand(100, 50, 20, device=device) for dim in range(x.dim()): for unbiased in [False, True]: for keepdim in [False, True]: std1, mean1 = torch.std_mean(x, dim=dim, unbiased=unbiased, keepdim=keepdim) std2 = x.std(dim=dim, unbiased=unbiased, keepdim=keepdim) mean2 = x.mean(dim=dim, keepdim=keepdim) self.assertEqual(std1, std2) self.assertEqual(mean1, mean2) def test_std_mean_all_dims(self, device): x = torch.rand(100, 50, 20, device=device) for unbiased in [False, True]: std1, mean1 = torch.std_mean(x, unbiased=unbiased) std2 = x.std(unbiased=unbiased) mean2 = x.mean() self.assertEqual(std1, std2) self.assertEqual(mean1, mean2) def test_var_mean(self, device): x = torch.rand(100, 300, 50, device=device) for dim in range(x.dim()): for unbiased in [False, True]: for keepdim in [False, True]: var1, mean1 = torch.var_mean(x, dim=dim, unbiased=unbiased, keepdim=keepdim) var2 = x.var(dim=dim, unbiased=unbiased, keepdim=keepdim) mean2 = x.mean(dim=dim, keepdim=keepdim) self.assertEqual(var1, var2) self.assertEqual(mean1, mean2) def test_var_mean_all_dims(self, device): x = torch.rand(100, 50, 20, device=device) for unbiased in [False, True]: var1, mean1 = torch.var_mean(x, unbiased=unbiased) var2 = x.var(unbiased=unbiased) mean2 = x.mean() self.assertEqual(var1, var2) self.assertEqual(mean1, mean2) def test_std_mean_some_dims(self, device): sizes = (4, 6, 7, 5, 3) dims = len(sizes) x = torch.rand(sizes, device=device) for num_of_dims in range(2, dims): dim_list = list(combinations(list(range(dims)), r=num_of_dims)) for dim in dim_list: for unbiased in [False, True]: for keepdim in [False, True]: std1, mean1 = torch.std_mean(x, dim=dim, unbiased=unbiased, keepdim=keepdim) std2 = x.std(dim=dim, unbiased=unbiased, keepdim=keepdim) mean2 = x.mean(dim=dim, keepdim=keepdim) self.assertEqual(std1, std2) self.assertEqual(mean1, mean2) def test_zeros_like(self, device): expected = torch.zeros((100, 100,), device=device) res1 = torch.zeros_like(expected) self.assertEqual(res1, expected) def test_histc(self, device): # negative nbins throws with self.assertRaisesRegex(RuntimeError, 'bins must be > 0'): torch.histc(torch.tensor([1], dtype=torch.float, device=device), bins=-1) # without nbins actual = torch.histc( torch.tensor([2, 5], dtype=torch.float, device=device)) expected = torch.zeros(100, dtype=torch.float, device=device) expected[0] = 1 expected[99] = 1 self.assertEqual(expected, actual) # tensor with the same element actual = torch.histc(torch.ones(5, dtype=torch.float, device=device), bins=5) self.assertEqual( torch.tensor([0, 0, 5, 0, 0], dtype=torch.float, device=device), actual) # no element falls between [min, max] actual = torch.histc( torch.ones(5, dtype=torch.float, device=device), bins=5, min=2, max=3) self.assertEqual( torch.tensor([0, 0, 0, 0, 0], dtype=torch.float, device=device), actual) # element falls below min + integral bin size and actual = torch.histc( torch.tensor([2, 4, 2, 2, 5, 4], dtype=torch.float, device=device), bins=5, min=1, max=5) self.assertEqual( torch.tensor([0, 3, 0, 2, 1], dtype=torch.float, device=device), actual) # non-integral bin size actual = torch.histc( torch.tensor([1, 2, 1], dtype=torch.float, device=device), bins=4, min=0, max=3) self.assertEqual( torch.tensor([0, 2, 1, 0], dtype=torch.float, device=device), actual) # double input actual = torch.histc( torch.tensor([1, 2, 1], dtype=torch.double, device=device), bins=4, min=0, max=3) self.assertEqual( torch.tensor([0, 2, 1, 0], dtype=torch.double, device=device), actual) self.assertEqual(actual.dtype, torch.double) # mixed input actual = torch.histc( torch.tensor([1., 2, 1], dtype=torch.float, device=device), bins=4, min=0, max=3) self.assertEqual( torch.tensor([0, 2, 1, 0], dtype=torch.float, device=device), actual) self.assertEqual(actual.dtype, torch.float) # scalar input and 1 bin -- should return a 1-dimensional tensor, not a scalar. actual = torch.histc( torch.tensor(0, dtype=torch.float, device=device), bins=1, min=0, max=3) self.assertEqual( torch.tensor([1], dtype=torch.float, device=device), actual) # tensors with inf; min, max not provided -- should throw a RuntimeError with self.assertRaisesRegex(RuntimeError, r'range of \[inf, inf\] is not finite'): torch.histc(torch.tensor([float("inf")], dtype=torch.float, device=device)) with self.assertRaisesRegex(RuntimeError, r'range of \[1, inf\] is not finite'): torch.histc(torch.tensor([1., 2., float("inf")], dtype=torch.float, device=device)) # tensors with inf; min, max provided self.assertEqual( torch.histc(torch.tensor([float("inf")], dtype=torch.float, device=device), bins=1, min=0, max=3), torch.tensor([0], dtype=torch.float, device=device)) self.assertEqual( torch.histc(torch.tensor([1., 2., float("inf")], dtype=torch.float, device=device), bins=4, max=3), torch.tensor([0, 1, 1, 0], dtype=torch.float, device=device)) # tensor with nan -- should throw a RuntimeError with self.assertRaisesRegex(RuntimeError, r'range of \[nan, nan\] is not finite'): torch.histc(torch.tensor([float("nan")], dtype=torch.float, device=device)) # tensors with min > max -- should throw a RuntimeError with self.assertRaisesRegex(RuntimeError, "max must be larger than min"): torch.histc(torch.tensor([1., 2., 3.], dtype=torch.float, device=device), bins=4, min=5, max=1) # test against numpy.histogram() def test_against_np(tensor, bins=100, min=0, max=0): if min == 0 and max == 0: min = tensor.min().item() max = tensor.max().item() nparr = tensor.cpu().numpy() actual = torch.histc(tensor, bins=bins, min=min, max=max) expected = torch.from_numpy(np.histogram(nparr, bins=bins, range=(min, max))[0]) actual_cpu = actual.cpu() # NB: Numpy returns a int64 tensor, like normal people... self.assertEqual(actual, expected.to(actual_cpu)) if TEST_NUMPY: test_against_np(torch.tensor([1., 2, 1], device=device)) test_against_np(torch.randn(5000, device=device)) # Test bins arg test_against_np(torch.randn(301, device=device), bins=10) # Test truncated range test_against_np(torch.randn(201, device=device), min=0.1, max=1) noncontig = torch.randn(100, 3, device=device)[:, 2] test_against_np(noncontig) multidim = torch.randn(3, 5, 7, 2, device=device) test_against_np(multidim) expanded = torch.randn(1, 5, 1, 2, device=device).expand(3, 5, 7, 2) test_against_np(expanded) def test_bool_tensor_comparison_ops(self, device): a = torch.tensor([True, False, True, False, True, False], dtype=torch.bool, device=device) b = torch.tensor([True, False, True, True, True, True], dtype=torch.bool, device=device) self.assertEqual(a == b, torch.tensor([1, 1, 1, 0, 1, 0], dtype=torch.bool, device=device)) self.assertEqual(a != b, torch.tensor([0, 0, 0, 1, 0, 1], dtype=torch.bool, device=device)) self.assertEqual(a < b, torch.tensor([0, 0, 0, 1, 0, 1], dtype=torch.bool, device=device)) self.assertEqual(a > b, torch.tensor([0, 0, 0, 0, 0, 0], dtype=torch.bool, device=device)) self.assertEqual(a >= b, torch.tensor([1, 1, 1, 0, 1, 0], dtype=torch.bool, device=device)) self.assertEqual(a <= b, torch.tensor([1, 1, 1, 1, 1, 1], dtype=torch.bool, device=device)) self.assertEqual(a > False, torch.tensor([1, 0, 1, 0, 1, 0], dtype=torch.bool, device=device)) self.assertEqual(a == torch.tensor(True, dtype=torch.bool, device=device), torch.tensor([1, 0, 1, 0, 1, 0], dtype=torch.bool, device=device)) self.assertEqual(a == torch.tensor(0, dtype=torch.bool, device=device), torch.tensor([0, 1, 0, 1, 0, 1], dtype=torch.bool, device=device)) self.assertFalse(a.equal(b)) def test_bool_tensor_value_change(self, device): x = torch.tensor([True, False], dtype=torch.bool, device=device) x[0] = False x[1] = True self.assertEqual(x, torch.tensor([False, True], dtype=torch.bool, device=device)) def test_unfold_all_devices_and_dtypes(self, device): for dt in torch.testing.get_all_dtypes(): if dt == torch.bfloat16 and device.startswith('cuda') and IS_WINDOWS: # TODO: https://github.com/pytorch/pytorch/issues/33793 self.assertRaises(RuntimeError, lambda: torch.randint(5, (0, 1, 3, 0), dtype=dt, device=device)) elif dt == torch.bool: x = torch.randint(2, (0, 1, 3, 0), dtype=dt, device=device) self.assertEqual((0, 1, 1, 0, 3), x.unfold(2, 3, 2).shape) else: x = torch.randint(5, (0, 1, 3, 0), dtype=dt, device=device) self.assertEqual((0, 1, 1, 0, 3), x.unfold(2, 3, 2).shape) def test_unfold_scalars(self, device): x = torch.tensor(0.5, device=device) # unfold on a 0-dimensional tensor should always return a 1-d dimensional # tensor of shape [size] (i.e., the second parameter to unfold) self.assertEqual(torch.empty(0, device=device), x.unfold(0, 0, 1)) self.assertEqual(torch.empty(0, device=device), x.unfold(0, 0, 2)) self.assertEqual(torch.tensor([0.5], device=device), x.unfold(0, 1, 1)) def test_copy_all_dtypes_and_devices(self, device): from copy import copy for dt in torch.testing.get_all_dtypes(): x = torch.tensor([1, 2, 3, 4], dtype=dt, device=device) x_clone = x.clone() y = copy(x) y.fill_(1) # copy is a shallow copy, only copies the tensor view, # not the data self.assertEqual(x, y) def test_resize_all_dtypes_and_devices(self, device): shape = (2, 2) for dt in torch.testing.get_all_dtypes(): x = torch.tensor([[1, 2], [3, 4], [5, 6]], dtype=dt, device=device) x.resize_(shape) self.assertEqual(shape, x.shape) def test_resize_as_all_dtypes_and_devices(self, device): for dt in torch.testing.get_all_dtypes(): x = torch.tensor([[1, 2], [3, 4], [5, 6]], dtype=dt, device=device) y = torch.tensor([[1, 2, 3], [4, 5, 6]], dtype=dt, device=device) x.resize_as_(y) self.assertEqual(y.shape, x.shape) def test_view_all_dtypes_and_devices(self, device): for dt in torch.testing.get_all_dtypes(): x = torch.tensor([[1, 2], [3, 4], [5, 6]], dtype=dt, device=device) self.assertEqual(x.view(6).shape, [6]) def test_fill_all_dtypes_and_devices(self, device): for dt in torch.testing.get_all_dtypes(): for x in [torch.tensor((10, 10), dtype=dt, device=device), torch.empty(10000, dtype=dt, device=device)]: # large tensor numel = x.numel() bound = 100 if dt in (torch.uint8, torch.int8) else 2000 for n in range(-bound, bound, bound // 10): x.fill_(n) self.assertEqual(x, torch.tensor([n] * numel, dtype=dt, device=device)) self.assertEqual(dt, x.dtype) def test_clone_all_dtypes_and_devices(self, device): for dt in torch.testing.get_all_dtypes(): x = torch.tensor((1, 1), dtype=dt, device=device) y = x.clone() self.assertEqual(x, y) def test_clone_zero_stride_dim(self, device): # stride zero, size 1 axis, not contiguous x = torch.randn(10) y = x.as_strided([2, 1, 5], [1, 0, 2]) self.assertEqual(y, y.clone()) def test_cat_all_dtypes_and_devices(self, device): for dt in torch.testing.get_all_dtypes(): x = torch.tensor([[1, 2], [3, 4]], dtype=dt, device=device) expected1 = torch.tensor([[1, 2], [3, 4], [1, 2], [3, 4]], dtype=dt, device=device) self.assertEqual(torch.cat((x, x), 0), expected1) expected2 = torch.tensor([[1, 2, 1, 2], [3, 4, 3, 4]], dtype=dt, device=device) self.assertEqual(torch.cat((x, x), 1), expected2) def test_tensor_factories_empty(self, device): # ensure we can create empty tensors from each factory function shapes = [(5, 0, 1), (0,), (0, 0, 1, 0, 2, 0, 0)] for shape in shapes: for dt in torch.testing.get_all_dtypes(): self.assertEqual(shape, torch.zeros(shape, device=device, dtype=dt).shape) self.assertEqual(shape, torch.zeros_like(torch.zeros(shape, device=device, dtype=dt)).shape) self.assertEqual(shape, torch.full(shape, 3, device=device, dtype=dt).shape) self.assertEqual(shape, torch.full_like(torch.zeros(shape, device=device, dtype=dt), 3).shape) self.assertEqual(shape, torch.ones(shape, device=device, dtype=dt).shape) self.assertEqual(shape, torch.ones_like(torch.zeros(shape, device=device, dtype=dt)).shape) self.assertEqual(shape, torch.empty(shape, device=device, dtype=dt).shape) self.assertEqual(shape, torch.empty_like(torch.zeros(shape, device=device, dtype=dt)).shape) self.assertEqual(shape, torch.empty_strided(shape, (0,) * len(shape), device=device, dtype=dt).shape) if dt == torch.bfloat16 and device.startswith('cuda') and IS_WINDOWS: # TODO: https://github.com/pytorch/pytorch/issues/33793 self.assertRaises(RuntimeError, lambda: torch.randint(6, shape, device=device, dtype=dt).shape) elif dt == torch.bool: self.assertEqual(shape, torch.randint(2, shape, device=device, dtype=dt).shape) self.assertEqual(shape, torch.randint_like(torch.zeros(shape, device=device, dtype=dt), 2).shape) else: self.assertEqual(shape, torch.randint(6, shape, device=device, dtype=dt).shape) self.assertEqual(shape, torch.randint_like(torch.zeros(shape, device=device, dtype=dt), 6).shape) if dt not in {torch.double, torch.float, torch.half, torch.bfloat16}: self.assertRaises(RuntimeError, lambda: torch.rand(shape, device=device, dtype=dt).shape) if dt == torch.double or dt == torch.float: self.assertEqual(shape, torch.randn(shape, device=device, dtype=dt).shape) self.assertEqual(shape, torch.randn_like(torch.zeros(shape, device=device, dtype=dt)).shape) self.assertEqual((0,), torch.arange(0, device=device).shape) self.assertEqual((0, 0), torch.eye(0, device=device).shape) self.assertEqual((0, 0), torch.eye(0, 0, device=device).shape) self.assertEqual((5, 0), torch.eye(5, 0, device=device).shape) self.assertEqual((0, 5), torch.eye(0, 5, device=device).shape) self.assertEqual((0,), torch.linspace(1, 1, 0, device=device).shape) self.assertEqual((0,), torch.logspace(1, 1, 0, device=device).shape) self.assertEqual((0,), torch.randperm(0, device=device).shape) self.assertEqual((0,), torch.bartlett_window(0, device=device).shape) self.assertEqual((0,), torch.bartlett_window(0, periodic=False, device=device).shape) self.assertEqual((0,), torch.hamming_window(0, device=device).shape) self.assertEqual((0,), torch.hann_window(0, device=device).shape) self.assertEqual((1, 1, 0), torch.tensor([[[]]], device=device).shape) self.assertEqual((1, 1, 0), torch.as_tensor([[[]]], device=device).shape) def test_eye(self, device): for dtype in torch.testing.get_all_dtypes(): if dtype == torch.bfloat16: continue for n, m in product([3, 5, 7], repeat=2): # Construct identity using diagonal and fill res1 = torch.eye(n, m, device=device, dtype=dtype) naive_eye = torch.zeros(n, m, dtype=dtype, device=device) naive_eye.diagonal(dim1=-2, dim2=-1).fill_(1) self.assertEqual(naive_eye, res1) # Check eye_out outputs res2 = torch.empty(0, device=device, dtype=dtype) torch.eye(n, m, out=res2) self.assertEqual(res1, res2) def test_addcmul(self, device): def rand_tensor(size, dtype, device): if dtype.is_floating_point: return torch.rand(size=size, dtype=dtype, device=device) if dtype == torch.uint8: return torch.randint(1, 5, size=size, dtype=dtype, device=device) else: return torch.randint(-5, 5, size=size, dtype=dtype, device=device) for dtype in torch.testing.get_all_math_dtypes(device): a = rand_tensor((2, 2), dtype=dtype, device=device) b = rand_tensor((2, 2), dtype=dtype, device=device) c = rand_tensor((2, 2), dtype=dtype, device=device) if dtype.is_floating_point: alpha = 0.1 else: alpha = 3 actual = torch.addcmul(a, b, c, value=alpha) expected = a + alpha * b * c self.assertTrue(torch.allclose(expected, actual)) with self.maybeWarnsRegex( UserWarning, "This overload of addcmul is deprecated"): self.assertEqual(actual, torch.addcmul(a, alpha, b, c)) def test_empty_tensor_props(self, device): sizes = [(0,), (0, 3), (5, 0), (5, 0, 3, 0, 2), (0, 3, 0, 2), (0, 5, 0, 2, 0)] for size in sizes: x = torch.empty(tuple(size), device=device) self.assertEqual(size, x.shape) self.assertTrue(x.is_contiguous()) size_ones_instead_of_zeros = (x if x != 0 else 1 for x in size) y = torch.empty(tuple(size_ones_instead_of_zeros), device=device) self.assertEqual(x.stride(), y.stride()) @unittest.skipIf(not TEST_NUMPY, 'Numpy not found') def test_tensordot(self, device): a = torch.arange(60., device=device).reshape(3, 4, 5) b = torch.arange(24., device=device).reshape(4, 3, 2) c = torch.tensordot(a, b, dims=([1, 0], [0, 1])).cpu() cn = torch.from_numpy(np.tensordot(a.cpu().numpy(), b.cpu().numpy(), axes=([1, 0], [0, 1]))) self.assertEqual(c, cn) a = torch.randn(2, 3, 4, 5, device=device) b = torch.randn(4, 5, 6, 7, device=device) c = torch.tensordot(a, b, dims=2).cpu() cn = torch.from_numpy(np.tensordot(a.cpu().numpy(), b.cpu().numpy(), axes=2)) with self.assertRaisesRegex(RuntimeError, "expects dims >= 0"): torch.tensordot(a, b, dims=-1) self.assertEqual(c, cn) c = torch.tensordot(a, b).cpu() cn = torch.from_numpy(np.tensordot(a.cpu().numpy(), b.cpu().numpy())) self.assertEqual(c, cn) def test_narrow_empty(self, device): x = torch.randn(2, 3, 4, device=device) for d in range(x.dim()): y = x.narrow(d, x.size(d), 0) sz = list(x.size()) sz[d] = 0 self.assertEqual(sz, y.size()) @precisionOverride({torch.half: 1e-1, torch.float: 1e-5, torch.double: 1e-10}) @dtypes(torch.uint8, torch.int8, torch.short, torch.int, torch.long, torch.float, torch.double) @dtypesIfCUDA(torch.uint8, torch.int8, torch.short, torch.int, torch.long, torch.half, torch.float, torch.double) def test_logspace(self, device, dtype): _from = random.random() to = _from + random.random() res1 = torch.logspace(_from, to, 137, device=device, dtype=dtype) res2 = torch.tensor((), device=device, dtype=dtype) torch.logspace(_from, to, 137, device=device, dtype=dtype, out=res2) self.assertEqual(res1, res2, 0) self.assertRaises(RuntimeError, lambda: torch.logspace(0, 1, -1, device=device, dtype=dtype)) self.assertEqual(torch.logspace(0, 1, 1, device=device, dtype=dtype), torch.ones(1, device=device, dtype=dtype), 0) # Check precision - start, stop and base are chosen to avoid overflow # steps is chosen so that step size is not subject to rounding error # a tolerance is needed for gpu tests due to differences in computation tol = 0. if device == 'cpu' else self.precision self.assertEqual(torch.tensor([2. ** (i / 8.) for i in range(49)], device=device, dtype=dtype), torch.logspace(0, 6, steps=49, base=2, device=device, dtype=dtype), tol) # Check non-default base=2 self.assertEqual(torch.logspace(1, 1, 1, 2, device=device, dtype=dtype), torch.ones(1, device=device, dtype=dtype) * 2) self.assertEqual(torch.logspace(0, 2, 3, 2, device=device, dtype=dtype), torch.tensor((1, 2, 4), device=device, dtype=dtype)) # Check logspace_ for generating with start > end. self.assertEqual(torch.logspace(1, 0, 2, device=device, dtype=dtype), torch.tensor((10, 1), device=device, dtype=dtype), 0) # Check logspace_ for non-contiguous tensors. x = torch.zeros(2, 3, device=device, dtype=dtype) y = torch.logspace(0, 3, 4, base=2, device=device, dtype=dtype, out=x.narrow(1, 1, 2)) self.assertEqual(x, torch.tensor(((0, 1, 2), (0, 4, 8)), device=device, dtype=dtype), 0) @dtypes(torch.int8, torch.short, torch.int, torch.long, torch.float, torch.double) @dtypesIfCUDA(torch.int8, torch.short, torch.int, torch.long, torch.half, torch.float, torch.double) def test_linspace(self, device, dtype): _from = random.random() to = _from + random.random() res1 = torch.linspace(_from, to, 137, device=device, dtype=dtype) res2 = torch.tensor((), device=device, dtype=dtype) torch.linspace(_from, to, 137, dtype=dtype, out=res2) self.assertEqual(res1, res2, 0) self.assertRaises(RuntimeError, lambda: torch.linspace(0, 1, -1, device=device)) self.assertEqual(torch.linspace(0, 1, 1, device=device), torch.zeros(1, device=device), 0) # Check linspace for generating the correct output for each dtype. expected_lin = torch.tensor([-100. + .5 * i for i in range(401)], device=device, dtype=torch.double) actual_lin = torch.linspace(-100, 100, 401, device=device, dtype=dtype) # If on GPU, allow for minor error depending on dtype. tol = 0. if device != 'cpu': if dtype == torch.half: tol = 1e-1 elif dtype == torch.float: tol = 1e-5 elif dtype == torch.double: tol = 1e-10 self.assertEqual(expected_lin.to(dtype), actual_lin, tol) # Check linspace for generating with start > end. self.assertEqual(torch.linspace(2, 0, 3, device=device, dtype=dtype), torch.tensor((2, 1, 0), device=device, dtype=dtype), 0) # Check linspace for non-contiguous tensors. x = torch.zeros(2, 3, device=device, dtype=dtype) y = torch.linspace(0, 3, 4, out=x.narrow(1, 1, 2), dtype=dtype) self.assertEqual(x, torch.tensor(((0, 0, 1), (0, 2, 3)), device=device, dtype=dtype), 0) @largeCUDATensorTest('16GB') def test_range_factories_64bit_indexing(self, device): bigint = 2 ** 31 + 1 t = torch.arange(bigint, dtype=torch.long, device=device) self.assertEqual(t[-1].item(), bigint - 1) del t t = torch.linspace(0, 1, bigint, dtype=torch.float, device=device) self.assertEqual(t[-1].item(), 1) del t t = torch.logspace(0, 1, bigint, 2, dtype=torch.float, device=device) self.assertEqual(t[-1].item(), 2) del t def test_logical(self, device): for dt in torch.testing.get_all_dtypes(): x = torch.tensor([1, 2, 3, 4], device=device, dtype=dt) b = torch.tensor([2], device=device, dtype=dt) if dt == torch.half and device == 'cpu': self.assertRaises(RuntimeError, lambda: x.lt(2)) continue if dt == torch.bool: # torch.bool is a special case and is being tested later # in this test continue if self.device_type == 'cuda' and dt == torch.bfloat16 and not TEST_WITH_ROCM: self.assertRaises(RuntimeError, lambda: x > b) self.assertRaises(RuntimeError, lambda: x < b) self.assertRaises(RuntimeError, lambda: x == b) self.assertRaises(RuntimeError, lambda: x != b) self.assertRaises(RuntimeError, lambda: x >= b) self.assertRaises(RuntimeError, lambda: x <= b) continue self.assertEqual(x.lt(2), torch.tensor([True, False, False, False])) self.assertEqual(x.le(2), torch.tensor([True, True, False, False])) self.assertEqual(x.ge(2), torch.tensor([False, True, True, True])) self.assertEqual(x.gt(2), torch.tensor([False, False, True, True])) self.assertEqual(x.eq(2), torch.tensor([False, True, False, False])) self.assertEqual(x.ne(2), torch.tensor([True, False, True, True])) self.assertEqual(x.lt(b), torch.tensor([True, False, False, False])) self.assertEqual(x.le(b), torch.tensor([True, True, False, False])) self.assertEqual(x.ge(b), torch.tensor([False, True, True, True])) self.assertEqual(x.gt(b), torch.tensor([False, False, True, True])) self.assertEqual(x.eq(b), torch.tensor([False, True, False, False])) self.assertEqual(x.ne(b), torch.tensor([True, False, True, True])) # Bool Tensor x = torch.tensor([True, False, True, False], device=device) self.assertEqual(x.lt(True), torch.tensor([False, True, False, True])) self.assertEqual(x.le(True), torch.tensor([True, True, True, True])) self.assertEqual(x.ge(True), torch.tensor([True, False, True, False])) self.assertEqual(x.gt(True), torch.tensor([False, False, False, False])) self.assertEqual(x.eq(True), torch.tensor([True, False, True, False])) self.assertEqual(x.ne(True), torch.tensor([False, True, False, True])) def test_index_copy(self, device): num_copy, num_dest = 3, 20 dest = torch.randn(num_dest, 4, 5, device=device) src = torch.randn(num_copy, 4, 5, device=device) idx = torch.randperm(num_dest, device=device).narrow(0, 0, num_copy) dest2 = dest.clone() dest.index_copy_(0, idx, src) for i in range(idx.size(0)): dest2[idx[i]] = src[i] self.assertEqual(dest, dest2, 0) dest = torch.randn(num_dest, device=device) src = torch.randn(num_copy, device=device) idx = torch.randperm(num_dest, device=device).narrow(0, 0, num_copy) dest2 = dest.clone() dest.index_copy_(0, idx, src) for i in range(idx.size(0)): dest2[idx[i]] = src[i] self.assertEqual(dest, dest2, 0) # Bool tensor dest = torch.zeros(2, 2, dtype=torch.bool, device=device) src = torch.tensor([[True, True], [True, True]], device=device) index = torch.tensor([0, 1], device=device) dest.index_copy_(0, index, src) self.assertEqual(dest, torch.tensor([[True, True], [True, True]], device=device)) # Error cases a = torch.randn(3, 5) c = torch.zeros(3) self.assertRaises(IndexError, lambda: a.index_copy_(dim=1, index=torch.tensor([3]), source=c)) def test_index_fill(self, device): for dt in torch.testing.get_all_dtypes(): if dt == torch.half or dt == torch.bfloat16: continue x = torch.tensor([[1, 2], [4, 5]], dtype=dt, device=device) index = torch.tensor([0], device=device) x.index_fill_(1, index, 0) self.assertEqual(x, torch.tensor([[0, 2], [0, 5]], dtype=dt, device=device)) def test_index_select(self, device): src = torch.randn(3, 4, 5, device=device) # Index can be duplicated. idx = torch.tensor([2, 1, 0, 1, 2], dtype=torch.long, device=device) dest = torch.index_select(src, 0, idx) self.assertEqual(dest.shape, (5, 4, 5)) for i in range(idx.size(0)): self.assertEqual(dest[i], src[idx[i]]) # Check that 'out' is used correctly. out = torch.randn(5 * 4 * 5, device=device) dest = torch.index_select(src, 0, idx, out=out.view(5, 4, 5)) self.assertEqual(dest.shape, (5, 4, 5)) for i in range(idx.size(0)): self.assertEqual(dest[i], src[idx[i]]) out.fill_(0.123) self.assertEqual(out, dest.view(-1)) # Must point to the same storage. # Bool tensor src = torch.tensor([False, True, False, False], device=device, dtype=torch.bool) idx = torch.tensor([1], dtype=torch.long, device=device) dest = torch.index_select(src, 0, idx) self.assertEqual(torch.tensor([True]), dest) def test_take_empty(self, device): for input_shape in [(0,), (0, 1, 2, 0), (1, 2, 3)]: for indices_shape in [(0,), (0, 1, 2, 0)]: input = torch.empty(input_shape, device=device) indices = torch.empty(indices_shape, dtype=torch.int64, device=device) self.assertEqual(indices.float(), torch.take(input, indices)) def test_put_empty(self, device): for dst_shape in [(0,), (0, 1, 2, 0), (1, 2, 3)]: for indices_shape in [(0,), (0, 1, 2, 0)]: for accumulate in [False, True]: dst = torch.randn(dst_shape, device=device) indices = torch.empty(indices_shape, dtype=torch.int64, device=device) src = torch.randn(indices_shape, device=device) self.assertEqual(dst, dst.put_(indices, src, accumulate=accumulate)) def test_scatter_to_large_input(self, device): input = torch.zeros(4, 4, device=device) src = torch.ones(2, 2, device=device) index = torch.tensor([[1], [2]], device=device, dtype=torch.long) input.scatter_(0, index, src) self.assertEqual(input, torch.tensor([[0, 0, 0, 0], [1, 0, 0, 0], [1, 0, 0, 0], [0, 0, 0, 0]], device=device, dtype=torch.float32)) def test_scatter_add_to_large_input(self, device): input = torch.zeros(4, 4, device=device) src = torch.ones(2, 2, device=device) index = torch.tensor([[1], [2]], device=device, dtype=torch.long) input.scatter_add_(0, index, src) self.assertEqual(input, torch.tensor([[0, 0, 0, 0], [1, 0, 0, 0], [1, 0, 0, 0], [0, 0, 0, 0]], device=device, dtype=torch.float32)) def test_scatter_bool(self, device): x = torch.tensor([[True, True, True], [True, True, True]], device=device) res = torch.zeros(3, 3, dtype=torch.bool, device=device) res = res.scatter_(0, torch.tensor([[0, 1, 2], [0, 1, 2]], device=device), x) self.assertEqual(res, torch.tensor([[True, False, False], [False, True, False], [False, False, True]], device=device)) def test_scatter_add_bool(self, device): x = torch.tensor([[True, True, True, True, True], [True, True, True, True, True]], device=device) res = torch.zeros(3, 5, dtype=torch.bool, device=device) res = res.scatter_add_(0, torch.tensor([[0, 1, 2, 0, 0], [2, 0, 0, 1, 2]], device=device), x) self.assertEqual(res, torch.tensor([[True, True, True, True, True], [False, True, False, True, False], [True, False, True, False, True]], device=device)) def test_masked_scatter_bool_tensor(self, device): src = torch.tensor([True, True, True], device=device) dst = torch.tensor([False, False, False], device=device) mask = torch.tensor([False, True, False], device=device) dst.masked_scatter_(mask, src) self.assertEqual(dst, torch.tensor([False, True, False], device=device)) mask = torch.tensor([True, False, True], device=device) dst = dst.masked_scatter(mask, src) self.assertEqual(dst, torch.tensor([True, True, True], device=device)) def test_masked_select(self, device): warn = 'masked_select received a mask with dtype torch.uint8,' for dt in torch.testing.get_all_dtypes(): with warnings.catch_warnings(record=True) as w: for maskType in [torch.uint8, torch.bool]: num_src = 10 src = torch.tensor([0, 0, 0, 0, 0, 0, 0, 0, 0, 0], dtype=dt, device=device) mask = torch.rand(num_src, device=device).clamp(0, 1).mul(2).floor().to(maskType) if dt == torch.half and torch.device(device).type == 'cpu': self.assertRaises(RuntimeError, lambda: src.masked_select(mask)) continue dst = src.masked_select(mask) dst2 = [] for i in range(num_src): if mask[i]: dst2 += [src[i]] self.assertEqual(dst, torch.tensor(dst2), 0) dst3 = torch.empty_like(src, device=device) torch.masked_select(src, mask, out=dst3) self.assertEqual(dst3, torch.tensor(dst2, dtype=dst3.dtype), 0) if maskType is torch.uint8: self.assertEqual(len(w), 1) self.assertEqual(str(w[0].message)[0:53], str(warn)) def test_masked_fill_bool_tensor(self, device): dst = torch.tensor([True, False, True], device=device) mask = torch.tensor([False, True, False], device=device) dst.masked_fill_(mask, True) self.assertEqual(dst, torch.tensor([True, True, True], device=device)) dst = dst.masked_fill(mask, False) self.assertEqual(dst, torch.tensor([True, False, True], device=device)) def test_tensor_shape_empty(self, device): x = torch.randn((0, 1, 3, 0), device=device) # flatten self.assertEqual((0,), torch.flatten(x, 0, 3).shape) self.assertEqual((0, 0), torch.flatten(x, 0, 2).shape) self.assertEqual((0, 3, 0), torch.flatten(x, 1, 2).shape) # squeeze, unsqueeze self.assertEqual((0, 1, 1, 3, 0), torch.unsqueeze(x, 1).shape) self.assertEqual((0, 3, 0), torch.squeeze(x, 1).shape) self.assertEqual((0, 3, 0), torch.squeeze(x).shape) # transpose, t self.assertEqual((0, 0, 3, 1), torch.transpose(x, 1, 3).shape) y = torch.randn((5, 0), device=device) self.assertEqual((0, 5), y.t().shape) # select self.assertEqual((0, 1, 0), torch.select(x, 2, 2).shape) # repeat, permute self.assertEqual((9, 0, 5, 6, 0), x.repeat(9, 7, 5, 2, 3).shape) self.assertEqual((3, 0, 0, 1), x.permute(2, 3, 0, 1).shape) # diagonal, diagflat self.assertEqual((0,), torch.diagonal(torch.randn((5, 0), device=device)).shape) self.assertEqual((0,), torch.diagonal(torch.randn((0, 5), device=device)).shape) # off the end offsets are valid self.assertEqual((0,), torch.diagonal(torch.randn((5, 0), device=device), offset=1).shape) self.assertEqual((0,), torch.diagonal(torch.randn((0, 5), device=device), offset=1).shape) # check non-zero sized offsets off the end self.assertEqual((5, 6, 0), torch.diagonal(torch.randn((3, 4, 5, 6), device=device), offset=45252).shape) self.assertEqual((5, 6, 0), torch.diagonal(torch.randn((3, 4, 5, 6), device=device), offset=-45252).shape) self.assertEqual((0, 0), torch.diagflat(torch.tensor([], device=device)).shape) self.assertEqual(torch.zeros(1, 1), torch.diagflat(torch.tensor([], device=device), offset=1)) self.assertEqual((0, 0), torch.diagflat(torch.tensor([[]], device=device)).shape) self.assertEqual(torch.zeros(1, 1), torch.diagflat(torch.tensor([[]], device=device), offset=1)) # stack, split, chunk self.assertEqual((4, 0, 1, 3, 0), torch.stack((x, x, x, x)).shape) self.assertEqual([(0, 1, 3, 0)], [z.shape for z in torch.chunk(x, 1, dim=0)]) self.assertEqual([(0, 1, 3, 0), ] * 3, [z.shape for z in torch.chunk(x, 3, dim=0)]) self.assertEqual([(0, 1, 1, 0), ] * 3, [z.shape for z in torch.chunk(x, 3, dim=2)]) # NOTE: split_with_sizes behaves differently than NumPy in that it # takes sizes rather than offsets self.assertEqual([(0, 1, 0, 0), (0, 1, 1, 0), (0, 1, 2, 0)], [z.shape for z in torch.split(x, (0, 1, 2), dim=2)]) self.assertRaises(RuntimeError, lambda: torch.split(x, 0, dim=1)) # This is strange because the split size is larger than the dim size, but consistent with # how split handles that case generally (when no 0s are involved). self.assertEqual([(0, 1, 3, 0)], [z.shape for z in torch.split(x, 1, dim=0)]) self.assertEqual([(0, 1, 3, 0)], [z.shape for z in torch.split(x, 0, dim=0)]) # functions that operate over a dimension but don't reduce. def test_dim_function_empty(self, device): shape = (0, 1, 2, 0) x = torch.randn(shape, device=device) # size stride self.assertEqual(0, x.size(3)) self.assertEqual(2, x.size(2)) self.assertEqual(2, x.stride(0)) self.assertEqual(1, x.stride(2)) self.assertEqual(x, torch.nn.functional.glu(x, 0)) self.assertEqual((0, 1, 1, 0), torch.nn.functional.glu(x, 2).shape) # softmax, logsoftmax self.assertEqual(x, torch.nn.functional.softmax(x, 0)) self.assertEqual(x, torch.nn.functional.softmax(x, 2)) self.assertEqual(x, torch.nn.functional.softmax(x, 3)) self.assertEqual(x, torch.nn.functional.log_softmax(x, 0)) self.assertEqual(x, torch.nn.functional.log_softmax(x, 2)) self.assertEqual(x, torch.nn.functional.log_softmax(x, 3)) # cumsum, cumprod, cummax, cummin self.assertEqual(shape, torch.cumsum(x, 0).shape) self.assertEqual(shape, torch.cumsum(x, 2).shape) self.assertEqual(shape, torch.cumprod(x, 0).shape) self.assertEqual(shape, torch.cumprod(x, 2).shape) self.assertEqual(shape, torch.cummax(x, 0)[0].shape) self.assertEqual(shape, torch.cummax(x, 2)[0].shape) self.assertEqual(shape, torch.cummin(x, 0)[0].shape) self.assertEqual(shape, torch.cummin(x, 2)[0].shape) # flip self.assertEqual(x, x.flip(0)) self.assertEqual(x, x.flip(2)) # roll self.assertEqual(x, x.roll(0, 1).roll(0, -1)) self.assertEqual(x, x.roll(1, x.size(1))) self.assertEqual(x, x.roll(1)) self.assertEqual(x, x.roll((1, 1), (3, 1))) # unbind self.assertEqual((), x.unbind(0)) self.assertEqual((torch.empty((0, 1, 0), device=device), torch.empty((0, 1, 0), device=device)), x.unbind(2)) # cross y = torch.randn((0, 1, 3, 0), device=device) self.assertEqual(y.shape, torch.cross(y, y).shape) # renorm self.assertEqual(shape, torch.renorm(x, 1, 0, 5).shape) self.assertEqual(shape, torch.renorm(x, 1, 2, 5).shape) # sort self.assertEqual([shape, shape], [z.shape for z in torch.sort(x, dim=0)]) self.assertEqual([shape, shape], [z.shape for z in torch.sort(x, dim=2)]) # topk self.assertEqual([shape, shape], [z.shape for z in torch.topk(x, 0, dim=0)]) self.assertEqual([(0, 1, 1, 0), (0, 1, 1, 0)], [z.shape for z in torch.topk(x, 1, dim=2)]) y = torch.randn((2, 3, 4), device=device) self.assertEqual([(2, 3, 0), (2, 3, 0)], [z.shape for z in torch.topk(y, 0)]) # gather self.assertEqual(shape, torch.gather(x, 0, torch.empty(shape, dtype=torch.int64, device=device)).shape) self.assertEqual(shape, torch.gather(x, 2, torch.empty(shape, dtype=torch.int64, device=device)).shape) larger_shape = torch.empty((0, 1, 3, 0), dtype=torch.int64, device=device) self.assertEqual(larger_shape.shape, torch.gather(x, 2, larger_shape).shape) smaller_shape = torch.empty((0, 1, 0, 0), dtype=torch.int64, device=device) self.assertEqual(smaller_shape.shape, torch.gather(x, 2, smaller_shape).shape) y = torch.randn((2, 3, 4), device=device) self.assertEqual((0, 3, 4), torch.gather(y, 0, torch.empty((0, 3, 4), dtype=torch.int64, device=device)).shape) # scatter, scatter_add for dim in [0, 2]: y = torch.randn(shape, device=device) y_src = torch.randn(shape, device=device) ind = torch.empty(shape, dtype=torch.int64, device=device) self.assertEqual(shape, y.scatter_(dim, ind, y_src).shape) self.assertEqual(shape, y.scatter_add_(dim, ind, y_src).shape) z = torch.randn((2, 3, 4), device=device) z_src = torch.randn((2, 3, 4), device=device) self.assertEqual(z, z.scatter_(2, torch.empty((2, 3, 0), dtype=torch.int64, device=device), z_src)) self.assertEqual(z, z.scatter_add_(2, torch.empty((2, 3, 0), dtype=torch.int64, device=device), z_src)) # index_fill, index_copy, index_add c = x.clone() c_clone = c.clone() ind_empty = torch.tensor([], dtype=torch.int64, device=device) ind_01 = torch.tensor([0, 1], dtype=torch.int64, device=device) self.assertEqual(c_clone, c.index_fill_(0, ind_empty, -1)) self.assertEqual(c_clone, c.index_fill_(2, ind_empty, -1)) self.assertEqual(c_clone, c.index_fill_(2, torch.tensor([0, 1], dtype=torch.int64, device=device), -1)) self.assertEqual(c_clone, c.index_copy_(0, ind_empty, torch.empty((0, 1, 2, 0), device=device))) self.assertEqual(c_clone, c.index_copy_(2, ind_empty, torch.empty((0, 1, 0, 0), device=device))) self.assertEqual(c_clone, c.index_copy_(2, ind_01, torch.empty((0, 1, 2, 0), device=device))) self.assertEqual(c_clone, c.index_add_(0, ind_empty, torch.empty((0, 1, 2, 0), device=device))) self.assertEqual(c_clone, c.index_add_(2, ind_empty, torch.empty((0, 1, 0, 0), device=device))) self.assertEqual(c_clone, c.index_add_(2, ind_01, torch.empty((0, 1, 2, 0), device=device))) c = torch.randn((0, 1, 2), device=device) c_clone = c.clone() self.assertEqual(c_clone, c.index_fill_(0, ind_empty, -1)) self.assertEqual(c_clone, c.index_copy_(0, ind_empty, torch.empty((0, 1, 2), device=device))) self.assertEqual(c_clone, c.index_add_(0, ind_empty, torch.empty((0, 1, 2), device=device))) self.assertEqual(c_clone, c.index_fill_(0, ind_empty, -1)) self.assertEqual(c_clone, c.index_copy_(0, ind_empty, torch.empty((0, 1, 2), device=device))) self.assertEqual(c_clone, c.index_add_(0, ind_empty, torch.empty((0, 1, 2), device=device))) # index fill/copy/add non-empty z = torch.randn((2, 3, 4), device=device) self.assertEqual(z, z.index_fill_(0, ind_empty, -1)) z = torch.randn((2, 3, 4), device=device) self.assertEqual(z, z.index_copy_(0, ind_empty, torch.empty((0, 3, 4), device=device))) z = torch.randn((2, 3, 4), device=device) self.assertEqual(z, z.index_add_(0, ind_empty, torch.empty((0, 3, 4), device=device))) # index_select self.assertEqual(x, x.index_select(0, ind_empty)) self.assertEqual((0, 1, 0, 0), x.index_select(2, ind_empty).shape) self.assertEqual(x, x.index_select(2, ind_01)) z = torch.randn((2, 3, 4), device=device) # non-empty self.assertEqual((0, 3, 4), z.index_select(0, ind_empty).shape) c = torch.randn((0, 1, 2), device=device) self.assertEqual(c, c.index_select(0, ind_empty)) c = torch.randn((0, 1, 2), device=device) self.assertEqual(c, c.index_select(0, ind_empty)) def test_nonzero(self, device): num_srcs = [ 12, 12, 12, 12, 12, 125, ] types = [ 'torch.ByteTensor', 'torch.CharTensor', 'torch.ShortTensor', 'torch.IntTensor', 'torch.FloatTensor', 'torch.DoubleTensor', 'torch.LongTensor', ] shapes = [ torch.Size((12,)), torch.Size((12, 1)), torch.Size((1, 12)), torch.Size((6, 2)), torch.Size((3, 2, 2)), torch.Size((5, 5, 5)), ] def is_lexicographically_sorted(inds): """Check sorted ascending with i -> j -> k changing slowest to fastest""" assert inds.size(1) == 3 if inds.size(0) > 1: i0, j0, k0 = inds[:-1].t() i1, j1, k1 = inds[+1:].t() i_ok = (i1 >= i0) j_ok = (j1 >= j0) | (i1 > i0) k_ok = (k1 >= k0) | (j1 > j0) | (i1 > i0) lex = torch.stack((i_ok, j_ok, k_ok), dim=1) return lex return torch.full_like(inds, 1) def gen_nontrivial_input(num_src, dtype, device): while True: tensor = torch.rand(num_src).mul(2).floor().type(dtype).to(device) if tensor.sum() > 0: return tensor for dtype in types: for shape, num_src in zip(shapes, num_srcs): tensor = gen_nontrivial_input(num_src, dtype, device) tensor = tensor.clone().resize_(shape) dst1 = torch.nonzero(tensor) dst2 = tensor.nonzero() dst3 = torch.LongTensor().to(device) torch.nonzero(tensor, out=dst3) self.assertRaisesRegex( TypeError, "received an invalid combination of arguments", lambda: torch.nonzero(tensor, as_tuple=True, out=dst3)) if len(shape) == 1: dst = [] for i in range(num_src): if tensor[i] != 0: dst += [i] dst = torch.LongTensor(dst).to(device) self.assertEqual(dst1.select(1, 0), dst, 0) self.assertEqual(dst2.select(1, 0), dst, 0) self.assertEqual(dst3.select(1, 0), dst, 0) elif len(shape) == 2: # This test will allow through some False positives. It only checks # that the elements flagged positive are indeed non-zero. for i in range(dst1.size(0)): self.assertNotEqual(tensor[dst1[i, 0], dst1[i, 1]].item(), 0) elif len(shape) == 3: # This test will allow through some False positives. It only checks # that the elements flagged positive are indeed non-zero. for i in range(dst1.size(0)): self.assertNotEqual(tensor[dst1[i, 0], dst1[i, 1], dst1[i, 2]].item(), 0) lex = is_lexicographically_sorted(dst1) self.assertEqual(torch.ones_like(lex), lex) if TEST_NUMPY: tup1 = torch.nonzero(tensor, as_tuple=True) tup2 = tensor.nonzero(as_tuple=True) tup3 = torch.where(tensor) np1 = tensor.cpu().numpy().nonzero() for t in (tup1, tup2, tup3): self.assertEqual(len(t), len(np1)) for i in range(len(t)): self.assertEqual(t[i].cpu().numpy(), np1[i]) def test_nonzero_non_diff(self, device): x = torch.randn(10, requires_grad=True) nz = x.nonzero() self.assertFalse(nz.requires_grad) def _brute_pdist(self, inp, p=2): """Computes the same as torch.pdist using primitives""" n = inp.shape[-2] k = n * (n - 1) // 2 if k == 0: # torch complains about empty indices return torch.empty(inp.shape[:-2] + (0,), dtype=inp.dtype, device=inp.device) square = torch.norm(inp[..., None, :] - inp[..., None, :, :], p=p, dim=-1) unroll = square.view(square.shape[:-2] + (n * n,)) inds = torch.ones(k, dtype=torch.int) inds[torch.arange(n - 1, 1, -1, dtype=torch.int).cumsum(0)] += torch.arange(2, n, dtype=torch.int) return unroll[..., inds.cumsum(0)] def _pdist_single(self, shape, device, p, dtype, trans, grad_check=False): x = torch.randn(shape, dtype=dtype, device=device) if trans: x.transpose_(-2, -1) if grad_check: x.requires_grad_() y = x.detach().clone().requires_grad_() else: y = x actual = torch.pdist(x, p=p) expected = self._brute_pdist(y, p=p) self.assertEqual(expected.shape, actual.shape) self.assertTrue(torch.allclose(expected, actual)) if grad_check and expected.size() != torch.Size([0]): g0 = torch.rand_like(actual) actual.backward(g0) expected.backward(g0) self.assertTrue(torch.allclose(x.grad, y.grad)) @slowTest def test_pdist_norm_forward(self, device): for shape in [(4, 5), (3, 2), (2, 1), (1500, 1)]: for p in [0, 1, 2, 3, 1.5, 2.5, float('inf')]: for trans in [False, True]: for dtype in [torch.float32, torch.float64]: self._pdist_single(shape, device, p, dtype, trans, grad_check=False) # do a simplified comparison with big inputs, see: # https://github.com/pytorch/pytorch/issues/15511 for dtype in [torch.float32, torch.float64]: self._pdist_single((1000, 2), device, 2, dtype, trans=False, grad_check=False) @slowTest def test_pdist_norm_backward(self, device): for shape in [(4, 5), (3, 2), (2, 1), (1500, 1)]: for p in [0, 1, 2, 3, 1.5, 2.5, float('inf')]: for trans in [False, True]: self._pdist_single(shape, device, p, torch.float64, trans, grad_check=True) @skipIfRocm def test_pdist_norm_large(self, device): # use dim0>=46342 for forward, see: # https://github.com/pytorch/pytorch/issues/30583 # Compare output using GPU with the CPU implementation, as brute_pdist uses too much memory if 'cuda' in device: x = torch.randn(50000, 1, dtype=torch.float32) expected_cpu = torch.pdist(x, p=2) actual_gpu = torch.pdist(x.to(device), p=2) self.assertTrue(torch.allclose(expected_cpu, actual_gpu.cpu())) def test_atan2(self, device): def _test_atan2_with_size(size, device): a = torch.rand(size=size, device=device, dtype=torch.double) b = torch.rand(size=size, device=device, dtype=torch.double) actual = a.atan2(b) x = a.view(-1) y = b.view(-1) expected = torch.tensor([math.atan2(x[i].item(), y[i].item()) for i in range(x.numel())], device=device, dtype=torch.double) self.assertTrue(torch.allclose(expected, actual.view(-1), rtol=0, atol=0.02)) _test_atan2_with_size((2, 2), device) _test_atan2_with_size((3, 3), device) _test_atan2_with_size((5, 5), device) def test_atan2_edgecases(self, device): def _test_atan2(x, y, expected, device, dtype): expected_tensor = torch.tensor([expected], dtype=dtype, device=device) x_tensor = torch.tensor([x], dtype=dtype, device=device) y_tensor = torch.tensor([y], dtype=dtype, device=device) actual = torch.atan2(y_tensor, x_tensor) self.assertTrue(torch.allclose(expected_tensor, actual, rtol=0, atol=0.02)) for dtype in [torch.float, torch.double]: _test_atan2(0, 0, 0, device, dtype) _test_atan2(0, 1, math.pi / 2, device, dtype) _test_atan2(0, -1, math.pi / -2, device, dtype) _test_atan2(-1, 0, math.pi, device, dtype) _test_atan2(1, 0, 0, device, dtype) _test_atan2(-1, -1, math.pi * -3 / 4 , device, dtype) _test_atan2(1, 1, math.pi / 4 , device, dtype) _test_atan2(1, -1, math.pi / -4 , device, dtype) _test_atan2(-1, 1, math.pi * 3 / 4 , device, dtype) @unittest.skipIf(not TEST_NUMPY, "Numpy not found") def test_trapz(self, device): def test_dx(sizes, dim, dx, device): t = torch.randn(sizes, device=device) actual = torch.trapz(t, dx=dx, dim=dim) expected = np.trapz(t.cpu().numpy(), dx=dx, axis=dim) self.assertEqual(expected.shape, actual.shape) self.assertTrue(np.allclose(expected, actual.cpu().numpy())) def test_x(sizes, dim, x, device): t = torch.randn(sizes, device=device) actual = torch.trapz(t, x=torch.tensor(x, device=device), dim=dim) expected = np.trapz(t.cpu().numpy(), x=x, axis=dim) self.assertEqual(expected.shape, actual.shape) self.assertTrue(np.allclose(expected, actual.cpu().numpy())) test_dx((2, 3, 4), 1, 1, device) test_dx((10, 2), 0, 0.1, device) test_dx((1, 10), 0, 2.3, device) test_dx((0, 2), 0, 1.0, device) test_dx((0, 2), 1, 1.0, device) test_x((2, 3, 4), 1, [1.0, 2.0, 3.0], device) test_x((10, 2), 0, [2.0, 3.0, 4.0, 7.0, 11.0, 14.0, 22.0, 26.0, 26.1, 30.3], device) test_x((1, 10), 0, [1.0], device) test_x((0, 2), 0, [], device) test_x((0, 2), 1, [1.0, 2.0], device) with self.assertRaisesRegex( IndexError, 'Dimension out of range'): test_x((2, 3), 2, [], device) test_dx((2, 3), 2, 1.0, device) with self.assertRaisesRegex( RuntimeError, 'There must be one `x` value for each sample point'): test_x((2, 3), 1, [1.0, 2.0], device) test_x((2, 3), 1, [1.0, 2.0, 3.0, 4.0], device) def test_reduction_empty(self, device): fns_to_test = [ # name, function, identity ('max', torch.max, None), ('kthvalue', lambda *args, **kwargs: torch.kthvalue(*args, k=1, **kwargs), None), ('argmax', torch.argmax, None), ('min', torch.min, None), ('argmin', torch.argmin, None), ('mode', torch.mode, None), ('median', torch.median, None), ('prod', torch.prod, 1), ('sum', torch.sum, 0), ('norm', torch.norm, 0), ('mean', torch.mean, nan), ('var', torch.var, nan), ('std', torch.std, nan), ('logsumexp', torch.logsumexp, -inf), ] shape = (2, 0, 4) x = torch.randn(shape, device=device) for fn in [torch.max, torch.min]: ident_err = 'operation does not have an identity' self.assertRaisesRegex(RuntimeError, ident_err, lambda: fn(x)) for item in fns_to_test: name, fn, identity = item if identity is None: ident_err = 'does not have an identity' self.assertRaisesRegex(RuntimeError, ident_err, lambda: fn(x, dim=2)) self.assertRaisesRegex(RuntimeError, ident_err, lambda: fn(x, dim=2, keepdim=True)) self.assertRaisesRegex(RuntimeError, ident_err, lambda: fn(x, dim=1)) self.assertRaisesRegex(RuntimeError, ident_err, lambda: fn(x, dim=1, keepdim=True)) else: self.assertEqual(torch.empty((2, 0), device=device), fn(x, dim=2)) self.assertEqual(torch.empty((2, 0, 1), device=device), fn(x, dim=2, keepdim=True)) # assertEqual doesn't work with inf, -inf, nan and two tensors. check = (torch.testing.assert_allclose if math.isnan(identity) or math.isinf(identity) else self.assertEqual) check(torch.full((2, 4), identity, device=device), fn(x, dim=1)) check(torch.full((2, 1, 4), identity, device=device), fn(x, dim=1, keepdim=True)) try: check(torch.full((), identity, device=device), fn(x)) except TypeError as err: # ignore if there is no allreduce. self.assertTrue('dim' in str(err)) # any xb = x.to(torch.uint8) yb = x.to(torch.uint8) self.assertEqual((2, 0), xb.any(2).shape) self.assertEqual((2, 0, 1), xb.any(2, keepdim=True).shape) self.assertEqual(torch.zeros((2, 4), device=device, dtype=torch.uint8), xb.any(1)) self.assertEqual(torch.zeros((2, 1, 4), device=device, dtype=torch.uint8), xb.any(1, keepdim=True)) self.assertEqual(torch.zeros((), device=device, dtype=torch.uint8), xb.any()) # all self.assertEqual((2, 0), xb.all(2).shape) self.assertEqual((2, 0, 1), xb.all(2, keepdim=True).shape) self.assertEqual(torch.ones((2, 4), device=device, dtype=torch.uint8), xb.all(1)) self.assertEqual(torch.ones((2, 1, 4), device=device, dtype=torch.uint8), xb.all(1, keepdim=True)) self.assertEqual(torch.ones((), device=device, dtype=torch.uint8), xb.all()) def test_addcdiv(self, device): def _test_addcdiv(a, alpha, b, c): actual = torch.addcdiv(a, b, c, value=alpha) # implementation of addcdiv downcasts alpha. arithmetic ops don't. if not actual.dtype.is_floating_point: alpha = int(alpha) expected = a + (alpha * b) / c self.assertTrue(torch.allclose(expected, actual, equal_nan=True)) with self.maybeWarnsRegex( UserWarning, "This overload of addcdiv is deprecated"): self.assertEqual(actual, torch.addcdiv(a, alpha, b, c)) def non_zero_rand(size, dtype, device): if dtype.is_floating_point: a = torch.rand(size=size, dtype=dtype, device=device) elif dtype == torch.uint8: a = torch.randint(1, 5, size=size, dtype=dtype, device=device) else: a = torch.randint(-5, 5, size=size, dtype=dtype, device=device) return a + (a == 0).type(dtype) for dtype in torch.testing.get_all_math_dtypes(device): _test_addcdiv( non_zero_rand((2, 2), dtype=dtype, device=device), 0.5, non_zero_rand((2, 2), dtype=dtype, device=device), non_zero_rand((2, 2), dtype=dtype, device=device)) # TODO: run on non-native device types @dtypes(torch.double) def test_unary_out_op_mem_overlap(self, device, dtype): sz = 3 doubles = torch.randn(2 * sz, dtype=dtype, device=device) positives = torch.randint(1, 100, (2 * sz,), device=device).double() ints = torch.randint(-100, 100, (2 * sz,), device=device) unary_mem_overlap_cases = [ ("abs", doubles, True, True, 'cpu'), ("abs", doubles, True, True, 'cuda'), ("acos", doubles, True, True, 'cpu'), ("acos", doubles, True, True, 'cuda'), ("asin", doubles, True, True, 'cpu'), ("asin", doubles, True, True, 'cuda'), ("atan", doubles, True, True, 'cpu'), ("atan", doubles, False, True, 'cuda'), ("bitwise_not", ints, True, True, 'cpu'), ("bitwise_not", ints, True, True, 'cuda'), ("ceil", doubles, True, True, 'cpu'), ("ceil", doubles, True, True, 'cuda'), ("cos", doubles, True, True, 'cpu'), ("cos", doubles, False, True, 'cuda'), ("cosh", doubles, True, True, 'cpu'), ("cosh", doubles, False, True, 'cuda'), ("digamma", doubles, True, True, 'cpu'), ("erf", doubles, True, True, 'cpu'), ("erf", doubles, False, True, 'cuda'), ("erfc", doubles, True, True, 'cpu'), ("erfc", doubles, False, True, 'cuda'), ("erfinv", doubles, True, True, 'cpu'), ("erfinv", doubles, True, True, 'cuda'), ("exp", doubles, True, True, 'cpu'), ("exp", doubles, False, True, 'cuda'), ("expm1", doubles, True, True, 'cpu'), ("expm1", doubles, True, True, 'cuda'), ("floor", doubles, True, True, 'cpu'), ("floor", doubles, True, True, 'cuda'), ("frac", doubles, True, True, 'cpu'), ("frac", doubles, True, True, 'cuda'), ("log", positives, True, True, 'cpu'), ("log", positives, True, True, 'cuda'), ("log10", positives, True, True, 'cpu'), ("log10", positives, True, True, 'cuda'), ("log1p", positives, True, True, 'cpu'), ("log1p", positives, True, True, 'cuda'), ("log2", positives, True, True, 'cpu'), ("log2", positives, True, True, 'cuda'), ("neg", doubles, True, True, 'cpu'), ("neg", doubles, True, True, 'cuda'), ("reciprocal", doubles, True, True, 'cpu'), ("reciprocal", doubles, True, True, 'cuda'), ("round", doubles, True, True, 'cpu'), ("round", doubles, True, True, 'cuda'), ("rsqrt", positives, True, True, 'cpu'), ("rsqrt", positives, True, True, 'cuda'), ("sin", doubles, True, True, 'cpu'), ("sin", doubles, True, True, 'cuda'), ("sinh", doubles, True, True, 'cpu'), ("sinh", doubles, False, True, 'cuda'), ("sigmoid", doubles, True, True, 'cpu'), ("sigmoid", doubles, True, True, 'cuda'), ("sqrt", doubles, True, True, 'cpu'), ("sqrt", doubles, False, True, 'cuda'), ("tan", doubles, True, True, 'cpu'), ("tan", doubles, False, True, 'cuda'), ("tanh", doubles, True, True, 'cpu'), ("tanh", doubles, False, True, 'cuda'), ("trunc", doubles, True, True, 'cpu'), ("trunc", doubles, True, True, 'cuda') ] for (fn, inputs, has_input_output_mem_overlap_check, has_internal_mem_overlap_check, dev) in unary_mem_overlap_cases: if dev != device: continue out_fn = getattr(torch, fn) in_fn = getattr(torch.Tensor, fn + '_') self.unary_check_input_output_mem_overlap(inputs, sz, out_fn, expected_failure=not has_input_output_mem_overlap_check) self.check_internal_mem_overlap(in_fn, 1, dtype, dev, expected_failure=not has_internal_mem_overlap_check) @dtypes(torch.double) def test_binary_op_mem_overlap(self, device, dtype): ops = [ ("add", True, True, 'cpu'), ("add", True, True, 'cuda'), ("mul", True, True, 'cpu'), ("mul", True, True, 'cuda'), ("sub", True, True, 'cpu'), ("sub", True, True, 'cuda'), ("div", True, True, 'cpu'), ("div", True, True, 'cuda'), ("pow", True, True, 'cpu'), ("pow", True, True, 'cuda') ] for (fn, has_input_output_mem_overlap_check, has_internal_mem_overlap_check, dev) in ops: if dev != device: continue out_op = getattr(torch, fn) inplace_op = getattr(torch.Tensor, fn + '_') self.check_internal_mem_overlap( inplace_op, 2, dtype, device, expected_failure=not has_internal_mem_overlap_check) self.binary_check_input_output_mem_overlap(out_op, device, expected_failure=not has_input_output_mem_overlap_check) @dtypes(torch.double) def test_ternary_op_mem_overlap(self, device, dtype): ops = [ ("addcmul", True, True, 'cpu'), ("addcmul", True, True, 'cuda'), ("addcdiv", True, True, 'cpu'), ("addcdiv", True, True, 'cuda'), ("lerp", True, True, 'cpu'), ("lerp", False, False, 'cuda') ] for (fn, has_input_output_mem_overlap_check, has_internal_mem_overlap_check, dev) in ops: if dev != device: continue out_op = getattr(torch, fn) inplace_op = getattr(torch.Tensor, fn + '_') self.check_internal_mem_overlap( inplace_op, 3, dtype, device, expected_failure=not has_internal_mem_overlap_check) self.ternary_check_input_output_mem_overlap(out_op, dev, expected_failure=not has_input_output_mem_overlap_check) @dtypes(torch.double) def test_copy_mem_overlap(self, device, dtype): self.check_internal_mem_overlap( torch.Tensor.copy_, num_inputs=2, dtype=dtype, device=device) sz = 3 doubles = torch.randn(2 * sz, dtype=dtype, device=device) self.unary_check_input_output_mem_overlap( doubles, sz, lambda input, out: out.copy_(input)) @dtypes(torch.double) def test_pow_scalar_overloads_mem_overlap(self, device, dtype): sz = 3 doubles = torch.randn(2 * sz, dtype=dtype, device=device) self.check_internal_mem_overlap( lambda t: t.pow_(42), 1, dtype, device) self.unary_check_input_output_mem_overlap( doubles, sz, lambda input, out: torch.pow(input, 42, out=out)) self.unary_check_input_output_mem_overlap( doubles, sz, lambda input, out: torch.pow(42, input, out=out)) @unittest.skipIf(not TEST_NUMPY, 'Numpy not found') def test_int_pow(self, device): def _test_integral_pow(dt, range, dev): tensor = torch.tensor((3, 3), dtype=dt, device=dev).random_(*range) exps = [0, 1, 2, 4, torch.tensor((3, 3), dtype=dt, device=dev).random_(0, 5)] for exp in exps: self._test_pow(tensor, exp) _test_integral_pow(torch.int8, (-3, 4), device) _test_integral_pow(torch.uint8, (0, 4), device) _test_integral_pow(torch.int16, (-5, 5), device) _test_integral_pow(torch.int64, (-10, 10), device) _test_integral_pow(torch.int32, (-10, 10), device) @unittest.skipIf(not TEST_NUMPY, 'Numpy not found') def test_int_tensor_pow_neg_ints(self, device): ints = [torch.iinfo(torch.int32).min, -3, -2, -1, 0, 1, 2, 3, torch.iinfo(torch.int32).max] neg_ints = [torch.iinfo(torch.int32).min, -3, -2, -1] tensor = torch.tensor(ints, dtype=torch.int32, device=device) for pow in neg_ints: self._test_pow(tensor, pow) @unittest.skipIf(not TEST_NUMPY, 'Numpy not found') def test_long_tensor_pow_floats(self, device): ints = [0, 1, 23, 4567] floats = [0.0, 1 / 3, 1 / 2, 1.0, 3 / 2, 2.0] tensor = torch.tensor(ints, dtype=torch.int64, device=device) for pow in floats: self._test_pow(tensor, pow) @unittest.skipIf(not TEST_NUMPY, 'Numpy not found') def test_float_scalar_pow_float_tensor(self, device): floats = [2.0, -3 / 2, -1.0, -1 / 2, -1 / 3, 0.0, 1 / 3, 1 / 2, 1.0, 3 / 2, 2.0] tensor = torch.tensor(floats, dtype=torch.float32, device=device) for base in floats: self._test_pow(base, tensor) @unittest.skipIf(not TEST_NUMPY, 'Numpy not found') def test_tensor_pow_tensor(self, dev): def rotate(l, n): return l[-n:] + l[:-n] def test_tensor_pow_tensor(values, torch_type, numpy_type): vals_tensor = torch.tensor(values, dtype=torch_type, device=dev) for i in range(len(values)): pows = rotate(values, i) pows_tensor = torch.tensor(pows, dtype=torch_type, device=dev) self._test_pow(vals_tensor, pows_tensor) ints = [0, 1, 2, 3] test_tensor_pow_tensor(ints, torch.int32, np.int32) test_tensor_pow_tensor(ints, torch.int64, np.int64) floats = [-3.0, -2.0, -1.0, -1 / 2, -1 / 3, 0.0, 1 / 3, 1 / 2, 1.0, 2.0, 3.0] test_tensor_pow_tensor(floats, torch.float32, np.float32) test_tensor_pow_tensor(floats, torch.float64, np.float64) @dtypes(torch.float) def test_add_with_tail(self, device, dtype): # test tensor where there is a tail which is not a multiple # of GPU warp size for tail_size in [1, 63, 67, 130]: size = 4096 + tail_size a = torch.randn(size, device=device, dtype=dtype) b = torch.randn(size, device=device, dtype=dtype) c = a + b for x, y, z in zip(a.tolist(), b.tolist(), c.tolist()): self.assertEqual(x + y, z) def test_logical_xor_with_nontrivial_alignment(self, device): # test tensor that is not aligned to multiple of 16 bytes size = 128 a = (torch.randn(size, device=device) > 0) b = (torch.randn(size, device=device) > 0) c = (torch.randn(size, device=device) > 0) non_trivial_alignment = [1, 2, 4, 8, 15] for i in non_trivial_alignment: for j in non_trivial_alignment: for k in non_trivial_alignment: a_ = a[i: 100 + i] b_ = b[j: 100 + j] c_ = c[k: 100 + k] torch.logical_xor(a_, b_, out=c_) for x, y, z in zip(a_.tolist(), b_.tolist(), c_.tolist()): self.assertEqual(x ^ y, z) def test_var_mean_some_dims(self, device): sizes = (4, 6, 7, 5, 3) dims = len(sizes) x = torch.rand(sizes, device=device) for num_of_dims in range(2, dims): dim_list = list(combinations(list(range(dims)), r=num_of_dims)) for dim in dim_list: for unbiased in [False, True]: for keepdim in [False, True]: var1, mean1 = torch.var_mean(x, dim=dim, unbiased=unbiased, keepdim=keepdim) var2 = x.var(dim=dim, unbiased=unbiased, keepdim=keepdim) mean2 = x.mean(dim=dim, keepdim=keepdim) self.assertEqual(var1, var2) self.assertEqual(mean1, mean2) # passes on ROCm w/ python 2.7, fails w/ python 3.6 @skipCUDAIfRocm # stft -> rfft -> _fft -> _fft_with_size -> _fft_mkl @unittest.skipIf(not TEST_MKL, "PyTorch is built without MKL support") @dtypes(torch.double) def test_stft(self, device, dtype): if not TEST_LIBROSA: raise unittest.SkipTest('librosa not found') def librosa_stft(x, n_fft, hop_length, win_length, window, center): if window is None: window = np.ones(n_fft if win_length is None else win_length) else: window = window.cpu().numpy() input_1d = x.dim() == 1 if input_1d: x = x.view(1, -1) result = [] for xi in x: ri = librosa.stft(xi.cpu().numpy(), n_fft, hop_length, win_length, window, center=center) result.append(torch.from_numpy(np.stack([ri.real, ri.imag], -1))) result = torch.stack(result, 0) if input_1d: result = result[0] return result def _test(sizes, n_fft, hop_length=None, win_length=None, win_sizes=None, center=True, expected_error=None): x = torch.randn(*sizes, dtype=dtype, device=device) if win_sizes is not None: window = torch.randn(*win_sizes, dtype=dtype, device=device) else: window = None if expected_error is None: result = x.stft(n_fft, hop_length, win_length, window, center=center) # NB: librosa defaults to np.complex64 output, no matter what # the input dtype ref_result = librosa_stft(x, n_fft, hop_length, win_length, window, center) self.assertEqual(result, ref_result, 7e-6, 'stft comparison against librosa', exact_dtype=False) else: self.assertRaises(expected_error, lambda: x.stft(n_fft, hop_length, win_length, window, center=center)) for center in [True, False]: _test((10,), 7, center=center) _test((10, 4000), 1024, center=center) _test((10,), 7, 2, center=center) _test((10, 4000), 1024, 512, center=center) _test((10,), 7, 2, win_sizes=(7,), center=center) _test((10, 4000), 1024, 512, win_sizes=(1024,), center=center) # spectral oversample _test((10,), 7, 2, win_length=5, center=center) _test((10, 4000), 1024, 512, win_length=100, center=center) _test((10, 4, 2), 1, 1, expected_error=RuntimeError) _test((10,), 11, 1, center=False, expected_error=RuntimeError) _test((10,), -1, 1, expected_error=RuntimeError) _test((10,), 3, win_length=5, expected_error=RuntimeError) _test((10,), 5, 4, win_sizes=(11,), expected_error=RuntimeError) _test((10,), 5, 4, win_sizes=(1, 1), expected_error=RuntimeError) @skipIfRocm def test_fft_input_modification(self, device): # FFT functions should not modify their input (gh-34551) signal = torch.ones((2, 2, 2), device=device) signal_copy = signal.clone() spectrum = torch.fft(signal, 2) self.assertEqual(signal, signal_copy) spectrum_copy = spectrum.clone() _ = torch.ifft(spectrum, 2) self.assertEqual(spectrum, spectrum_copy) half_spectrum = torch.rfft(signal, 2) self.assertEqual(signal, signal_copy) half_spectrum_copy = half_spectrum.clone() _ = torch.irfft(half_spectrum_copy, 2, signal_sizes=(2, 2)) self.assertEqual(half_spectrum, half_spectrum_copy) @skipCUDAIfRocm def test_blas_empty(self, device): def fn(torchfn, *args, **kwargs): return torchfn(*tuple(torch.randn(shape, device=device) if isinstance(shape, tuple) else shape for shape in args), **kwargs) # mm, addmm self.assertEqual((0, 0), fn(torch.mm, (0, 0), (0, 0)).shape) self.assertEqual((0, 5), fn(torch.mm, (0, 0), (0, 5)).shape) self.assertEqual((5, 0), fn(torch.mm, (5, 0), (0, 0)).shape) self.assertEqual((3, 0), fn(torch.mm, (3, 2), (2, 0)).shape) self.assertEqual(torch.zeros((5, 6), device=device), fn(torch.mm, (5, 0), (0, 6))) self.assertEqual((0, 0), fn(torch.addmm, (0, 0), (0, 0), (0, 0)).shape) self.assertEqual((5, 6), fn(torch.addmm, (5, 6), (5, 0), (0, 6)).shape) self.assertEqual((0, 1), fn(torch.addmm, (1, ), (0, 17), (17, 1)).shape) # mv, addmv self.assertEqual((0,), fn(torch.mv, (0, 0), (0,)).shape) self.assertEqual((0,), fn(torch.mv, (0, 2), (2,)).shape) self.assertEqual(torch.zeros((3,), device=device), fn(torch.mv, (3, 0), (0,))) self.assertEqual((0,), fn(torch.addmv, (0,), (0, 0), (0,)).shape) self.assertEqual((3,), fn(torch.addmv, (3,), (3, 0), (0,)).shape) # ger, addr self.assertEqual((0, 0), fn(torch.ger, (0,), (0,)).shape) self.assertEqual((5, 0), fn(torch.ger, (5,), (0,)).shape) self.assertEqual((0, 4), fn(torch.ger, (0,), (4,)).shape) self.assertEqual((0, 0), fn(torch.addr, (0, 0), (0,), (0,)).shape) self.assertEqual((5, 0), fn(torch.addr, (5, 0), (5,), (0,)).shape) self.assertEqual((0, 4), fn(torch.addr, (0, 4), (0,), (4,)).shape) # bmm, baddbmm self.assertEqual((0, 0, 0), fn(torch.bmm, (0, 0, 0), (0, 0, 0)).shape) self.assertEqual((3, 0, 5), fn(torch.bmm, (3, 0, 0), (3, 0, 5)).shape) self.assertEqual((0, 5, 6), fn(torch.bmm, (0, 5, 0), (0, 0, 6)).shape) self.assertEqual(torch.zeros((3, 5, 6), device=device), fn(torch.bmm, (3, 5, 0), (3, 0, 6))) self.assertEqual((0, 0, 0), fn(torch.baddbmm, (0, 0, 0), (0, 0, 0), (0, 0, 0)).shape) self.assertEqual((3, 0, 5), fn(torch.baddbmm, (3, 0, 5), (3, 0, 0), (3, 0, 5)).shape) self.assertEqual((0, 5, 6), fn(torch.baddbmm, (0, 5, 6), (0, 5, 0), (0, 0, 6)).shape) self.assertEqual((3, 5, 6), fn(torch.baddbmm, (3, 5, 6), (3, 5, 0), (3, 0, 6)).shape) c = torch.arange(30, dtype=torch.float32, device=device).reshape(3, 2, 5) self.assertEqual(-2 * c, fn(torch.baddbmm, c, (3, 2, 0), (3, 0, 5), beta=-2)) # Issue #33467 # addbmm self.assertEqual((0, 0), fn(torch.addbmm, (0, 0), (0, 0, 0), (0, 0, 0)).shape) self.assertEqual((0, 5), fn(torch.addbmm, (0, 5), (3, 0, 0), (3, 0, 5)).shape) self.assertEqual((5, 6), fn(torch.addbmm, (5, 6), (0, 5, 0), (0, 0, 6)).shape) # matmul self.assertEqual(torch.tensor(0., device=device), fn(torch.matmul, (0,), (0,))) self.assertEqual((0, 0), fn(torch.matmul, (0, 0), (0, 0)).shape) self.assertEqual((0, 0, 0), fn(torch.matmul, (0, 0, 0), (0, 0, 0)).shape) self.assertEqual((5, 0, 0), fn(torch.matmul, (5, 0, 0), (5, 0, 0)).shape) self.assertEqual(torch.zeros((5, 3, 4), device=device), fn(torch.matmul, (5, 3, 0), (5, 0, 4))) # dot self.assertEqual(torch.tensor(0., device=device), fn(torch.dot, (0,), (0,))) if torch._C.has_lapack: # lu A_LU, pivots = fn(torch.lu, (0, 5, 5)) self.assertEqual([(0, 5, 5), (0, 5)], [A_LU.shape, pivots.shape]) A_LU, pivots = fn(torch.lu, (0, 0, 0)) self.assertEqual([(0, 0, 0), (0, 0)], [A_LU.shape, pivots.shape]) A_LU, pivots = fn(torch.lu, (2, 0, 0)) self.assertEqual([(2, 0, 0), (2, 0)], [A_LU.shape, pivots.shape]) @skipCUDAIfRocm def test_blas_alpha_beta_empty(self, device): # ensure beta is respected value = 11 input = torch.full((2,), value, device=device) mat = torch.ones((2, 0), device=device) vec = torch.ones((0,), device=device) out = torch.randn((2,), device=device) alpha = 6 beta = 3 self.assertEqual(torch.full((2,), beta * value, device=device), torch.addmv(input=input, mat=mat, vec=vec, alpha=alpha, beta=beta)) self.assertEqual(torch.full((2,), beta * value, device=device), torch.addmv(input=input, mat=mat, vec=vec, alpha=alpha, beta=beta, out=out)) # torch.addmm input = torch.full((2, 3), value, device=device) mat2 = torch.ones((0, 3), device=device) out = torch.randn((2, 3), device=device) self.assertEqual(torch.full((2, 3), beta * value, device=device), torch.addmm(input=input, mat1=mat, mat2=mat2, alpha=alpha, beta=beta)) self.assertEqual(torch.full((2, 3), beta * value, device=device), torch.addmm(input=input, mat1=mat, mat2=mat2, alpha=alpha, beta=beta, out=out)) @onlyCPU # not supported by CUBLAS def test_blas_nan_out(self, device): # These functions should work correctly with NaN filled outputs, # but need special handling, see [NOTE: cpu_zero] b = 3 n = 5 m = 7 p = 11 # torch.mv nm = torch.randn((m, n), device=device).t() _m = torch.randn((), device=device).expand(m) _m_out = torch.full((m,), float('nan'), device=device) self.assertEqual(torch.mv(nm, _m), torch.mv(nm, _m, out=_m_out)) self.assertEqual(0, torch.isnan(torch.mv(nm, _m)).sum()) # torch.mm mp = torch.randn((p, m), device=device).t() np_out = torch.full((n, p), float('nan'), device=device) self.assertEqual(torch.mm(nm, mp), torch.mm(nm, mp, out=np_out)) # torch.bmm bnm = torch.randn((b, m, n), device=device).transpose(1, 2) bmp = torch.randn((b, p, m), device=device).transpose(1, 2) bnp_out = torch.full((b, n, p), float('nan'), device=device) self.assertEqual(torch.bmm(bnm, bmp), torch.bmm(bnm, bmp, out=bnp_out)) @onlyCPU # not supported by CUBLAS def test_blas_mv_large_input(self, device): # This would previously fail if the allocated output had NaNs, see: # https://github.com/pytorch/pytorch/issues/31663 and [NOTE: cpu_zero] n = 3000 m = 200 nm = torch.randn((m, n), device=device).t() _m = torch.randn((), device=device).expand(m) _m_out = torch.full((m,), 0., device=device) self.assertEqual(torch.mv(nm, _m), torch.mv(nm, _m, out=_m_out)) @skipCUDAIfRocm def test_unique_dim(self, device): self.assertFalse(hasattr(torch, 'unique_dim')) def run_test(device, dtype): x = torch.tensor([[[1., 1.], [0., 1.], [2., 1.], [0., 1.]], [[1., 1.], [0., 1.], [2., 1.], [0., 1.]]], dtype=dtype, device=device) x_empty = torch.empty(5, 0, dtype=dtype, device=device) x_ill_formed_empty = torch.empty(5, 0, 0, dtype=dtype, device=device) x_ill_formed_empty_another = torch.empty(5, 0, 5, dtype=dtype, device=device) expected_unique_dim0 = torch.tensor([[[1., 1.], [0., 1.], [2., 1.], [0., 1.]]], dtype=dtype, device=device) expected_inverse_dim0 = torch.tensor([0, 0]) expected_counts_dim0 = torch.tensor([2]) expected_unique_dim1 = torch.tensor([[[0., 1.], [1., 1.], [2., 1.]], [[0., 1.], [1., 1.], [2., 1.]]], dtype=dtype, device=device) expected_unique_dim1_bool = torch.tensor([[[False, True], [True, True]], [[False, True], [True, True]]], dtype=torch.bool, device=device) expected_inverse_dim1 = torch.tensor([1, 0, 2, 0]) expected_inverse_dim1_bool = torch.tensor([1, 0, 1, 0]) expected_counts_dim1 = torch.tensor([2, 1, 1]) expected_counts_dim1_bool = torch.tensor([2, 2]) expected_unique_dim2 = torch.tensor([[[1., 1.], [0., 1.], [2., 1.], [0., 1.]], [[1., 1.], [0., 1.], [2., 1.], [0., 1.]]], dtype=dtype, device=device) expected_inverse_dim2 = torch.tensor([0, 1]) expected_counts_dim2 = torch.tensor([1, 1]) expected_unique_empty = torch.tensor([], dtype=dtype, device=device) expected_inverse_empty = torch.tensor([], dtype=torch.long, device=device) expected_counts_empty = torch.tensor([], dtype=torch.long, device=device) # dim0 x_unique = torch.unique(x, dim=0) self.assertEqual(expected_unique_dim0, x_unique) x_unique, x_inverse = torch.unique( x, return_inverse=True, dim=0) self.assertEqual(expected_unique_dim0, x_unique) self.assertEqual(expected_inverse_dim0, x_inverse) x_unique, x_counts = torch.unique( x, return_inverse=False, return_counts=True, dim=0) self.assertEqual(expected_unique_dim0, x_unique) self.assertEqual(expected_counts_dim0, x_counts) x_unique, x_inverse, x_counts = torch.unique( x, return_inverse=True, return_counts=True, dim=0) self.assertEqual(expected_unique_dim0, x_unique) self.assertEqual(expected_inverse_dim0, x_inverse) self.assertEqual(expected_counts_dim0, x_counts) # dim1 x_unique = torch.unique(x, dim=1) if x.dtype == torch.bool: self.assertEqual(expected_unique_dim1_bool, x_unique) else: self.assertEqual(expected_unique_dim1, x_unique) x_unique, x_inverse = torch.unique( x, return_inverse=True, dim=1) if x.dtype == torch.bool: self.assertEqual(expected_unique_dim1_bool, x_unique) self.assertEqual(expected_inverse_dim1_bool, x_inverse) else: self.assertEqual(expected_unique_dim1, x_unique) self.assertEqual(expected_inverse_dim1, x_inverse) x_unique, x_counts = torch.unique( x, return_inverse=False, return_counts=True, dim=1) if x.dtype == torch.bool: self.assertEqual(expected_unique_dim1_bool, x_unique) self.assertEqual(expected_counts_dim1_bool, x_counts) else: self.assertEqual(expected_unique_dim1, x_unique) self.assertEqual(expected_counts_dim1, x_counts) x_unique, x_inverse, x_counts = torch.unique( x, return_inverse=True, return_counts=True, dim=1) if x.dtype == torch.bool: self.assertEqual(expected_unique_dim1_bool, x_unique) self.assertEqual(expected_inverse_dim1_bool, x_inverse) self.assertEqual(expected_counts_dim1_bool, x_counts) else: self.assertEqual(expected_unique_dim1, x_unique) self.assertEqual(expected_inverse_dim1, x_inverse) self.assertEqual(expected_counts_dim1, x_counts) # dim2 x_unique = torch.unique(x, dim=2) self.assertEqual(expected_unique_dim2, x_unique) x_unique, x_inverse = torch.unique( x, return_inverse=True, dim=2) self.assertEqual(expected_unique_dim2, x_unique) self.assertEqual(expected_inverse_dim2, x_inverse) x_unique, x_counts = torch.unique( x, return_inverse=False, return_counts=True, dim=2) self.assertEqual(expected_unique_dim2, x_unique) self.assertEqual(expected_counts_dim2, x_counts) x_unique, x_inverse, x_counts = torch.unique( x, return_inverse=True, return_counts=True, dim=2) self.assertEqual(expected_unique_dim2, x_unique) self.assertEqual(expected_inverse_dim2, x_inverse) self.assertEqual(expected_counts_dim2, x_counts) # test empty tensor x_unique, x_inverse, x_counts = torch.unique( x_empty, return_inverse=True, return_counts=True, dim=1) self.assertEqual(expected_unique_empty, x_unique) self.assertEqual(expected_inverse_empty, x_inverse) self.assertEqual(expected_counts_empty, x_counts) # test not a well formed tensor # Checking for runtime error, as this is the expected behaviour with self.assertRaises(RuntimeError): torch.unique( x_ill_formed_empty, return_inverse=True, return_counts=True, dim=1) # test along dim2 with self.assertRaises(RuntimeError): torch.unique( x_ill_formed_empty_another, return_inverse=True, return_counts=True, dim=2) # test consecutive version y = torch.tensor( [[0, 1], [0, 1], [0, 1], [1, 2], [1, 2], [3, 4], [0, 1], [0, 1], [3, 4], [1, 2]], dtype=dtype, device=device ) expected_y_unique = torch.tensor( [[0, 1], [1, 2], [3, 4], [0, 1], [3, 4], [1, 2]], dtype=dtype, device=device ) expected_y_inverse = torch.tensor([0, 0, 0, 1, 1, 2, 3, 3, 4, 5], dtype=torch.int64, device=device) expected_y_counts = torch.tensor([3, 2, 1, 2, 1, 1], dtype=torch.int64, device=device) expected_y_inverse_bool = torch.tensor([0, 0, 0, 1, 1, 1, 2, 2, 3, 3], dtype=torch.int64, device=device) expected_y_counts_bool = torch.tensor([3, 3, 2, 2], dtype=torch.int64, device=device) y_unique, y_inverse, y_counts = torch.unique_consecutive(y, return_inverse=True, return_counts=True, dim=0) if x.dtype == torch.bool: self.assertEqual(expected_y_inverse_bool, y_inverse) self.assertEqual(expected_y_counts_bool, y_counts) else: self.assertEqual(expected_y_inverse, y_inverse) self.assertEqual(expected_y_counts, y_counts) run_test(device, torch.float) run_test(device, torch.double) run_test(device, torch.long) run_test(device, torch.uint8) run_test(device, torch.bool) @deviceCountAtLeast(2) @onlyCUDA def test_reverse_binary_ops_multiple_device(self, devices): self.assertEqual(2 + torch.tensor(3), 2 + torch.tensor(3).to(devices[1])) # __radd__ self.assertEqual(2 - torch.tensor(3), 2 - torch.tensor(3).to(devices[1])) # __rsub__ self.assertEqual(2 * torch.tensor(3), 2 * torch.tensor(3).to(devices[1])) # __rmul__ self.assertEqual(2 / torch.tensor(3), 2 / torch.tensor(3).to(devices[1])) # __rtruediv__ self.assertEqual(2 // torch.tensor(3), 2 // torch.tensor(3).to(devices[1])) # __rfloordiv__ self.assertEqual( torch.tensor(2).to(devices[1]) + torch.tensor(3).to(devices[0]), torch.tensor(2) + torch.tensor(3)) self.assertEqual( torch.tensor(2).to(devices[1]) - torch.tensor(3).to(devices[0]), torch.tensor(2) - torch.tensor(3)) self.assertEqual( torch.tensor(2).to(devices[1]) * torch.tensor(3).to(devices[0]), torch.tensor(2) * torch.tensor(3)) self.assertEqual( torch.tensor(2).to(devices[1]) / torch.tensor(3).to(devices[0]), torch.tensor(2) / torch.tensor(3)) self.assertEqual( torch.tensor(2).to(devices[1]) // torch.tensor(3).to(devices[0]), torch.tensor(2) // torch.tensor(3)) @onlyCUDA def test_ceil_out_mismatch(self, device): a = torch.randn(1) b = torch.randn(1, device=device) self.assertRaises(RuntimeError, lambda: torch.ceil(a, out=b)) @unittest.skipIf(not TEST_NUMPY, "Numpy not found") def test_has_storage_numpy(self, device): for dtype in [np.float32, np.float64, np.int64, np.int32, np.int16, np.uint8]: arr = np.array([1], dtype=dtype) self.assertIsNotNone(torch.tensor(arr, device=device, dtype=torch.float32).storage()) self.assertIsNotNone(torch.tensor(arr, device=device, dtype=torch.double).storage()) self.assertIsNotNone(torch.tensor(arr, device=device, dtype=torch.int).storage()) self.assertIsNotNone(torch.tensor(arr, device=device, dtype=torch.long).storage()) self.assertIsNotNone(torch.tensor(arr, device=device, dtype=torch.uint8).storage()) def test_all_any_empty(self, device): x = torch.ByteTensor().to(device) self.assertTrue(x.all()) self.assertFalse(x.any()) x = torch.BoolTensor().to(device) self.assertTrue(x.all()) self.assertFalse(x.any()) @onlyCUDA def test_multinomial_device_constrain(self, device): x = torch.empty(0, device="cpu") y = torch.empty(0, device=device) self.assertRaisesRegex( RuntimeError, "multinomial arguments must have the same device", lambda: torch.multinomial(x, 2, out=y)) @deviceCountAtLeast(2) @onlyCUDA def test_multinomial_gpu_device_constrain(self, devices): x = torch.empty(0, device=devices[0]) y = torch.empty(0, device=devices[1]) self.assertRaisesRegex( RuntimeError, "multinomial arguments must have the same device", lambda: torch.multinomial(x, 2, out=y)) @deviceCountAtLeast(2) @onlyCUDA def test_device_guard(self, devices): # verify that all operators with `device_guard: False` behave properly with multiple devices. # TODO: if we had operator introspection we could figure out this set of operators automatically... x = torch.randn((1, 2, 3), device=devices[1]) y = torch.zeros((1, 3, 2), device=devices[1]) scalar = torch.tensor(5, device=devices[1]) # property ops torch.cudnn_is_acceptable(x) x.is_distributed() x.is_floating_point() x.is_complex() x.is_same_size(y) x.is_signed() x.size(0) x.stride(0) x.numel() x.is_set_to(y) x.data_ptr() scalar.is_nonzero() # sparse property ops y[0][1] = 5 y_sparse = y.to_sparse() y_sparse.sparse_dim() y_sparse._dimI() y_sparse.dense_dim() y_sparse._dimV() y_sparse._nnz() y_sparse.is_coalesced() y_sparse._indices() y_sparse._values() y_sparse.indices() y_sparse.values() # in-place ops def inplace(): return torch.randn((1, 2, 3), device=devices[1]) inplace().as_strided_(y.size(), y.stride()) inplace().resize_(y.size()) inplace().squeeze_() inplace().squeeze_(0) inplace().unsqueeze_(2) inplace().transpose_(1, 2) inplace().squeeze_().t_() inplace().set_(x.storage()) inplace().set_(x.storage(), x.storage_offset(), x.size(), x.stride()) inplace().set_(x) inplace().set_() y_sparse._coalesced_(True) # shape modification x.as_strided(y.size(), y.stride()) x.expand((5, 2, 3)) x.expand_as(x) x.sum_to_size((1,)) torch.broadcast_tensors(x , x) x.reshape((1, 3, 2)) x.reshape_as(y) x.squeeze() x.squeeze(0) x.squeeze().t() x.transpose(1, 2) x.unsqueeze(2) x.view((1, 3, 2)) x.view_as(y) # chunk, split, etc. x.chunk(2, dim=1) x.split(1, dim=2) x.split_with_sizes([1, 2], dim=2) x.unfold(dimension=2, size=1, step=1) x.narrow(1, 1, 1) x.select(1, 1) torch.isnan(x) torch.empty((1, 3, 2), out=y) torch.empty_like(x) torch.empty_like(x, dtype=torch.int64) # to x.to(x) x.to(y) x.to(x, copy=True) @onlyCUDA def test_tensor_factory_gpu_type_inference(self, device): saved_type = torch.Tensor().type() torch.set_default_tensor_type(torch.cuda.DoubleTensor) torch.set_default_dtype(torch.float32) self.assertIs(torch.float32, torch.tensor(0.).dtype) self.assertEqual(torch.device(device), torch.tensor(0.).device) torch.set_default_dtype(torch.float64) self.assertIs(torch.float64, torch.tensor(0.).dtype) self.assertEqual(torch.device(device), torch.tensor(0.).device) torch.set_default_tensor_type(saved_type) @onlyCUDA def test_tensor_factory_gpu_type(self, device): saved_type = torch.Tensor().type() torch.set_default_tensor_type(torch.cuda.FloatTensor) x = torch.zeros((5, 5)) self.assertIs(torch.float32, x.dtype) self.assertTrue(x.is_cuda) torch.set_default_tensor_type(torch.cuda.DoubleTensor) x = torch.zeros((5, 5)) self.assertIs(torch.float64, x.dtype) self.assertTrue(x.is_cuda) torch.set_default_tensor_type(saved_type) @onlyCPU def test_renorm_ps(self, device): # full reduction x = torch.randn(5, 5) xn = x.numpy() for p in [1, 2, 3, 4, inf]: res = x.renorm(p, 1, 1) expected = x / x.norm(p, 0, keepdim=True).clamp(min=1) self.assertEqual(res.numpy(), expected.numpy(), "renorm failed for {}-norm".format(p)) @onlyCUDA def test_topk_noncontiguous_gpu(self, device): t = torch.randn(20, device=device)[::2] top1, idx1 = t.topk(5) top2, idx2 = t.contiguous().topk(5) self.assertEqual(top1, top2) self.assertEqual(idx1, idx2) def test_topk_nonfinite(self, device): for dtype in (torch.float, torch.double): x = torch.tensor([float('nan'), float('inf'), 1e10, 0, -1e10, -float('inf')], device=device) val, idx = x.topk(4) expect = torch.tensor([float('nan'), float('inf'), 1e10, 0], device=device) self.assertEqual(val, expect, allow_inf=True) self.assertEqual(idx, [0, 1, 2, 3]) val, idx = x.topk(4, largest=False) expect = torch.tensor([-float('inf'), -1e10, 0, 1e10], device=device) self.assertEqual(val, expect, allow_inf=True) self.assertEqual(idx, [5, 4, 3, 2]) def test_is_signed(self, device): self.assertEqual(torch.IntTensor(5).to(device).is_signed(), True) self.assertEqual(torch.ByteTensor(5).to(device).is_signed(), False) self.assertEqual(torch.CharTensor(5).to(device).is_signed(), True) self.assertEqual(torch.FloatTensor(5).to(device).is_signed(), True) self.assertEqual(torch.HalfTensor(10).to(device).is_signed(), True) # Note - reports a leak of 512 bytes on CUDA device 1 @deviceCountAtLeast(2) @skipCUDAMemoryLeakCheckIf(True) @onlyCUDA def test_tensor_set_errors_multigpu(self, devices): f_cuda0 = torch.randn((2, 3), dtype=torch.float32, device=devices[0]) f_cuda1 = torch.randn((2, 3), dtype=torch.float32, device=devices[1]) self.assertRaises(RuntimeError, lambda: f_cuda0.set_(f_cuda1.storage())) self.assertRaises(RuntimeError, lambda: f_cuda0.set_(f_cuda1.storage(), 0, f_cuda1.size(), f_cuda1.stride())) self.assertRaises(RuntimeError, lambda: f_cuda0.set_(f_cuda1)) @onlyCUDA def test_half_tensor(self, device): x = torch.randn(5, 5).half() self.assertEqual(x.to(device), x) xc = x.to(device) with tempfile.NamedTemporaryFile() as f: torch.save(xc, f) f.seek(0) xc2 = torch.load(f) self.assertIsInstance(xc2, type(xc)) self.assertEqual(xc.float(), xc2.float()) @onlyCUDA @deviceCountAtLeast(1) # Note: Tests works with one but prefers more devices def test_serialization(self, devices): def _test_serialization(filecontext_lambda): t0 = torch.cuda.FloatTensor(5).fill_(1) with torch.cuda.device(devices[-1]): tn = torch.cuda.FloatTensor(3).fill_(2) torch.cuda.set_device(devices[0]) b = (t0, tn) with filecontext_lambda() as f: torch.save(b, f) f.seek(0) c = torch.load(f) self.assertEqual(b, c, 0) u0, un = c self.assertEqual(str(u0.device), devices[0]) self.assertEqual(str(un.device), devices[-1]) _test_serialization(tempfile.NamedTemporaryFile) _test_serialization(BytesIOContext) def test_memory_format_preserved_after_permute(self, device): x = torch.randn(4, 3, 8, 8, device=device) nhwc = x.contiguous(memory_format=torch.channels_last) y = nhwc.permute(0, 1, 3, 2).permute(0, 1, 3, 2) self.assertTrue(y.is_contiguous(memory_format=torch.channels_last)) x = torch.randn(4, 3, 8, 8, 8, device=device) ndhwc = x.contiguous(memory_format=torch.channels_last_3d) y = ndhwc.permute(0, 1, 4, 3, 2).permute(0, 1, 4, 3, 2) self.assertTrue(y.is_contiguous(memory_format=torch.channels_last_3d)) def test_resize_as_preserves_strides(self, device): x = torch.empty(2, 3).t() old_strides = x.stride() x.resize_as_(x) self.assertEqual(x.stride(), old_strides) def test_memory_format_resize_as(self, device): def test_helper(shape, memory_format, device): xc = torch.randn(shape, device=device).contiguous(memory_format=memory_format) flat = torch.randn(xc.numel(), device=device) flat.resize_as_(xc, memory_format=torch.preserve_format) self.assertTrue(flat.is_contiguous(memory_format=memory_format)) test_helper((10, 3, 32, 32), torch.channels_last, device) test_helper((3, 10, 3, 32, 32), torch.channels_last_3d, device) def test_memory_format_resize_(self, device): def test_helper(shape, numel, memory_format, device): flat = torch.randn(numel, device=device) flat.resize_(shape, memory_format=memory_format) self.assertTrue(flat.is_contiguous(memory_format=memory_format)) test_helper((10, 3, 32, 32), 10 * 3 * 32 * 32, torch.channels_last, device) test_helper((3, 10, 3, 32, 32), 3 * 10 * 3 * 32 * 32, torch.channels_last_3d, device) def test_memory_format_empty_like(self, device): def test_helper(x, memory_format): xc = x.contiguous(memory_format=memory_format) like = torch.empty_like(xc, memory_format=torch.preserve_format) self.assertFalse(like.is_contiguous()) self.assertTrue(like.is_contiguous(memory_format=memory_format)) like_x = torch.empty_like(x, memory_format=torch.preserve_format) self.assertTrue(like_x.is_contiguous()) self.assertFalse(like_x.is_contiguous(memory_format=memory_format)) like = torch.empty_like(x, memory_format=memory_format) self.assertFalse(like.is_contiguous()) self.assertTrue(like.is_contiguous(memory_format=memory_format)) like = torch.empty_like(xc, memory_format=torch.contiguous_format) self.assertTrue(like.is_contiguous()) self.assertFalse(like.is_contiguous(memory_format=memory_format)) like = torch.empty_like(xc) self.assertFalse(like.is_contiguous()) self.assertTrue(like.is_contiguous(memory_format=memory_format)) sparse = x.to_sparse() with self.assertRaises(RuntimeError): z = torch.empty_like(sparse, memory_format=torch.preserve_format) test_helper(torch.randn(4, 3, 8, 8, device=device), torch.channels_last) test_helper(torch.randn(4, 3, 8, 8, 8, device=device), torch.channels_last_3d) def test_memory_format_consistency(self, device): x = torch.randn(10, 3, 1, 1, device=device) x_rep = x.as_strided(x.size(), x.stride()) self.assertEqual(x.size(), x_rep.size()) self.assertEqual(x.stride(), x_rep.stride()) self.assertEqual(x.is_contiguous(), x_rep.is_contiguous()) self.assertEqual(x.is_contiguous(memory_format=torch.channels_last), x_rep.is_contiguous(memory_format=torch.channels_last)) self.assertEqual( x.is_contiguous(memory_format=torch.channels_last_3d), x_rep.is_contiguous(memory_format=torch.channels_last_3d)) def test_memory_format_operators(self, device): def chunk_op(x, y): x1, x2 = x.chunk(2, dim=1) y1, y2 = x.chunk(2, dim=1) y1 = y1.contiguous() return y1 + x1 def unsqueeze_op_add(x, y): return x[0].unsqueeze(0) + 3 def unsqueeze_op_clone(x, y): return x[0].unsqueeze(0).clone() def test_helper(x, y, memory_format): fns = [ lambda x, y: x.clone(), lambda x, y: x + 3, lambda x, y: 3 * x, lambda x, y: x + y, lambda x, y: y + x, lambda x, y: x * y, lambda x, y: y * x, lambda x, y: abs(x), lambda x, y: x.abs(), lambda x, y: x.abs_(), lambda x, y: x.acos(), lambda x, y: x.acos_(), lambda x, y: x.add(y, alpha=3), lambda x, y: x.add_(y, alpha=3), lambda x, y: x.addcdiv(y, y, value=2), lambda x, y: x.addcdiv_(y, y, value=2), lambda x, y: y.addcdiv(x, y, value=2), lambda x, y: x.addcmul(y, y, value=2), lambda x, y: x.addcmul_(y, y, value=2), lambda x, y: y.addcmul(x, y, value=2), lambda x, y: x.asin(), lambda x, y: x.asin_(), # lambda x, y: x.atan(), # https://github.com/pytorch/pytorch/issues/24538 lambda x, y: x.atan2(y), lambda x, y: x.atan2_(y), lambda x, y: x.ceil(), lambda x, y: x.ceil_(), # lambda x, y: x.clamp(-1, 1), # https://github.com/pytorch/pytorch/issues/24544 # lambda x, y: x.cos(), # https://github.com/pytorch/pytorch/issues/24545 # lambda x, y: x.cosh(), # https://github.com/pytorch/pytorch/issues/24546 lambda x, y: x.div(0.5), lambda x, y: x.div_(0.5), lambda x, y: x.div(y), lambda x, y: x.div_(y), lambda x, y: x.digamma(), lambda x, y: x.digamma_(), # lambda x, y: x.erf(), # https://github.com/pytorch/pytorch/issues/24558 # lambda x, y: x.erfc(), # https://github.com/pytorch/pytorch/issues/24559 lambda x, y: x.erfinv(), lambda x, y: x.erfinv_(), # lambda x, y: x.exp(), # https://github.com/pytorch/pytorch/issues/24561 lambda x, y: x.expm1(), lambda x, y: x.expm1_(), lambda x, y: x.floor(), lambda x, y: x.floor_(), # lambda x, y: x.fmod(2), # https://github.com/pytorch/pytorch/issues/24565 # lambda x, y: x.frac(), # https://github.com/pytorch/pytorch/issues/24566 # lambda x, y: x.lerp(y, 0.5), # Need to update Lerp.cu with TensorIterator lambda x, y: x.log(), lambda x, y: x.log_(), lambda x, y: x.log10(), lambda x, y: x.log10_(), lambda x, y: x.log1p(), lambda x, y: x.log1p_(), lambda x, y: x.log2(), lambda x, y: x.log2_(), lambda x, y: x.mul(3), lambda x, y: x.mul_(3), lambda x, y: x.neg(), lambda x, y: x.neg_(), lambda x, y: x.pow(3), lambda x, y: x.pow_(3), # lambda x, y: x.pow(0.0), # Need to make resize_as_ memory format aware # lambda x, y: x.pow(1.0), # Need to make resize_as_ memory format aware # lambda x, y: x.reciprocal(), # Not migrated for CUDA # lambda x, y: x.remainder(2), # https://github.com/pytorch/pytorch/issues/24615 lambda x, y: x.round(), lambda x, y: x.round_(), lambda x, y: x.rsqrt(), lambda x, y: x.rsqrt_(), lambda x, y: x.sigmoid(), lambda x, y: x.sigmoid_(), lambda x, y: x.sign(), lambda x, y: x.sign_(), lambda x, y: x.sin(), lambda x, y: x.sin_(), lambda x, y: x.sinh(), lambda x, y: x.sinh_(), lambda x, y: x.sqrt(), lambda x, y: x.sqrt_(), # lambda x, y: x.tan(), # https://github.com/pytorch/pytorch/issues/24641 # lambda x, y: x.tanh(), # https://github.com/pytorch/pytorch/issues/24642 lambda x, y: x.trunc(), lambda x, y: x.trunc_(), chunk_op, unsqueeze_op_add, # unsqueeze_op_clone, ] for fn in fns: x_c = x.contiguous() y_c = y.contiguous() result_c = fn(x_c, y_c) result = fn(x, y) self.assertEqual(result, result_c) self.assertTrue( result.is_contiguous(memory_format=memory_format), "result of the '{}' is not in '{}' format".format(inspect.getsource(fn).strip(), memory_format)) test_helper( torch.randn((4, 3, 8, 8), device=device).contiguous(memory_format=torch.channels_last), abs(torch.randn((4, 3, 8, 8), device=device)) + 1, torch.channels_last) test_helper( torch.randn((4, 3, 8, 8, 8), device=device).contiguous(memory_format=torch.channels_last_3d), abs(torch.randn((4, 3, 8, 8, 8), device=device)) + 1, torch.channels_last_3d) def _test_unique_scalar_empty(self, dtype, device, f): # test scalar x = torch.tensor(0, dtype=dtype, device=device) unique, inverse, counts = f(x, return_inverse=True, return_counts=True) expected_unique = torch.tensor([0], dtype=dtype, device=device) expected_inverse = torch.tensor(0, device=device) expected_counts = torch.tensor([1], device=device) self.assertEqual(unique, expected_unique) self.assertEqual(inverse, expected_inverse) self.assertEqual(counts, expected_counts) # test zero sized tensor x = torch.zeros((0, 0, 3), dtype=dtype, device=device) unique, inverse, counts = f(x, return_inverse=True, return_counts=True) expected_unique = torch.tensor([], dtype=dtype, device=device) expected_inverse = torch.empty((0, 0, 3), dtype=torch.long, device=device) expected_counts = torch.tensor([], dtype=torch.long, device=device) self.assertEqual(unique, expected_unique) self.assertEqual(inverse, expected_inverse) self.assertEqual(counts, expected_counts) def _test_unique_with_expects(self, device, dtype, f, x, expected_unique, expected_inverse, expected_counts, additional_shape): def ensure_tuple(x): if torch.is_tensor(x): return (x,) return x for return_inverse in [True, False]: for return_counts in [True, False]: # test with expected ret = ensure_tuple(f(x, return_inverse=return_inverse, return_counts=return_counts)) self.assertEqual(len(ret), 1 + int(return_inverse) + int(return_counts)) self.assertEqual(expected_unique, ret[0]) if return_inverse: self.assertEqual(expected_inverse, ret[1]) if return_counts: count_index = 1 + int(return_inverse) self.assertEqual(expected_counts, ret[count_index]) # tests per-element unique on a higher rank tensor. y = x.view(additional_shape) y_unique, y_inverse, y_counts = f(y, return_inverse=True, return_counts=True) self.assertEqual(expected_unique, y_unique) self.assertEqual(expected_inverse.view(additional_shape), y_inverse) self.assertEqual(expected_counts, y_counts) @dtypes(*set(torch.testing.get_all_dtypes()) - {torch.bfloat16}) def test_unique(self, device, dtype): if dtype is torch.half and self.device_type == 'cpu': return # CPU does not have half support def ensure_tuple(x): if torch.is_tensor(x): return (x,) return x if dtype is torch.bool: x = torch.tensor([True, False, False, False, True, False, True, False], dtype=torch.bool, device=device) expected_unique = torch.tensor([False, True], dtype=torch.bool, device=device) expected_inverse = torch.tensor([1, 0, 0, 0, 1, 0, 1, 0], dtype=torch.long, device=device) expected_counts = torch.tensor([5, 3], dtype=torch.long, device=device) else: x = torch.tensor([1, 2, 3, 2, 8, 5, 2, 3], dtype=dtype, device=device) expected_unique = torch.tensor([1, 2, 3, 5, 8], dtype=dtype, device=device) expected_inverse = torch.tensor([0, 1, 2, 1, 4, 3, 1, 2], device=device) expected_counts = torch.tensor([1, 3, 2, 1, 1], device=device) # test sorted unique fs = [ lambda x, **kwargs: torch.unique(x, sorted=True, **kwargs), lambda x, **kwargs: x.unique(sorted=True, **kwargs), ] for f in fs: self._test_unique_with_expects(device, dtype, f, x, expected_unique, expected_inverse, expected_counts, (2, 2, 2)) self._test_unique_scalar_empty(dtype, device, f) # test unsorted unique fs = [ lambda x, **kwargs: torch.unique(x, sorted=False, **kwargs), lambda x, **kwargs: x.unique(sorted=False, **kwargs) ] for f in fs: self._test_unique_scalar_empty(dtype, device, f) for return_inverse in [True, False]: for return_counts in [True, False]: ret = ensure_tuple(f(x, return_inverse=return_inverse, return_counts=return_counts)) self.assertEqual(len(ret), 1 + int(return_inverse) + int(return_counts)) x_list = x.tolist() x_unique_list = ret[0].tolist() self.assertEqual(expected_unique.tolist(), sorted(x_unique_list)) if return_inverse: x_inverse_list = ret[1].tolist() for i, j in enumerate(x_inverse_list): self.assertEqual(x_list[i], x_unique_list[j]) if return_counts: count_index = 1 + int(return_inverse) x_counts_list = ret[count_index].tolist() for i, j in zip(x_unique_list, x_counts_list): count = 0 for k in x_list: if k == i: count += 1 self.assertEqual(j, count) @dtypes(*set(torch.testing.get_all_dtypes()) - {torch.bfloat16}) def test_unique_consecutive(self, device, dtype): if dtype is torch.half and self.device_type == 'cpu': return # CPU does not have half support if dtype is torch.bool: x = torch.tensor([True, False, False, False, True, True, False, False, False], dtype=torch.bool, device=device) expected_unique = torch.tensor([True, False, True, False], dtype=torch.bool, device=device) expected_inverse = torch.tensor([0, 1, 1, 1, 2, 2, 3, 3, 3], dtype=torch.long, device=device) expected_counts = torch.tensor([1, 3, 2, 3], dtype=torch.long, device=device) else: x = torch.tensor([1, 2, 2, 2, 5, 5, 2, 2, 3], dtype=dtype, device=device) expected_unique = torch.tensor([1, 2, 5, 2, 3], dtype=dtype, device=device) expected_inverse = torch.tensor([0, 1, 1, 1, 2, 2, 3, 3, 4], device=device) expected_counts = torch.tensor([1, 3, 2, 2, 1], device=device) for f in [torch.unique_consecutive, lambda x, **kwargs: x.unique_consecutive(**kwargs)]: self._test_unique_with_expects(device, dtype, f, x, expected_unique, expected_inverse, expected_counts, (3, 3)) self._test_unique_scalar_empty(dtype, device, f) @dtypesIfCUDA(torch.half, torch.float, torch.double) @dtypes(torch.float, torch.double) def test_erfinv(self, device, dtype): # general testing. Narrow the range to avoid accuracy issues input_values = torch.randn(4, 4, dtype=dtype, device=device).clamp(-0.3, 0.3) self.assertEqual(input_values.erf().erfinv(), input_values) # test inf self.assertTrue(torch.equal(torch.tensor([-1, 1], dtype=dtype, device=device).erfinv(), torch.tensor([-inf, inf], dtype=dtype, device=device))) # test nan self.assertEqual(torch.tensor([-2, 2], dtype=dtype, device=device).erfinv(), torch.tensor([nan, nan], dtype=dtype, device=device)) if dtype == torch.double: # double precision a = torch.tensor([0.5, 0.8], dtype=torch.double, device=device).erfinv() self.assertAlmostEqual(a[0].item(), 0.47693627620447, places=13) self.assertAlmostEqual(a[1].item(), 0.90619380243682, places=13) @unittest.skipIf(not TEST_NUMPY, "Numpy not found") def test_ctor_with_numpy_array(self, device): correct_dtypes = [ np.double, np.float, np.float16, np.int64, np.int32, np.int16, np.int8, np.uint8, np.bool, ] incorrect_byteorder = '>' if sys.byteorder == 'little' else '<' incorrect_dtypes = map(lambda t: incorrect_byteorder + t, ['d', 'f']) for dtype in correct_dtypes: array = np.array([1, 2, 3, 4], dtype=dtype) # Upcast tensor = torch.DoubleTensor(array).to(device) for i in range(len(array)): self.assertEqual(tensor[i], array[i]) # Downcast (sometimes) tensor = torch.FloatTensor(array).to(device) for i in range(len(array)): self.assertEqual(tensor[i], array[i]) tensor = torch.HalfTensor(array).to(device) for i in range(len(array)): self.assertEqual(tensor[i], array[i]) def test_dlpack_conversion(self, device): x = torch.randn(1, 2, 3, 4, device=device, dtype=torch.float) z = from_dlpack(to_dlpack(x)) self.assertEqual(z, x) @onlyCUDA @unittest.skipIf(PYTORCH_CUDA_MEMCHECK, "is_pinned uses failure to detect pointer property") def test_pin_memory_from_constructor(self, device): def _get_like(t, **kwargs): return [ torch.rand_like(t, **kwargs), torch.randn_like(t, **kwargs), torch.empty_like(t, **kwargs), torch.full_like(t, 4, **kwargs), torch.zeros_like(t, **kwargs), torch.ones_like(t, **kwargs), ] def _get_tensors(**kwargs): return [ torch.tensor([10, 11], **kwargs), torch.randn(3, 5, **kwargs), torch.rand(3, **kwargs), # torch.randint(3, 5, **kwargs), // unsupported torch.zeros(3, **kwargs), torch.randperm(3, **kwargs), torch.empty(6, **kwargs), torch.ones(6, **kwargs), torch.eye(6, **kwargs), torch.arange(3, 5, **kwargs)] pinned_tensors = _get_tensors(pin_memory=True) + _get_like(torch.empty(5, dtype=torch.float64), pin_memory=True) for x in pinned_tensors: self.assertTrue(x.is_pinned()) tensors = _get_tensors() + _get_like(torch.empty(5, dtype=torch.float64, pin_memory=True)) for x in tensors: self.assertFalse(x.is_pinned()) def test_storage_device(self, device): x = torch.tensor([], device=device) self.assertEqual(x.dtype, x.storage().dtype) @deviceCountAtLeast(2) @onlyCUDA def test_storage_multigpu(self, devices): for device in devices: x = torch.tensor([], device=device) self.assertEqual(x.dtype, x.storage().dtype) @skipCUDAIfNoMagma @skipCPUIfNoLapack def test_lu(self, device): from torch.testing._internal.common_utils import random_matrix def run_test(device, pivot): def run_subtest(matrix_size, batches, device, pivot, singular=False, a=None): if isinstance(matrix_size, int): rows = columns = matrix_size else: rows, columns = matrix_size if a is None: a = random_matrix(rows, columns, *batches, **dict(singular=singular)).to(device) a_LU_info, pivots_info, info_ = a.lu(pivot=pivot, get_infos=True) self.assertEqual(a_LU_info.size(), torch.Size(batches + (rows, columns))) self.assertEqual(pivots_info.size(), torch.Size(batches + (min(rows, columns),))) self.assertEqual(info_.size(), torch.Size(batches)) # If a randomly generated input matrix is singular, # then info_ contains indices i such that U[i, i] == # 0. This however conveys that the factorization was # successful albeit with a singular input. Therefore, # we require info.min() >= 0 self.assertGreaterEqual(info_.min(), 0) a_LU, pivots = a.lu(pivot=pivot) self.assertEqual(a_LU, a_LU_info) self.assertEqual(pivots_info, pivots) P, L, U = torch.lu_unpack(a_LU, pivots) self.assertEqual(P.matmul(L.matmul(U)), a) if self.device_type == 'cuda': # lu without pivoting is implemented only for cuda device a_LU_info_nopiv, nopiv, info_nopiv = a.lu(pivot=False, get_infos=True) P_nopiv, L_nopiv, U_nopiv = torch.lu_unpack(a_LU_info_nopiv, nopiv) self.assertEqual(P_nopiv.matmul(L_nopiv.matmul(U_nopiv)), a) k = min(rows, columns) self.assertEqual(nopiv, torch.arange(1, 1 + k, device=device, dtype=torch.int32).expand(a.shape[:-2] + (k, ))) if not singular: # It is not guaranteed that LU factorization # without pivoting is able to determine if a # matrix is singular while LU factorization # with pivoting is. Therefore, we require the # equality of info-s only for non-singular # matrices. self.assertEqual(info_, info_nopiv) for ms, batch in product([3, 5, 7, (4, 2), (3, 4)], [(), (2,), (3,), (3, 5)]): run_subtest(ms, batch, device, pivot) run_subtest(ms, batch, device, pivot, singular=True) # Reproducer of a magma bug, see https://bitbucket.org/icl/magma/issues/13/getrf_batched-kernel-produces-nans-on a = torch.ones(batch + (ms if isinstance(ms, tuple) else (ms, ms)), dtype=torch.double, device=device) run_subtest(ms, batch, device, pivot, singular=True, a=a) # Info should be positive for rank deficient matrices a = torch.ones(5, 3, 3, device=device) self.assertGreater(a.lu(pivot=pivot, get_infos=True)[2][0], 0) run_test(device, True) if self.device_type == 'cpu': # Error checking, no pivoting variant on CPU with self.assertRaisesRegex(RuntimeError, 'lu without pivoting is not implemented on the CPU'): torch.lu(torch.empty(1, 2, 2), pivot=False) else: run_test(device, False) @skipCPUIfNoLapack @skipCUDAIfNoMagma @dtypes(torch.double) def test_lu_unpack(self, device, dtype): def run_test(pivot): for shape in ((3, 3), (5, 3, 3), (7, 3, 5, 5), (7, 5, 3, 3, 3)): a = torch.randn(*shape, dtype=dtype, device=device) a_lu, p = torch.lu(a, pivot=pivot) p_ref, l_ref, u_ref = torch.lu_unpack(a_lu, p) self.assertEqual(p_ref.matmul(l_ref.matmul(u_ref)), a) run_test(True) if self.device_type == 'cuda': run_test(False) @dtypesIfCUDA(torch.half, torch.float, torch.double) @dtypes(torch.float, torch.double) def test_max_with_inf(self, device, dtype): a = torch.tensor([[-inf, -inf, inf, 3], [inf, inf, -inf, -1]], dtype=dtype, device=device) self.assertTrue(torch.all(torch.max(a, dim=1)[0] == inf).item()) self.assertTrue(torch.max(a).item() == inf) @dtypesIfCUDA(torch.half, torch.float, torch.double) @dtypes(torch.float, torch.double) def test_min_with_inf(self, device, dtype): a = torch.tensor([[-inf, -inf, inf, 3], [inf, inf, -inf, -1]], dtype=dtype, device=device) self.assertTrue(torch.all(torch.min(a, dim=1)[0] == (-inf)).item()) self.assertTrue(torch.min(a).item() == -inf) def test_bincount(self, device): # negative input throws with self.assertRaisesRegex(RuntimeError, '1-d non-negative integral'): torch.bincount(torch.tensor([1, -1], device=device)) # n-d input, with n > 1 throws with self.assertRaisesRegex(RuntimeError, '1-d non-negative integral'): torch.bincount(torch.tensor([[1, 2], [3, 4]], device=device)) # floating input type throws with self.assertRaisesRegex(RuntimeError, 'not implemented'): torch.bincount(torch.tensor([1., 0.3], device=device)) # minlength < 0 throws with self.assertRaisesRegex(RuntimeError, 'minlength should be >= 0'): torch.bincount(torch.tensor([1, 3], device=device), torch.tensor([.2, .2], device=device), minlength=-1) # input and weights dim mismatch with self.assertRaisesRegex(RuntimeError, 'same length'): torch.bincount(torch.tensor([1, 0], device=device), torch.tensor([1., 0.3, 0.5], device=device)) # 1-d input with no elements and default minlength self.assertEqual(torch.bincount(torch.tensor([], device=device, dtype=torch.long)), torch.zeros(0, dtype=torch.long, device=device)) # 1-d input with no elements and specified minlength self.assertEqual(torch.bincount(torch.tensor([], device=device, dtype=torch.long), minlength=10), torch.zeros(10, dtype=torch.long, device=device)) # test tensor method without weights long_counts = torch.tensor( [0, 3, 2, 1, 3], dtype=torch.uint8, device=device).bincount() self.assertEqual( torch.tensor([1, 1, 1, 2], dtype=torch.int64, device=device), long_counts) # test minlength functionality int_counts = torch.bincount( torch.tensor([1, 1, 1, 1], device=device), minlength=5) self.assertEqual( torch.tensor([0, 4, 0, 0, 0], dtype=torch.int64, device=device), int_counts) # test weights byte_counts = torch.bincount( torch.tensor([0, 1, 1, 1, 4], device=device), torch.tensor([.1, .2, .3, .4, .5], device=device)) self.assertEqual( torch.tensor([0.1, 0.9, 0, 0, 0.5], device=device), byte_counts) byte_counts = torch.bincount( torch.tensor([0, 1, 1, 1, 4], device=device), torch.tensor([1, 2, 3, 4, 5], dtype=torch.int8, device=device)) self.assertEqual( torch.tensor([1, 9, 0, 0, 5], device=device, dtype=torch.float64), byte_counts) # test non-contiguous inputs and weights inputs = torch.tensor([[0, 0], [3, 1], [2, 1], [1, 1], [3, 4]], device=device) weights = torch.tensor([[.1, 1], [.2, 2], [.3, 3], [.4, 4], [.5, 5]], device=device) for i in [0, 1]: assert not inputs[:, i].is_contiguous(), "Inputs are supposed to be non-contiguous" assert not weights[:, i].is_contiguous(), "Weights are supposed to be non-contiguous" # inputs are non-contiguous but weights are contiguous self.assertEqual(inputs[:, 0].bincount(), torch.tensor([1, 1, 1, 2])) # inputs and weights are non-contiguous self.assertEqual( inputs[:, 1].bincount(weights[:, 1]), torch.tensor([1, 9, 0, 0, 5], dtype=torch.float32)) # weights are non-contiguous but inputs are contiguous self.assertEqual(inputs[:, 1].contiguous().bincount(weights[:, 1]), torch.tensor([1, 9, 0, 0, 5], dtype=torch.float32)) # test bincount on non-contiguous slices all0s = torch.zeros((32, 2), dtype=torch.int64, device=device) self.assertEqual(all0s[:, 0].bincount(), torch.tensor([32])) all1s = torch.ones((32, 2), dtype=torch.int64, device=device) self.assertEqual(all1s[:, 0].bincount(), torch.tensor([0, 32])) # test large number of bins - global memory use big_exp = torch.zeros(10000000, device=device) big_exp[-1] = 50.0 big_w = torch.tensor([.5] * 100, device=device) big_out = torch.tensor([9999999] * 100, device=device).bincount(big_w) self.assertEqual(big_exp, big_out) # test large input size big_exp = torch.zeros(2, device=device, dtype=torch.int64) big_exp[1] = 1000000 big_out = torch.ones(1000000, dtype=torch.int8, device=device).bincount() self.assertEqual(big_exp, big_out) @dtypes(torch.float, torch.double, torch.half) def test_multinomial(self, device, dtype): def make_prob_dist(shape, is_contiguous): if is_contiguous: if dtype == torch.half: return torch.zeros(shape, device=device).uniform_().to(dtype=torch.half) return torch.zeros(shape, device=device, dtype=dtype).uniform_() elif len(shape) == 1: if dtype == torch.half: return torch.zeros((shape + [5]), device=device).uniform_().to(dtype=torch.half)[:, 2] return torch.zeros((shape + [5]), device=device, dtype=dtype).uniform_()[:, 2] else: # num dim = 2 new_shape = [2, shape[1], 7, 1, shape[0], 1, 10] if dtype == torch.half: prob_dist = torch.zeros(new_shape, device=device).uniform_().to(dtype=torch.half) else: prob_dist = torch.zeros(new_shape, device=device, dtype=dtype).uniform_() prob_dist = prob_dist.transpose(1, 4) prob_dist = prob_dist[1, :, 5, 0, :, 0, 4] assert not prob_dist.is_contiguous() # sanity check return prob_dist for is_contiguous in (True, False): # with replacement n_row = 3 for n_col in range(4, 5 + 1): prob_dist = make_prob_dist([n_row, n_col], is_contiguous) # indices that shouldn't be sampled (<0 means none) zero_prob_indices = torch.LongTensor(n_row).random_(-2, n_col).tolist() for i, j in enumerate(zero_prob_indices): if j >= 0: prob_dist[i, j] = 0 n_sample = n_col * 3 sample_indices = torch.multinomial(prob_dist, n_sample, True) self.assertEqual(prob_dist.dim(), 2) self.assertEqual(sample_indices.size(1), n_sample) for i in range(n_row): zero_prob_idx = zero_prob_indices[i] if zero_prob_idx < 0: continue for j in range(n_sample): self.assertNotEqual(sample_indices[i, j], zero_prob_idx, "sampled an index with zero probability") # without replacement n_row = 3 for n_col in range(2, 10 + 1, 2): prob_dist = make_prob_dist([n_row, n_col], is_contiguous) # indices that shouldn't be sampled (<0 means none) zero_prob_indices = torch.LongTensor(n_row).random_(-1, n_col).tolist() for i, j in enumerate(zero_prob_indices): if j >= 0: prob_dist[i, j] = 0 n_sample = max(1, n_col - 2) sample_indices = torch.multinomial(prob_dist, n_sample, False) self.assertEqual(prob_dist.dim(), 2) self.assertEqual(sample_indices.size(1), n_sample) for i in range(n_row): row_samples = {} zero_prob_idx = zero_prob_indices[i] for j in range(n_sample): sample_idx = sample_indices[i, j] if zero_prob_idx >= 0: self.assertNotEqual(sample_idx, zero_prob_idx, "sampled an index with zero probability") self.assertNotIn(sample_idx, row_samples, "sampled an index twice") row_samples[sample_idx] = True # vector n_col = 4 prob_dist = make_prob_dist([n_col], is_contiguous).fill_(1) zero_prob_idx = 1 # index that shouldn't be sampled prob_dist[zero_prob_idx] = 0 n_sample = 20 sample_indices = torch.multinomial(prob_dist, n_sample, True) for sample_index in sample_indices: self.assertNotEqual(sample_index, zero_prob_idx, "sampled an index with zero probability") s_dim = sample_indices.dim() self.assertEqual(sample_indices.dim(), 1, "wrong number of dimensions") self.assertEqual(prob_dist.dim(), 1, "wrong number of prob_dist dimensions") self.assertEqual(sample_indices.size(0), n_sample, "wrong number of samples") def test_var_unbiased(self, device): tensor = torch.randn(100, device=device) self.assertEqual(tensor.var(0), tensor.var(0, unbiased=True)) self.assertEqual(tensor.var(), tensor.var(unbiased=True)) self.assertEqual(tensor.var(unbiased=False), tensor.var(0, unbiased=False)) tensor = torch.FloatTensor([1.0, 2.0]).to(device) self.assertEqual(tensor.var(unbiased=True), 0.5) self.assertEqual(tensor.var(unbiased=False), 0.25) tensor = torch.randn(100, device=device) self.assertEqual(tensor.std(0), tensor.std(0, unbiased=True)) self.assertEqual(tensor.std(), tensor.std(unbiased=True)) self.assertEqual(tensor.std(unbiased=False), tensor.std(0, unbiased=False)) def test_var_stability(self, device): tensor = torch.FloatTensor([2281.5, 2281.25]).to(device) # Stability for inner dim self.assertEqual(tensor.var(0), 0.03125) # General stability self.assertEqual(tensor.var(), 0.03125) # Stability for outer dimensions tensor = tensor.unsqueeze(1) self.assertEqual(tensor.var(0), 0.03125) @dtypesIfCUDA(torch.half, torch.float, torch.double) @dtypes(torch.float, torch.double) def test_mul_intertype_scalar(self, device, dtype): x = torch.tensor(1.5, dtype=dtype, device=device) y = torch.tensor(3, dtype=torch.int32, device=device) self.assertEqual(x * y, 4.5) self.assertEqual(y * x, 4.5) with self.assertRaisesRegex(RuntimeError, "can't be cast to the desired output type"): y *= x x *= y self.assertEqual(x, 4.5) @onlyCPU @dtypes(torch.float, torch.double) def test_hardshrink(self, device, dtype): data = torch.tensor([1, 0.5, 0.3, 0.6], dtype=dtype, device=device).view(2, 2) self.assertEqual(torch.tensor([1, 0.5, 0, 0.6], dtype=dtype, device=device).view(2, 2), data.hardshrink(0.3)) self.assertEqual(torch.tensor([1, 0, 0, 0.6], dtype=dtype, device=device).view(2, 2), data.hardshrink(0.5)) # test default lambd=0.5 self.assertEqual(data.hardshrink(), data.hardshrink(0.5)) # test non-contiguous case self.assertEqual(torch.tensor([1, 0, 0.5, 0.6], dtype=dtype, device=device).view(2, 2), data.t().hardshrink(0.3)) @onlyCPU @dtypes(torch.float, torch.double) def test_hardshrink_edge_cases(self, device, dtype): def h(values, l_expected): for l, expected in l_expected.items(): values_tensor = torch.tensor([float(v) for v in values], dtype=dtype, device=device) expected_tensor = torch.tensor([float(v) for v in expected], dtype=dtype, device=device) self.assertEqual(expected_tensor == values_tensor.hardshrink(l), torch.ones_like(values_tensor, dtype=torch.bool)) def test_helper(min, max): h([0.0, min, -min, 0.1, -0.1, 1.0, -1.0, max, -max, inf, -inf], {0.0: [0.0, min, -min, 0.1, -0.1, 1.0, -1.0, max, -max, inf, -inf], min: [0.0, 0.0, 0.0, 0.1, -0.1, 1.0, -1.0, max, -max, inf, -inf], 0.1: [0.0, 0.0, 0.0, 0.0, 0.0, 1.0, -1.0, max, -max, inf, -inf], 1.0: [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, max, -max, inf, -inf], max: [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, inf, -inf], inf: [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0]}) test_helper(torch.finfo(dtype).tiny, torch.finfo(dtype).max) @onlyCPU @slowTest @unittest.skipIf(not TEST_NUMPY, 'Numpy not found') @dtypes(torch.double) def test_einsum(self, device, dtype): # test cases taken from https://gist.github.com/rockt/15ee013889d65342088e9260a377dc8f x = torch.randn(5, dtype=dtype, device=device) y = torch.randn(7, dtype=dtype, device=device) A = torch.randn(3, 5, dtype=dtype, device=device) B = torch.randn(2, 5, dtype=dtype, device=device) C = torch.randn(2, 3, 5, dtype=dtype, device=device) D = torch.randn(2, 5, 7, dtype=dtype, device=device) E = torch.randn(7, 9, dtype=dtype, device=device) F = torch.randn(2, 3, 5, 7, dtype=dtype, device=device) G = torch.randn(7, 11, 13, dtype=dtype, device=device) H = torch.randn(4, 4, dtype=dtype, device=device) I = torch.randn(3, 4, 4, dtype=dtype, device=device) l = torch.randn(5, 10, dtype=dtype, device=device) r = torch.randn(5, 20, dtype=dtype, device=device) w = torch.randn(30, 10, 20, dtype=dtype, device=device) test_list = [ # -- Vector ("i->", x), # sum ("i,i->", x, x), # dot ("i,i->i", x, x), # vector element-wise mul ("i,j->ij", x, y), # outer # -- Matrix ("ij->ji", A), # transpose ("ij->j", A), # row sum ("ij->i", A), # col sum ("ij,ij->ij", A, A), # matrix element-wise mul ("ij,j->i", A, x), # matrix vector multiplication ("ij,kj->ik", A, B), # matmul ("ij,ab->ijab", A, E), # matrix outer product # -- Tensor ("aij,ajk->aik", C, D), # batch matmul ("ijk,jk->i", C, A), # tensor matrix contraction ("aij,jk->aik", D, E), # tensor matrix contraction ("abcd,dfg->abcfg", F, G), # tensor tensor contraction ("ijk,jk->ik", C, A), # tensor matrix contraction with double indices ("ijk,jk->ij", C, A), # tensor matrix contraction with double indices ("ijk,ik->j", C, B), # non contiguous ("ijk,ik->jk", C, B), # non contiguous with double indices # -- Diagonal ("ii", H), # trace ("ii->i", H), # diagonal # -- Ellipsis ("i...->...", H), ("ki,...k->i...", A.t(), B), ("k...,jk", A.t(), B), ("...ii->...i", I), # batch diagonal # -- Other ("bn,anm,bm->ba", l, w, r), # as torch.bilinear ("... ii->...i ", I), # batch diagonal with spaces ] for test in test_list: actual = torch.einsum(test[0], test[1:]) expected = np.einsum(test[0], *[t.numpy() for t in test[1:]]) self.assertEqual(expected.shape, actual.shape, test[0]) self.assertTrue(np.allclose(expected, actual.numpy()), test[0]) # test vararg actual2 = torch.einsum(test[0], *test[1:]) self.assertEqual(expected.shape, actual2.shape, test[0]) self.assertTrue(np.allclose(expected, actual2.numpy()), test[0]) def do_einsum(*args): return torch.einsum(test[0], args) # FIXME: following test cases fail gradcheck if test[0] not in {"i,i->", "i,i->i", "ij,ij->ij"}: gradcheck_inps = tuple(t.detach().requires_grad_() for t in test[1:]) self.assertTrue(torch.autograd.gradcheck(do_einsum, gradcheck_inps)) self.assertTrue(A._version == 0) # check that we do not use inplace ops @onlyCPU @dtypes(torch.bool, torch.double) def test_sum_all(self, device, dtype): def check_sum_all(tensor): pylist = tensor.reshape(-1).tolist() self.assertEqual(tensor.sum(), sum(pylist)) if dtype != torch.bool: check_sum_all(torch.tensor([1, 2, 3, 4, 5], dtype=dtype, device=device)) check_sum_all(torch.randn(200000, dtype=dtype, device=device)) check_sum_all(torch.randn(2000, 2, dtype=dtype, device=device)[:, 0]) else: check_sum_all(torch.tensor([True, False, True], dtype=torch.bool, device=device)) def _test_memory_format_transformations(self, device, input_generator_fn, transformation_fn, memory_format, compare_data=True, default_is_preserve=False): assert(memory_format == torch.channels_last or memory_format == torch.channels_last_3d) # xc is a channels last tensor xc = input_generator_fn(device) # xc is not memory dense, but looks like channels last if memory_format == torch.channels_last: xc = xc[..., ::2, ::2] else: xc = xc[..., ::2, ::2, ::2] clone = transformation_fn(xc, memory_format=torch.preserve_format) self.assertFalse(clone.is_contiguous()) self.assertTrue(clone.is_contiguous(memory_format=memory_format)) self.assertFalse(xc.is_contiguous()) self.assertFalse(xc.is_contiguous(memory_format=memory_format)) if compare_data: self.assertEqual(xc, clone.to(xc)) xc = input_generator_fn(device) clone = transformation_fn(xc, memory_format=torch.contiguous_format) self.assertTrue(clone.is_contiguous()) self.assertFalse(clone.is_contiguous(memory_format=memory_format)) if compare_data: self.assertEqual(xc, clone.to(xc)) xc = input_generator_fn(device) clone = transformation_fn(xc) if default_is_preserve: self.assertFalse(clone.is_contiguous()) self.assertTrue(clone.is_contiguous(memory_format=memory_format)) else: self.assertTrue(clone.is_contiguous()) self.assertFalse(clone.is_contiguous(memory_format=memory_format)) if compare_data: self.assertEqual(xc, clone.to(xc)) x = torch.randn((3, 4, 5, 6, 7, 8, 9), device=device) for _ in range(10): permutation = list(range(len(x.shape))) random.shuffle(permutation) x = x.permute(permutation) self.assertEqual(x.stride(), transformation_fn(x, memory_format=torch.preserve_format).stride()) def test_memory_format_to(self, device): def get_generator(memory_format, shape): def input_generator_fn(device): return torch.randn(shape, device=device, dtype=torch.float32).contiguous(memory_format=memory_format) return input_generator_fn def transformation_fn(tensor, **kwargs): return tensor.to(dtype=torch.float64, **kwargs) formats_shapes = ( (torch.channels_last, (4, 3, 8, 8)), (torch.channels_last_3d, (4, 3, 8, 8, 8))) for mf, shape in formats_shapes: self._test_memory_format_transformations( device, get_generator(mf, shape), transformation_fn, mf, default_is_preserve=True) def test_memory_format_type(self, device): def get_generator(memory_format, shape): def input_generator_fn(device): return torch.randn(shape, device=device, dtype=torch.float32).contiguous(memory_format=memory_format) return input_generator_fn def transformation_fn(tensor, **kwargs): return tensor.type(torch.float64, **kwargs) formats_shapes = ( (torch.channels_last, (4, 3, 8, 8)), (torch.channels_last_3d, (4, 3, 8, 8, 8))) for mf, shape in formats_shapes: self._test_memory_format_transformations( device, get_generator(mf, shape), transformation_fn, mf, default_is_preserve=True) def test_memory_format_clone(self, device): def get_generator(memory_format, shape): def input_generator_fn(device): return torch.randn(shape, device=device, dtype=torch.float32).contiguous(memory_format=memory_format) return input_generator_fn def transformation_fn(tensor, **kwargs): return tensor.clone(**kwargs) formats_shapes = ( (torch.channels_last, (4, 3, 8, 8)), (torch.channels_last_3d, (4, 3, 8, 8, 8))) for mf, shape in formats_shapes: self._test_memory_format_transformations( device, get_generator(mf, shape), transformation_fn, mf, True, default_is_preserve=True) @onlyCPU @dtypes(torch.double) def test_sum_out(self, device, dtype): x = torch.rand(100, 100, dtype=dtype, device=device) res1 = torch.sum(x, 1) res2 = torch.tensor((), dtype=dtype, device=device) torch.sum(x, 1, out=res2) self.assertEqual(res1, res2) x = torch.rand(100, 100, 100, dtype=dtype, device=device) res1 = x.sum(2).sum(1) res2 = torch.tensor((), dtype=dtype, device=device) torch.sum(x, (2, 1), out=res2) self.assertEqual(res1, res2) def test_memory_format_factory_like_functions_preserve(self, device): def get_generator(memory_format, shape): def input_generator_fn(device): return torch.randn(shape, device=device, dtype=torch.float32).contiguous(memory_format=memory_format) return input_generator_fn transformation_fns = [ lambda t, **kwargs: torch.zeros_like(t, **kwargs), lambda t, **kwargs: torch.ones_like(t, **kwargs), lambda t, **kwargs: torch.randint_like(t, 10, 100, **kwargs), lambda t, **kwargs: torch.randint_like(t, 100, **kwargs), lambda t, **kwargs: torch.randn_like(t, **kwargs), lambda t, **kwargs: torch.rand_like(t, **kwargs), lambda t, **kwargs: torch.full_like(t, 7, **kwargs), lambda t, **kwargs: torch.empty_like(t, **kwargs)] formats_shapes = ( (torch.channels_last, (4, 3, 8, 8)), (torch.channels_last_3d, (4, 3, 8, 8, 8))) for mf, shape, in formats_shapes: for transformation_fn in transformation_fns: self._test_memory_format_transformations( device, get_generator(mf, shape), transformation_fn, mf, compare_data=False, default_is_preserve=True) def test_memory_format_type_shortcuts(self, device): def get_generator(memory_format, shape, dtype): def input_generator_fn(device): return torch.randn(shape, device=device, dtype=dtype).clamp(0, 1) \ .round().contiguous(memory_format=memory_format) return input_generator_fn def get_fn(fn_name): def transformation_fn(tensor, **kwargs): fn = getattr(tensor, fn_name) return fn(**kwargs) return transformation_fn shortcuts = ['byte', 'char', 'double', 'bool', 'half', 'int', 'long', 'short'] if device == 'cpu': shortcuts += ['bfloat16'] formats_shapes = ( (torch.channels_last, (4, 3, 8, 8)), (torch.channels_last_3d, (4, 3, 8, 8, 8))) for mf, shape in formats_shapes: for fn_name in shortcuts: self._test_memory_format_transformations( device, get_generator(mf, shape, torch.float32), get_fn(fn_name), mf, default_is_preserve=True) # Test 'float' separately to avoid float->float no-op. for mf, shape in formats_shapes: self._test_memory_format_transformations( device, get_generator(mf, shape, torch.float64), get_fn('float'), mf, default_is_preserve=True) @onlyCUDA def test_memory_format_cpu_and_cuda_ops(self, device): def get_generator(memory_format, shape): def input_generator_fn(device): return torch.randn(shape, device=device, dtype=torch.float32).contiguous(memory_format=memory_format) return input_generator_fn def transformation_cpu_fn(tensor, **kwargs): return tensor.cpu(**kwargs) def transformation_cuda_fn(tensor, **kwargs): return tensor.cuda(**kwargs) formats_shapes = ( (torch.channels_last, (4, 3, 8, 8)), (torch.channels_last_3d, (4, 3, 8, 8, 8))) for mf, shape in formats_shapes: self._test_memory_format_transformations( 'cuda', get_generator(mf, shape), transformation_cpu_fn, mf, default_is_preserve=True) self._test_memory_format_transformations( 'cpu', get_generator(mf, shape), transformation_cuda_fn, mf, default_is_preserve=True) @onlyCPU @skipCPUIfNoLapack @dtypes(torch.double) def test_eig(self, device, dtype): a = torch.Tensor(((1.96, 0.00, 0.00, 0.00, 0.00), (-6.49, 3.80, 0.00, 0.00, 0.00), (-0.47, -6.39, 4.17, 0.00, 0.00), (-7.20, 1.50, -1.51, 5.70, 0.00), (-0.65, -6.34, 2.67, 1.80, -7.10))).t().contiguous().to(dtype=dtype, device=device) e = torch.eig(a)[0] ee, vv = torch.eig(a, True) te = torch.tensor((), dtype=dtype, device=device) tv = torch.tensor((), dtype=dtype, device=device) eee, vvv = torch.eig(a, True, out=(te, tv)) self.assertEqual(e, ee, 1e-12) self.assertEqual(ee, eee, 1e-12) self.assertEqual(ee, te, 1e-12) self.assertEqual(vv, vvv, 1e-12) self.assertEqual(vv, tv, 1e-12) # test reuse X = torch.randn(4, 4, dtype=dtype, device=device) X = torch.mm(X.t(), X) e = torch.zeros(4, 2, dtype=dtype, device=device) v = torch.zeros(4, 4, dtype=dtype, device=device) torch.eig(X, True, out=(e, v)) Xhat = torch.mm(torch.mm(v, torch.diag(e.select(1, 0))), v.t()) self.assertEqual(X, Xhat, 1e-8, 'VeV\' wrong') self.assertFalse(v.is_contiguous(), 'V is contiguous') torch.eig(X, True, out=(e, v)) Xhat = torch.mm(v, torch.mm(e.select(1, 0).diag(), v.t())) self.assertEqual(X, Xhat, 1e-8, 'VeV\' wrong') self.assertFalse(v.is_contiguous(), 'V is contiguous') # test non-contiguous X = torch.randn(4, 4, dtype=dtype, device=device) X = torch.mm(X.t(), X) e = torch.zeros(4, 2, 2, dtype=dtype, device=device)[:, 1] v = torch.zeros(4, 2, 4, dtype=dtype, device=device)[:, 1] self.assertFalse(v.is_contiguous(), 'V is contiguous') self.assertFalse(e.is_contiguous(), 'E is contiguous') torch.eig(X, True, out=(e, v)) Xhat = torch.mm(torch.mm(v, torch.diag(e.select(1, 0))), v.t()) self.assertEqual(X, Xhat, 1e-8, 'VeV\' wrong') @skipCUDAIfNoMagma @skipCPUIfNoLapack @dtypes(torch.double) def test_lobpcg_basic(self, device, dtype): self._test_lobpcg_method(device, dtype, 'basic') @skipCUDAIfNoMagma @skipCPUIfNoLapack @dtypes(torch.double) def test_lobpcg_ortho(self, device, dtype): self._test_lobpcg_method(device, dtype, 'ortho') def _test_lobpcg_method(self, device, dtype, method): from torch.testing._internal.common_utils import random_symmetric_pd_matrix, random_sparse_pd_matrix from torch._linalg_utils import matmul, qform from torch._lobpcg import lobpcg def test_tracker(worker): k = worker.iparams['k'] nc = worker.ivars['converged_count'] if k <= nc: tol = worker.fparams['tol'] rerr = worker.tvars['rerr'] X = worker.X E = worker.E B = worker.B A = worker.A dtype = X.dtype device = X.device # Check convergence self.assertLessEqual(rerr[:k].max(), tol) # Check B-orthogonality I = torch.eye(k, k, dtype=dtype, device=device) self.assertEqual(qform(B, X[:, :k]), I) # Check block equation self.assertEqual(qform(A, X[:, :k]) / E[:k], I, prec=0.2) orig_lobpcg = lobpcg def lobpcg(*args, **kwargs): kwargs['tracker'] = test_tracker kwargs['niter'] = 1000 kwargs['method'] = method kwargs['tol'] = 1e-8 return orig_lobpcg(*args, **kwargs) prec = 5e-4 # check dense input mm = torch.matmul for batches in [(), (2,), (2, 3)]: for m, n, k in [ (9, 3, 1), (9, 3, 2), (9, 2, 2), (100, 15, 5), ]: # skip tests that are known to fail with the basic # LOBPCG method due to calling cholesky on singular # input if method == 'basic' and (m, n, k) in [(9, 2, 2), (100, 15, 5)]: continue A = random_symmetric_pd_matrix(m, *batches, device=device, dtype=dtype) B = random_symmetric_pd_matrix(m, *batches, device=device, dtype=dtype) # classical eigenvalue problem, smallest eigenvalues E, V = lobpcg(A, k=k, n=n, largest=False) self.assertEqual(E.shape, batches + (k,)) self.assertEqual(V.shape, batches + (m, k)) self.assertEqual(matmul(A, V), mm(V, E.diag_embed()), prec=prec) e = torch.symeig(A)[0] e_smallest = e[..., :k] self.assertEqual(E, e_smallest) # classical eigenvalue problem, largest eigenvalues E, V = lobpcg(A, k=k, n=n, largest=True) e_largest, _ = torch.sort(e[..., -k:], descending=True) self.assertEqual(E, e_largest, prec=prec) self.assertEqual(matmul(A, V), mm(V, E.diag_embed()), prec=prec) # generalized eigenvalue problem, smallest eigenvalues E, V = lobpcg(A, B=B, k=k, n=n, largest=False) self.assertEqual(matmul(A, V), mm(matmul(B, V), E.diag_embed()), prec=prec) # generalized eigenvalue problem, largest eigenvalues E, V = lobpcg(A, B=B, k=k, n=n, largest=True) self.assertEqual(matmul(A, V) / E.max(), mm(matmul(B, V), (E / E.max()).diag_embed()), prec=prec) # check sparse input for m, n, k, density in [ (5, 1, 1, 0.8), (9, 3, 2, 0.5), (100, 1, 1, 0.1), (1000, 7, 3, 0.01), ]: # skip tests that are known to fail with the basic LOBCG # method due to insufficient accuracy if method == 'basic' and (m, n, k, density) in [(1000, 7, 3, 0.01)]: continue A = random_sparse_pd_matrix(m, density=density, device=device, dtype=dtype) B = random_sparse_pd_matrix(m, density=density, device=device, dtype=dtype) A_eigenvalues = torch.arange(1, m + 1, dtype=dtype) / m e_smallest = A_eigenvalues[..., :k] e_largest, _ = torch.sort(A_eigenvalues[..., -k:], descending=True) # classical eigenvalue problem, smallest eigenvalues E, V = lobpcg(A, k=k, n=n, largest=False) self.assertEqual(E, e_smallest) self.assertEqual(matmul(A, V), mm(V, E.diag_embed()), prec=prec) # classical eigenvalue problem, largest eigenvalues E, V = lobpcg(A, k=k, n=n, largest=True) self.assertEqual(matmul(A, V), mm(V, E.diag_embed()), prec=prec) self.assertEqual(E, e_largest) # generalized eigenvalue problem, smallest eigenvalues E, V = lobpcg(A, B=B, k=k, n=n, largest=False) self.assertEqual(matmul(A, V), matmul(B, mm(V, E.diag_embed())), prec=prec) # generalized eigenvalue problem, largest eigenvalues E, V = lobpcg(A, B=B, k=k, n=n, largest=True) self.assertEqual(matmul(A, V) / E.max(), mm(matmul(B, V), (E / E.max()).diag_embed()), prec=prec) @skipCPUIfNoLapack @onlyCPU @dtypes(torch.double) def test_lobpcg_torchscript(self, device, dtype): from torch.testing._internal.common_utils import random_sparse_pd_matrix from torch._linalg_utils import matmul as mm lobpcg = torch.jit.script(torch.lobpcg) m = 500 k = 5 A1 = random_sparse_pd_matrix(m, density=2.0 / m, device=device, dtype=dtype) X1 = torch.randn((m, k), dtype=dtype, device=device) E1, V1 = lobpcg(A1, X=X1) eq_err = torch.norm((mm(A1, V1) - V1 * E1), 2) / E1.max() self.assertLess(eq_err, 1e-6) @unittest.skipIf(not TEST_SCIPY or (TEST_SCIPY and scipy.__version__ < '1.4.1'), "Scipy not found or older than 1.4.1") @skipCPUIfNoLapack @onlyCPU @dtypes(torch.double) def test_lobpcg_scipy(self, device, dtype): """Compare torch and scipy.sparse.linalg implementations of lobpcg """ import time import scipy from torch.testing._internal.common_utils import random_sparse_pd_matrix from torch._linalg_utils import matmul as mm from scipy.sparse.linalg import lobpcg as scipy_lobpcg import scipy.sparse def toscipy(A): if A.layout == torch.sparse_coo: values = A.coalesce().values().cpu().numpy().copy() indices = A.coalesce().indices().cpu().numpy().copy() return scipy.sparse.coo_matrix((values, (indices[0], indices[1])), A.shape) return A.cpu().numpy().copy() niter = 1000 repeat = 10 m = 500 # size of the square matrix k = 7 # the number of requested eigenpairs A1 = random_sparse_pd_matrix(m, density=2.0 / m, device=device, dtype=dtype) B1 = random_sparse_pd_matrix(m, density=2.0 / m, device=device, dtype=dtype) X1 = torch.randn((m, k), dtype=dtype, device=device) A2 = toscipy(A1) B2 = toscipy(B1) X2 = toscipy(X1) lambdas1 = [] def tracker(worker): lambdas1.append(worker.E[:]) tol = 1e-8 # tol for scipy lobpcg will be choosed so that the number of # iterations will be equal or very close to pytorch lobpcg # (that is around 170-180) # Standard eigenvalue problem E1, V1 = torch.lobpcg(A1, X=X1, niter=niter, largest=True, tracker=tracker, tol=tol) E2, V2, lambdas2 = scipy_lobpcg(A2, X2, maxiter=niter, largest=True, retLambdaHistory=True, tol=1.1 * tol) iters1 = len(lambdas1) iters2 = len(lambdas2) self.assertLess(abs(iters1 - iters2), 0.05 * max(iters1, iters2)) E2a, V2a = scipy_lobpcg(A2, X2, maxiter=niter, largest=False) eq_err = torch.norm((mm(A1, V1) - V1 * E1), 2) / E1.max() eq_err_scipy = (abs(A2.dot(V2) - V2 * E2)**2).sum() ** 0.5 / E2.max() self.assertLess(eq_err, 1e-6) # std self.assertLess(eq_err_scipy, 1e-6) # std self.assertEqual(E1, torch.from_numpy(E2.copy())) # Generalized eigenvalue problem lambdas1 = [] def tracker(worker): lambdas1.append(worker.E[:]) E1, V1 = torch.lobpcg(A1, B=B1, X=X1, niter=niter, largest=True, tracker=tracker, tol=tol) E2, V2, lambdas2 = scipy_lobpcg(A2, X2, B=B2, maxiter=niter, largest=True, retLambdaHistory=True, tol=39 * tol) E2a, V2a = scipy_lobpcg(A2, X2, B=B2, maxiter=niter, largest=False) iters1 = len(lambdas1) iters2 = len(lambdas2) self.assertLess(abs(iters1 - iters2), 0.05 * max(iters1, iters2)) eq_err = torch.norm((mm(A1, V1) - mm(B1, V1) * E1), 2) / E1.max() eq_err_scipy = (abs(A2.dot(V2) - B2.dot(V2) * E2)**2).sum() ** 0.5 / E2.max() self.assertLess(eq_err, 1e-6) # general self.assertLess(eq_err_scipy, 1e-6) # general self.assertEqual(E1, torch.from_numpy(E2.copy())) # Timings elapsed_ortho = 0 elapsed_ortho_general = 0 elapsed_scipy = 0 elapsed_general_scipy = 0 for i in range(repeat): start = time.time() torch.lobpcg(A1, X=X1, niter=niter, method='ortho', tol=tol) end = time.time() elapsed_ortho += end - start start = time.time() torch.lobpcg(A1, X=X1, B=B1, niter=niter, method='ortho', tol=tol) end = time.time() elapsed_ortho_general += end - start start = time.time() scipy_lobpcg(A2, X2, maxiter=niter, tol=1.1 * tol) end = time.time() elapsed_scipy += end - start start = time.time() scipy_lobpcg(A2, X2, B=B2, maxiter=niter, tol=39 * tol) end = time.time() elapsed_general_scipy += end - start elapsed_ortho_ms = 1000.0 * elapsed_ortho / repeat elapsed_ortho_general_ms = 1000.0 * elapsed_ortho_general / repeat elapsed_scipy_ms = 1000.0 * elapsed_scipy / repeat elapsed_general_scipy_ms = 1000.0 * elapsed_general_scipy / repeat print(''' CPU timings: torch.lobpcg vs scipy.sparse.linalg.lobpcg ------------------------------------------------------- | standard | generalized | method torch.lobpcg | {:10.2f} | {:10.2f} | ortho scipy_lobpcg | {:10.2f} | {:10.2f} | N/A -(input size: {:4}, eigenpairs:{:2}, units: ms per call)- '''.format(elapsed_ortho_ms, elapsed_ortho_general_ms, elapsed_scipy_ms, elapsed_general_scipy_ms, m, k)) # Handling of very small tolerence tol = 1e-100 lambdas1 = [] def tracker(worker): lambdas1.append(worker.E[:]) E1, V1 = torch.lobpcg(A1, X=X1, niter=niter, largest=True, tracker=tracker, tol=tol) iters1 = len(lambdas1) eq_err = torch.norm((mm(A1, V1) - V1 * E1), 2) / E1.max() try: E2, V2, lambdas2 = scipy_lobpcg(A2, X2, maxiter=niter, largest=True, retLambdaHistory=True, tol=tol) iters2 = len(lambdas2) eq_err_scipy = (abs(A2.dot(V2) - V2 * E2)**2).sum() ** 0.5 / E2.max() except Exception as msg: print('Calling scipy_lobpcg failed [standard]:', msg) iters2 = -1 eq_err_scipy = -1 lambdas1 = [] def tracker(worker): lambdas1.append(worker.E[:]) E1, V1 = torch.lobpcg(A1, X=X1, B=B1, niter=niter, largest=True, tracker=tracker, tol=tol) iters1_general = len(lambdas1) eq_err_general = torch.norm((mm(A1, V1) - mm(B1, V1) * E1), 2) / E1.max() try: E2, V2, lambdas2 = scipy_lobpcg(A2, X2, B=B2, maxiter=niter, largest=True, retLambdaHistory=True, tol=tol) iters2_general = len(lambdas2) eq_err_general_scipy = (abs(A2.dot(V2) - B2.dot(V2) * E2)**2).sum() ** 0.5 / E2.max() except Exception as msg: print('Calling scipy_lobpcg failed [generalized]:', msg) iters2_general = -1 eq_err_general_scipy = -1 print('''\ Handling of small tol={:6.0e}: torch.lobpcg vs scipy.sparse.linalg.lobpcg ---------------------------------------------------------------------------- | standard | generalized | niter | method torch.lobpcg | {:10.2e} | {:10.2e} | {:6} | ortho scipy_lobpcg | {:10.2e} | {:10.2e} | {:6} | N/A ---(input size: {:4}, eigenpairs:{:2}, units: relative error, maxiter={:4})--- '''.format(tol, eq_err, eq_err_general, iters1, eq_err_scipy, eq_err_general_scipy, iters2, m, k, niter)) @slowTest @onlyCPU @dtypes(torch.bfloat16, torch.float, torch.double) def test_ger(self, device, dtype): def run_test(v0, v1): res0 = torch.ger(v0, v1) res1 = torch.zeros(100, 100, dtype=dtype, device=device) for i in range(100): for j in range(100): res1[i, j] = v0[i] * v1[j] self.assertEqual(res0, res1) v0 = torch.randn(100, dtype=torch.float, device=device).to(dtype=dtype) v1 = torch.randn(100, dtype=torch.float, device=device).to(dtype=dtype) run_test(v0, v1) # Tests 0-strided v0 = torch.randn(1, dtype=torch.float, device=device).expand(100).to(dtype=dtype) v1 = torch.randn(100, dtype=torch.float, device=device).to(dtype=dtype) run_test(v0, v1) @slowTest @onlyCPU @dtypes(torch.bfloat16, torch.float, torch.double) def test_addr(self, device, dtype): def run_test(m, v1, v2, m_transform=lambda x: x): m = m_transform(m.clone()) ref = m.clone() torch.addr(m, v1, v2, out=m) for i in range(m.size(0)): for j in range(m.size(1)): ref[i, j] += v1[i] * v2[j] self.assertEqual(m, ref) for h, w in [(100, 110), (1, 20), (200, 2)]: m = torch.randn(h, w, dtype=torch.float, device=device).to(dtype=dtype) v1 = torch.randn(h, dtype=torch.float, device=device).to(dtype=dtype) v2 = torch.randn(w, dtype=torch.float, device=device).to(dtype=dtype) run_test(m, v1, v2) # test transpose run_test(m, v2, v1, lambda x: x.transpose(0, 1)) # test 0 strided v1 = torch.randn(1, dtype=torch.float, device=device).expand(h).to(dtype=dtype) run_test(m, v1, v2) run_test(m, v2, v1, lambda x: x.transpose(0, 1)) @onlyCPU @precisionOverride({torch.bfloat16: 1e-0, torch.float: 1e-4, torch.double: 1e-8}) @dtypes(torch.bfloat16, torch.float, torch.double) def test_addmv(self, device, dtype): t = torch.randn(10, device=device).to(dtype) m = torch.randn(10, 100, device=device).to(dtype) v = torch.randn(100, device=device).to(dtype) res1 = torch.addmv(t, m, v) res2 = torch.zeros(10, dtype=dtype, device=device) res2 += t for i in range(10): for j in range(100): res2[i] += m[i, j] * v[j] self.assertEqual(res1, res2) # Test 0-strided t = torch.randn(1, device=device).to(dtype).expand(10) m = torch.randn(10, 1, device=device).to(dtype).expand(10, 100) v = torch.randn(100, device=device).to(dtype) res1 = torch.addmv(t, m, v) res2 = torch.zeros(10, dtype=dtype, device=device) res2 += t for i in range(10): for j in range(100): res2[i] += m[i, j] * v[j] self.assertEqual(res1, res2) @slowTest @onlyCPU def test_addmm(self, device): types = { 'torch.DoubleTensor': 1e-8, 'torch.FloatTensor': 1e-4, 'torch.BFloat16Tensor': 1e-1, } for tname, prec in types.items(): M = torch.randn(10, 25, device=device).type(tname) m1 = torch.randn(10, 50, device=device).type(tname) m2 = torch.randn(50, 25, device=device).type(tname) res1 = torch.addmm(M, m1, m2) res2 = torch.zeros(10, 25, device=device).type(tname) res2 += M for i in range(10): for j in range(25): for k in range(50): res2[i, j] += m1[i, k] * m2[k, j] self.assertEqual(res1, res2, prec) # Test 0-strided for tname, prec in types.items(): M = torch.randn(10, 1, device=device).type(tname).expand(10, 25) m1 = torch.randn(10, 1, device=device).type(tname).expand(10, 50) m2 = torch.randn(50, 25, device=device).type(tname) res1 = torch.addmm(M, m1, m2) res2 = torch.zeros(10, 25, device=device).type(tname) res2 += M for i in range(10): for j in range(25): for k in range(50): res2[i, j] += m1[i, k] * m2[k, j] self.assertEqual(res1, res2, prec) @dtypes(torch.float, torch.double) def test_addmm_sizes(self, device, dtype): for m in [0, 1, 25]: for n in [0, 1, 10]: for k in [0, 1, 8]: M = torch.randn(n, m, device=device, dtype=dtype) m1 = torch.randn(n, k, device=device, dtype=dtype) m2 = torch.randn(k, m, device=device, dtype=dtype) res1 = torch.addmm(M, m1, m2) res2 = torch.zeros(n, m, device=device, dtype=dtype) res2 += M for i in range(n): for j in range(m): for l in range(k): res2[i, j] += m1[i, l] * m2[l, j] self.assertEqual(res1, res2) @onlyCPU @dtypes(torch.float, torch.double) def test_dot(self, device, dtype): v1 = torch.randn(100, dtype=dtype, device=device) v2 = torch.randn(100, dtype=dtype, device=device) res1 = torch.dot(v1, v2) res2 = 0 for i, j in zip(v1, v2): res2 += i * j self.assertEqual(res1, res2) out = torch.randn((), dtype=dtype, device=device) torch.dot(v1, v2, out=out) self.assertEqual(res1, out) # Test 0-strided v1 = torch.randn(1, dtype=dtype, device=device).expand(100) v2 = torch.randn(100, dtype=dtype, device=device) res1 = torch.dot(v1, v2) res2 = 0 for i, j in zip(v1, v2): res2 += i * j self.assertEqual(res1, res2) out = torch.randn((), dtype=dtype, device=device) torch.dot(v1, v2, out=out) self.assertEqual(res1, out) @onlyCPU @slowTest @dtypes(torch.float) def test_exp_slow(self, device, dtype): # Test for https://github.com/pytorch/pytorch/issues/17271 # This is pretty slow on my Macbook but it only takes a few # seconds on a beefy Xeon server a = torch.exp(torch.ones(2 ** 31, dtype=dtype, device=device)) b = torch.exp(torch.ones(1, dtype=dtype, device=device)) self.assertEqual(a, b.expand(2 ** 31)) @onlyCPU @dtypes(torch.float, torch.double) @unittest.skipIf(not TEST_NUMPY, "Numpy not found") def test_hardswish(self, device, dtype): inputValues = [-1000, -4, -3, -2, 0, 2, 3, 4, 1000] expectedOutput = np.multiply( inputValues, np.minimum(np.maximum((np.add(inputValues, 3)), 0), 6) / 6.0) precision_4dps = 0.0002 inputTensor = torch.tensor(inputValues, dtype=dtype, device=device) expectedOutputTensor = \ torch.tensor(expectedOutput, dtype=dtype, device=device) # normal self.assertEqual(torch.nn.functional.hardswish(inputTensor), expectedOutputTensor, precision_4dps) # inplace inputTensorCpy = inputTensor.clone().detach() torch.nn.functional.hardswish(inputTensorCpy, inplace=True) self.assertEqual(inputTensorCpy, expectedOutputTensor, precision_4dps) @onlyCPU @dtypes(torch.float, torch.double) def test_sigmoid(self, device, dtype): # TODO: why not simulate math.sigmoid like with rsqrt? inputValues = [-1000, -1, 0, 0.5, 1, 2, 1000] expectedOutput = [0.0000, 0.2689, 0.5, 0.6225, 0.7311, 0.8808, 1.000] precision_4dps = 0.0002 self.assertEqual(torch.tensor(inputValues, dtype=dtype, device=device).sigmoid(), torch.tensor(expectedOutput, dtype=dtype, device=device), precision_4dps) @onlyCPU @dtypes(torch.float, torch.double) @unittest.skipIf(not TEST_NUMPY, "Numpy not found") def test_hardsigmoid(self, device, dtype): inputValues = [-1000, -4, -3, -2, 0, 2, 3, 4, 1000] expectedOutput = np.minimum(np.maximum((np.add(inputValues, 3)), 0), 6) / 6.0 inputTensor = torch.tensor(inputValues, dtype=dtype, device=device) precision_4dps = 0.0002 # normal self.assertEqual(torch.nn.functional.hardsigmoid(inputTensor), torch.tensor(expectedOutput, dtype=dtype, device=device), precision_4dps) # inplace inputTensorCpy = inputTensor.clone().detach() self.assertEqual(torch.nn.functional.hardsigmoid(inputTensorCpy, inplace=True), torch.tensor(expectedOutput, dtype=dtype, device=device), precision_4dps) @onlyCPU @dtypes(torch.float) def test_diag_embed(self, device, dtype): x = torch.arange(3 * 4, dtype=dtype, device=device).view(3, 4) result = torch.diag_embed(x) expected = torch.stack([torch.diag(r) for r in x], 0) self.assertEqual(result, expected) result = torch.diag_embed(x, offset=1, dim1=0, dim2=2) expected = torch.stack([torch.diag(r, 1) for r in x], 1) self.assertEqual(result, expected) @onlyCPU @dtypes(*torch.testing.get_all_dtypes()) def test_sub(self, device, dtype): m1 = torch.tensor([2.34, 4.44], dtype=dtype, device=device) m2 = torch.tensor([1.23, 2.33], dtype=dtype, device=device) if (dtype == torch.half or dtype == torch.bool): self.assertRaises(RuntimeError, lambda: m1 - m2) elif (dtype == torch.bfloat16): # bfloat16 has a lower precision so we have to have a separate check for it self.assertEqual(m1 - m2, torch.tensor([1.11, 2.11], dtype=dtype), 0.01) else: self.assertEqual(m1 - m2, torch.tensor([1.11, 2.11], dtype=dtype)) @onlyCPU @dtypes(torch.float) def test_csub(self, device, dtype): # with a tensor a = torch.randn(100, 90, dtype=dtype, device=device) b = a.clone().normal_() res_add = torch.add(a, b, alpha=-1) res_csub = a.clone() res_csub.sub_(b) self.assertEqual(res_add, res_csub) # with a scalar a = torch.randn(100, 100, dtype=dtype, device=device) scalar = 123.5 res_add = torch.add(a, -scalar) res_csub = a.clone() res_csub.sub_(scalar) self.assertEqual(res_add, res_csub) @dtypesIfCUDA(torch.half, torch.float, torch.double) @dtypes(torch.float, torch.double) def test_min_max_binary_op_nan(self, device, dtype): a = torch.rand(1000, dtype=dtype, device=device) b = torch.rand(1000, dtype=dtype, device=device) # 0:250: a -- nan, b -- not nan a[:250] = float('nan') # 250:500: a -- not nan, b -- nan b[250:500] = float('nan') # 500:750: a and b both nan a[500:750] = float('nan') b[500:750] = float('nan') # 750:1000: neither nan ma = torch.max(a, b) mi = torch.min(a, b) for i in range(750): self.assertTrue(torch.isnan(ma[i]), "max(a, b): {}, a: {}, b: {}".format(ma[i], a[i], b[i])) self.assertTrue(torch.isnan(mi[i]), "min(a, b): {}, a: {}, b: {}".format(mi[i], a[i], b[i])) for i in range(750, 1000): self.assertFalse(torch.isnan(ma[i]), "max(a, b): {}, a: {}, b: {}".format(ma[i], a[i], b[i])) self.assertFalse(torch.isnan(mi[i]), "min(a, b): {}, a: {}, b: {}".format(mi[i], a[i], b[i])) @onlyCPU @dtypes(*torch.testing.get_all_math_dtypes('cpu')) def test_threshold(self, device, dtype): if dtype != torch.uint8 and dtype != torch.float16: # 100 is wide enough to use AVX2 instructions for all types x = torch.randn(100, dtype=torch.float, device=device).sign().to(dtype=dtype) y = torch.threshold(x, 0, 0) self.assertTrue(y.le(0).any()) @onlyCPU @dtypes(torch.float, torch.double) def test_reciprocal(self, device, dtype): a = torch.randn(100, 89, device=device, dtype=dtype) res_div = 1 / a res_reciprocal = a.clone() res_reciprocal.reciprocal_() self.assertEqual(res_reciprocal, res_div) @onlyCPU @dtypes(torch.bfloat16, torch.float) def test_div(self, device, dtype): m1 = torch.randn(10, 10, dtype=torch.float, device=device).to(dtype=dtype) res1 = m1.clone() res1[:, 3].div_(2) res2 = m1.clone() for i in range(m1.size(0)): res2[i, 3] = res2[i, 3] / 2 self.assertEqual(res1, res2) if dtype == torch.bfloat16: a1 = torch.tensor([4.2, 6.2], dtype=dtype, device=device) a2 = torch.tensor([2., 2.], dtype=dtype, device=device) self.assertEqual(a1 / a2, torch.tensor([2.1, 3.1], dtype=dtype, device=device), 0.01) self.assertEqual(a1.div(a2), a1 / a2) @dtypesIfCUDA(*torch.testing.get_all_math_dtypes('cuda')) @dtypes(*torch.testing.get_all_math_dtypes('cpu')) def test_floor_divide_tensor(self, device, dtype): x = torch.randn(10, device=device).mul(30).to(dtype) y = torch.arange(1, 11, dtype=dtype, device=device) z = x // y z_alt = torch.trunc(x.double() / y.double()).to(dtype) self.assertEqual(z.dtype, x.dtype) self.assertEqual(z, z_alt) @dtypesIfCUDA(*torch.testing.get_all_math_dtypes('cuda')) @dtypes(*torch.testing.get_all_math_dtypes('cpu')) def test_floor_divide_scalar(self, device, dtype): x = torch.randn(100, device=device).mul(10).to(dtype) z = x // 3 z_alt = torch.tensor([math.trunc(v.item() / 3.) for v in x], dtype=x.dtype, device=device) self.assertEqual(z.dtype, x.dtype) self.assertEqual(z, z_alt) # Note: this tests fails on XLA @onlyOnCPUAndCUDA @dtypes(torch.float, torch.long) def test_floor_divide_out(self, device, dtype): x = torch.randn(10, device=device).mul(10).to(dtype) y = torch.arange(1, 11, dtype=dtype, device=device) o = torch.empty(10, dtype=dtype, device=device) torch.floor_divide(x, y, out=o) self.assertEqual(o, x // y) # Tests scalar with out torch.floor_divide(x, 2, out=o) self.assertEqual(o, x // 2) if dtype == torch.int: o = torch.empty(10, dtype=torch.float, device=device) torch.floor_divide(x, y, out=o) self.assertEqual(o, torch.floor_divide(x.float(), y.float())) @onlyCPU @dtypes(*torch.testing.get_all_math_dtypes('cpu')) def test_rdiv(self, device, dtype): if dtype is torch.float16: return x = torch.rand(100, device=device).add(1).mul(4).to(dtype) y = 30 / x if dtype.is_floating_point: z = torch.tensor([30 / v.item() for v in x], dtype=dtype, device=device) else: z = torch.tensor([math.trunc(30. / v.item()) for v in x], dtype=dtype, device=device) self.assertEqual(y, z) @onlyCPU @dtypes(torch.float) def test_fmod(self, device, dtype): m1 = torch.Tensor(10, 10).uniform_(-10., 10.).to(dtype=dtype, device=device) res1 = m1.clone() q = 2.1 res1[:, 3].fmod_(q) res2 = m1.clone() for i in range(m1.size(1)): res2[i, 3] = math.fmod(res2[i, 3], q) self.assertEqual(res1, res2) @onlyCPU @dtypes(torch.float, torch.long) def test_remainder(self, device, dtype): for use_item in [True, False]: if dtype == torch.float: m1 = torch.Tensor(10, 10).uniform_(-10., 10.).to(dtype=dtype, device=device) res1 = m1.clone() res2 = m1.clone() qs = torch.arange(-5.1, 4.1, dtype=dtype, device=device) # Check the case where the divisor is a simple float for col_idx, q in enumerate(qs): # Reference for i in range(m1.size(0)): res2[i, col_idx] = res2[i, col_idx] % q # To test res1[:, col_idx].remainder_(q if not use_item else q.item()) self.assertEqual(res1, res2) # Check the case where the divisor is a tensor res1 = m1.clone() res1.remainder_(qs.unsqueeze(0).expand_as(res1)) self.assertEqual(res1, res2) elif dtype == torch.long: long_m1 = torch.LongTensor(10, 10).random_(-10, 10) long_res1 = long_m1.clone() long_res2 = long_m1.clone() long_qs = torch.arange(-5, 5, dtype=dtype, device=device) long_qs[5] = 5 # Can't handle the divisor=0 case for col_idx, long_q in enumerate(long_qs): # Reference for i in range(long_m1.size(0)): long_res2[i, col_idx] = long_res2[i, col_idx] % long_q # To test long_res1[:, col_idx].remainder_(long_q if not use_item else long_q.item()) self.assertEqual(long_res1, long_res2) # Divisor is a tensor case long_res1 = long_m1.clone() long_res1.remainder_(long_qs.unsqueeze(0).expand_as(long_res1)) @dtypes(torch.int64, torch.float64) def test_remainder_edge_cases(self, device, dtype): # Test variations of negative values used as input a = torch.tensor([6, -6, -6, 6, 27, -27, -27, 27], dtype=dtype, device=device) b = torch.tensor([-3, 3, -3, 3, -5, 5, -5, 5], dtype=dtype, device=device) r = a.remainder(b) r_expected = torch.tensor([0, 0, 0, 0, -3, 3, -2, 2], dtype=dtype, device=device) self.assertEqual(r, r_expected) if dtype == torch.float64: # Test cases where result should be nan a = torch.tensor([-34, 0, 34], dtype=dtype, device=device) b = torch.zeros(3, dtype=dtype, device=device) self.assertTrue(torch.isnan(a.remainder(b)).all()) # Need to test a fairly large tensor with float cpu to run # the Vec256 implementation if device == 'cpu': a = torch.tensor([6, -6, -6, 6, 27, -27, -27, 27] * 10000, dtype=dtype, device=device) b = torch.tensor([-3, 3, -3, 3, -5, 5, -5, 5] * 10000, dtype=dtype, device=device) r = a.remainder(b) r_expected = torch.tensor([0, 0, 0, 0, -3, 3, -2, 2] * 10000, dtype=dtype, device=device) self.assertEqual(r, r_expected) # Test nan cases a = torch.tensor([-34, 0, 34] * 20000, dtype=dtype, device=device) b = torch.zeros(3 * 20000, dtype=dtype, device=device) self.assertTrue(torch.isnan(a.remainder(b)).all()) elif dtype == torch.int64: if device == 'cpu': # Test int divide by zero causes an exception a = torch.ones(1000, dtype=dtype, device=device) b = torch.ones(1000, dtype=dtype, device=device) b[500] = 0 self.assertRaises(RuntimeError, lambda: a.remainder(b)) # Check scalar type is promoted to match tensor a = torch.ones(1, dtype=dtype, device=device) b = 1.0 if dtype == torch.int64 else 1 r = a.remainder(b) self.assertEqual(r.dtype, a.dtype) @slowTest @dtypes(torch.float32, torch.float64, torch.bfloat16, torch.int32, torch.int64) @dtypesIfCUDA(torch.float32, torch.float64) def test_mm(self, device, dtype): def _test_mm(n, m, p, dtype, genf): # helper function def matrixmultiply(mat1, mat2): n = mat1.size(0) m = mat1.size(1) p = mat2.size(1) res = torch.zeros(n, p, dtype=dtype, device=device) for i, j in iter_indices(res): res[i, j] = sum(mat1[i, k] * mat2[k, j] for k in range(m)) return res # contiguous case mat1 = genf(n, m) mat2 = genf(m, p) res = torch.mm(mat1, mat2) res2 = matrixmultiply(mat1, mat2) self.assertEqual(res, res2) # non contiguous case 1 mat1 = genf(n, m) mat2 = genf(p, m).t() res = torch.mm(mat1, mat2) res2 = matrixmultiply(mat1, mat2) self.assertEqual(res, res2) # non contiguous case 2 mat1 = genf(m, n).t() mat2 = genf(m, p) res = torch.mm(mat1, mat2) res2 = matrixmultiply(mat1, mat2) self.assertEqual(res, res2) # non contiguous case 3 mat1 = genf(m, n).t() mat2 = genf(p, m).t() res = torch.mm(mat1, mat2) res2 = matrixmultiply(mat1, mat2) self.assertEqual(res, res2) # test with zero stride mat1 = genf(n, m) mat2 = genf(m, 1).expand(m, p) res = torch.mm(mat1, mat2) res2 = matrixmultiply(mat1, mat2) self.assertEqual(res, res2) # explicitly exercise the _out variant in torch.mm(). # contiguous case mat1 = genf(n, m) mat2 = genf(m, p) res = genf(n, p) torch.mm(mat1, mat2, out=res) res2 = matrixmultiply(mat1, mat2) self.assertEqual(res, res2) # explicitly exercise the _out variant in torch.mm(). # non contiguous case 3 mat1 = genf(m, n).t() mat2 = genf(p, m).t() res = genf(n, p) torch.mm(mat1, mat2, out=res) res2 = matrixmultiply(mat1, mat2) self.assertEqual(res, res2) def genf_int(x, y): return torch.randint(0, 100, (x, y), dtype=dtype, device=device) def genf_bfloat(x, y): return torch.randn(x, y, dtype=torch.float32, device=device).to(dtype) def genf_float(x, y): return torch.randn(x, y, dtype=dtype, device=device) for (n, m, p) in [(20, 10, 5), (15, 5, 10), (5, 18, 10)]: if (dtype == torch.int32) or (dtype == torch.int64): genf = genf_int elif (dtype == torch.bfloat16): genf = genf_bfloat else: genf = genf_float _test_mm(n, m, p, dtype, genf) @onlyCPU @dtypes(torch.float) def test_bmm(self, device, dtype): num_batches = 10 M, N, O = 23, 8, 12 b1 = torch.randn(num_batches, M, N, dtype=dtype, device=device) b2 = torch.randn(num_batches, N, O, dtype=dtype, device=device) res = torch.bmm(b1, b2) for i in range(num_batches): r = torch.mm(b1[i], b2[i]) self.assertEqual(r, res[i]) if torch.cuda.is_available(): # check that mixed arguments are rejected self.assertRaises(RuntimeError, lambda: torch.bmm(b1, b2.cuda())) self.assertRaises(RuntimeError, lambda: torch.bmm(b1.cuda(), b2)) @onlyCPU @dtypes(torch.float) def test_addbmm(self, device, dtype): # num_batches = 10 # M, N, O = 12, 8, 5 num_batches = 2 M, N, O = 2, 3, 4 b1 = torch.randn(num_batches, M, N, dtype=dtype, device=device) b2 = torch.randn(num_batches, N, O, dtype=dtype, device=device) res = torch.bmm(b1, b2) res2 = torch.tensor((), dtype=dtype, device=device).resize_as_(res[0]).zero_() res3 = torch.tensor((), dtype=dtype, device=device).resize_as_(res[0]).zero_() res2.addbmm_(b1, b2) self.assertEqual(res2, res.sum(0, False)) res3.copy_(res2) with self.maybeWarnsRegex( UserWarning, "This overload of addbmm_ is deprecated"): res2.addbmm_(1, b1, b2) self.assertEqual(res2, res.sum(0, False) * 2), res3.addbmm_(b1, b2, beta=1) self.assertEqual(res2, res3) with self.maybeWarnsRegex( UserWarning, "This overload of addbmm_ is deprecated"): res2.addbmm_(1., .5, b1, b2) self.assertEqual(res2, res.sum(0, False) * 2.5) res3.addbmm_(b1, b2, beta=1., alpha=.5) self.assertEqual(res2, res3) with self.maybeWarnsRegex( UserWarning, "This overload of addbmm is deprecated"): self.assertEqual(res2, torch.addbmm(1, res2, 0, b1, b2)) res4 = torch.addbmm(res2, b1, b2, beta=1, alpha=.5) self.assertEqual(res4, res.sum(0, False) * 3), res5 = torch.addbmm(res2, b1, b2, beta=0, alpha=1) self.assertEqual(res5, res.sum(0, False)) res6 = torch.addbmm(res2, b1, b2, beta=.1, alpha=.5) self.assertEqual(res6, res2 * .1 + .5 * res.sum(0)), @onlyCPU @dtypes(torch.float) def test_baddbmm(self, device, dtype): num_batches = 10 M, N, O = 12, 8, 5 b1 = torch.randn(num_batches, M, N, dtype=dtype, device=device) b2 = torch.randn(num_batches, N, O, dtype=dtype, device=device) res = torch.bmm(b1, b2) res2 = torch.tensor((), dtype=dtype, device=device).resize_as_(res).zero_() res3 = torch.tensor((), dtype=dtype, device=device).resize_as_(res).zero_() res2.baddbmm_(b1, b2) self.assertEqual(res2, res) res3.copy_(res2) with self.maybeWarnsRegex( UserWarning, "This overload of baddbmm_ is deprecated"): res2.baddbmm_(1, b1, b2) self.assertEqual(res2, res * 2) res3.baddbmm_(b1, b2, beta=1) self.assertEqual(res3, res2) with self.maybeWarnsRegex( UserWarning, "This overload of baddbmm_ is deprecated"): res2.baddbmm_(1, .5, b1, b2) self.assertEqual(res2, res * 2.5) res3.baddbmm_(b1, b2, beta=1, alpha=.5) self.assertEqual(res3, res2) with self.maybeWarnsRegex( UserWarning, "This overload of baddbmm is deprecated"): self.assertEqual(torch.baddbmm(1, res2, 0, b1, b2), res2) res4 = torch.baddbmm(res2, b1, b2, beta=1, alpha=.5) self.assertEqual(res4, res * 3, prec=2e-5) res5 = torch.baddbmm(res2, b1, b2, beta=0, alpha=1) self.assertEqual(res5, res) res6 = torch.baddbmm(res2, b1, b2, beta=.1, alpha=.5) self.assertEqual(res6, res2 * .1 + res * .5) def _test_cop(self, torchfn, mathfn, dtype, device): def reference_implementation(res2): for i, j in iter_indices(sm1): idx1d = i * sm1.size(0) + j res2[i, j] = mathfn(sm1[i, j], sm2[idx1d]) return res2 # contiguous m1 = torch.randn(10, 10, 10, dtype=dtype, device=device) m2 = torch.randn(10, 10 * 10, dtype=dtype, device=device) sm1 = m1[4] sm2 = m2[4] res1 = torchfn(sm1, sm2.view(10, 10)) res2 = reference_implementation(res1.clone()) self.assertEqual(res1, res2) # non-contiguous m1 = torch.randn(10, 10, 10, dtype=dtype, device=device) m2 = torch.randn(10 * 10, 10 * 10, dtype=dtype, device=device) sm1 = m1[:, 4] sm2 = m2[:, 4] # view as sm1.size() sm2.set_(sm2.storage(), sm2.storage_offset(), sm1.size(), (sm2.stride()[0] * 10, sm2.stride()[0])) res1 = torchfn(sm1, sm2) # reference_implementation assumes 1-d sm2 sm2.set_(sm2.storage(), sm2.storage_offset(), m2[:, 4].size(), m2[:, 4].stride()) res2 = reference_implementation(res1.clone()) self.assertEqual(res1, res2) @onlyCPU @dtypes(torch.float) def test_cdiv(self, device, dtype): self._test_cop(torch.div, lambda x, y: x / y, dtype, device) @onlyCPU @dtypes(torch.float) def test_cfmod(self, device, dtype): self._test_cop(torch.fmod, math.fmod, dtype, device) @onlyCPU @dtypes(torch.float) def test_cremainder(self, device, dtype): self._test_cop(torch.remainder, lambda x, y: x % y, dtype, device) @onlyCPU @dtypes(torch.float) def test_cmul(self, device, dtype): self._test_cop(torch.mul, lambda x, y: x * y, dtype, device) @onlyCPU @dtypes(torch.float) def test_cpow(self, device, dtype): self._test_cop(torch.pow, lambda x, y: nan if x < 0 else math.pow(x, y), dtype, device) @onlyCUDA @dtypes(torch.float16, torch.float32) def test_prod_gpu(self, device, dtype): x = torch.tensor([2, 3, 6, 9, 8], dtype=dtype, device=device) # Check all combinations: fp16 input - fp16 output, fp16 input - fp32 # output, fp32 input - fp16 output, fp32 input - fp32 output for dtype_output in [torch.float16, torch.float32]: result_expected = torch.tensor(2592, dtype=dtype_output, device=device) output = torch.prod(x, dtype=dtype_output) self.assertEqual(output, result_expected) output = x.prod(dtype=dtype_output) self.assertEqual(output, result_expected) @onlyCPU @dtypes(torch.float) def test_prod(self, device, dtype): x = torch.rand(100, 100, dtype=dtype, device=device) res1 = torch.prod(x, 1) res2 = torch.tensor((), dtype=dtype, device=device) torch.prod(x, 1, out=res2) self.assertEqual(res1, res2) @onlyCPU @dtypes(torch.float) def test_cross(self, device, dtype): x = torch.rand(100, 3, 100, dtype=dtype, device=device) y = torch.rand(100, 3, 100, dtype=dtype, device=device) res1 = torch.cross(x, y) res2 = torch.tensor((), dtype=dtype, device=device) torch.cross(x, y, out=res2) self.assertEqual(res1, res2) @onlyCPU @dtypes(torch.float) def test_cross_with_and_without_dim(self, device, dtype): x = torch.rand(100, 3, dtype=dtype, device=device) y = torch.rand(100, 3, dtype=dtype, device=device) res1 = torch.cross(x, y, dim=1) res2 = torch.cross(x, y, dim=-1) res3 = torch.cross(x, y) self.assertEqual(res1, res2) self.assertEqual(res1, res3) @dtypes(torch.float, torch.double, torch.int8, torch.int16, torch.int32, torch.int64) def test_random(self, device, dtype): # This test is flaky with p<=(2/(ub-lb))^200=6e-36 t = torch.empty(200, dtype=dtype, device=device) lb = 1 ub = 4 t.fill_(-1) t.random_(lb, ub) self.assertEqual(t.min(), lb) self.assertEqual(t.max(), ub - 1) t.fill_(-1) t.random_(ub) self.assertEqual(t.min(), 0) self.assertEqual(t.max(), ub - 1) def test_random_bool(self, device): size = 2000 t = torch.empty(size, dtype=torch.bool, device=device) t.fill_(False) t.random_() self.assertEqual(t.min(), False) self.assertEqual(t.max(), True) self.assertTrue(0.4 < (t.eq(True)).to(torch.int).sum().item() / size < 0.6) t.fill_(True) t.random_() self.assertEqual(t.min(), False) self.assertEqual(t.max(), True) self.assertTrue(0.4 < (t.eq(True)).to(torch.int).sum().item() / size < 0.6) def test_random_from_to_bool(self, device): size = 2000 int64_min_val = torch.iinfo(torch.int64).min int64_max_val = torch.iinfo(torch.int64).max min_val = 0 max_val = 1 froms = [int64_min_val, -42, min_val - 1, min_val, max_val, max_val + 1, 42] tos = [-42, min_val - 1, min_val, max_val, max_val + 1, 42, int64_max_val] for from_ in froms: for to_ in tos: t = torch.empty(size, dtype=torch.bool, device=device) if to_ > from_: if not (min_val <= from_ <= max_val) or not (min_val <= (to_ - 1) <= max_val): if not (min_val <= from_ <= max_val): self.assertWarnsRegex( lambda: t.random_(from_, to_), "from is out of bounds" ) if not (min_val <= (to_ - 1) <= max_val): self.assertWarnsRegex( lambda: t.random_(from_, to_), "to - 1 is out of bounds" ) else: t.random_(from_, to_) range_ = to_ - from_ delta = 1 self.assertTrue(from_ <= t.to(torch.int).min() < (from_ + delta)) self.assertTrue((to_ - delta) <= t.to(torch.int).max() < to_) else: self.assertRaisesRegex( RuntimeError, "random_ expects 'from' to be less than 'to', but got from=" + str(from_) + " >= to=" + str(to_), lambda: t.random_(from_, to_) ) @dtypes(torch.uint8, torch.int8, torch.int16, torch.int32, torch.int64, torch.float, torch.double, torch.half, torch.bfloat16) @dtypesIfCUDA(torch.uint8, torch.int8, torch.int16, torch.int32, torch.int64, torch.float, torch.double, torch.half, torch.bfloat16) def test_random_full_range(self, device, dtype): # TODO: https://github.com/pytorch/pytorch/issues/33793 if IS_WINDOWS and device.startswith('cuda') and dtype == torch.bfloat16: return size = 2000 alpha = 0.1 int64_min_val = torch.iinfo(torch.int64).min int64_max_val = torch.iinfo(torch.int64).max t = torch.empty(size, dtype=dtype, device=device) if dtype in [torch.float, torch.double, torch.half]: from_ = int(max(torch.finfo(dtype).min, int64_min_val)) to_inc_ = int(min(torch.finfo(dtype).max, int64_max_val)) elif dtype == torch.bfloat16: from_ = int(max(-3.389531389251535e+38, int64_min_val)) to_inc_ = int(min(3.389531389251535e+38, int64_max_val)) else: from_ = int(max(torch.iinfo(dtype).min, int64_min_val)) to_inc_ = int(min(torch.iinfo(dtype).max, int64_max_val)) range_ = to_inc_ - from_ + 1 t.random_(from_, None) delta = max(1, alpha * range_) self.assertTrue(from_ <= t.to(torch.double).min() < (from_ + delta)) self.assertTrue((to_inc_ - delta) < t.to(torch.double).max() <= to_inc_) @dtypes(torch.uint8, torch.int8, torch.int16, torch.int32, torch.int64, torch.float, torch.double, torch.half, torch.bfloat16) @dtypesIfCUDA(torch.uint8, torch.int8, torch.int16, torch.int32, torch.int64, torch.float, torch.double, torch.half, torch.bfloat16) def test_random_from_to(self, device, dtype): # TODO: https://github.com/pytorch/pytorch/issues/33793 if IS_WINDOWS and device.startswith('cuda') and dtype == torch.bfloat16: return size = 2000 alpha = 0.1 int64_min_val = torch.iinfo(torch.int64).min int64_max_val = torch.iinfo(torch.int64).max if dtype in [torch.float, torch.double, torch.half]: min_val = int(max(torch.finfo(dtype).min, int64_min_val)) max_val = int(min(torch.finfo(dtype).max, int64_max_val)) froms = [min_val, -42, 0, 42] tos = [-42, 0, 42, max_val >> 1] elif dtype == torch.bfloat16: min_val = int64_min_val max_val = int64_max_val froms = [min_val, -42, 0, 42] tos = [-42, 0, 42, max_val >> 1] elif dtype == torch.uint8: min_val = torch.iinfo(dtype).min max_val = torch.iinfo(dtype).max froms = [int64_min_val, -42, min_val - 1, min_val, 42, max_val, max_val + 1] tos = [-42, min_val - 1, min_val, 42, max_val, max_val + 1, int64_max_val] elif dtype == torch.int64: min_val = int64_min_val max_val = int64_max_val froms = [min_val, -42, 0, 42] tos = [-42, 0, 42, max_val] else: min_val = torch.iinfo(dtype).min max_val = torch.iinfo(dtype).max froms = [int64_min_val, min_val - 1, min_val, -42, 0, 42, max_val, max_val + 1] tos = [min_val - 1, min_val, -42, 0, 42, max_val, max_val + 1, int64_max_val] for from_ in froms: for to_ in tos: t = torch.empty(size, dtype=dtype, device=device) if to_ > from_: if not (min_val <= from_ <= max_val) or not (min_val <= (to_ - 1) <= max_val): if not (min_val <= from_ <= max_val): self.assertWarnsRegex( lambda: t.random_(from_, to_), "from is out of bounds" ) if not (min_val <= (to_ - 1) <= max_val): self.assertWarnsRegex( lambda: t.random_(from_, to_), "to - 1 is out of bounds" ) else: t.random_(from_, to_) range_ = to_ - from_ delta = max(1, alpha * range_) if dtype == torch.bfloat16: # Less strict checks because of rounding errors # TODO investigate rounding errors self.assertTrue(from_ <= t.to(torch.double).min() < (from_ + delta)) self.assertTrue((to_ - delta) < t.to(torch.double).max() <= to_) else: self.assertTrue(from_ <= t.to(torch.double).min() < (from_ + delta)) self.assertTrue((to_ - delta) <= t.to(torch.double).max() < to_) else: self.assertRaisesRegex( RuntimeError, "random_ expects 'from' to be less than 'to', but got from=" + str(from_) + " >= to=" + str(to_), lambda: t.random_(from_, to_) ) @dtypes(torch.uint8, torch.int8, torch.int16, torch.int32, torch.int64, torch.float, torch.double, torch.half, torch.bfloat16) @dtypesIfCUDA(torch.uint8, torch.int8, torch.int16, torch.int32, torch.int64, torch.float, torch.double, torch.half, torch.bfloat16) def test_random_to(self, device, dtype): # TODO: https://github.com/pytorch/pytorch/issues/33793 if IS_WINDOWS and device.startswith('cuda') and dtype == torch.bfloat16: return size = 2000 alpha = 0.1 int64_min_val = torch.iinfo(torch.int64).min int64_max_val = torch.iinfo(torch.int64).max if dtype in [torch.float, torch.double, torch.half]: min_val = int(max(torch.finfo(dtype).min, int64_min_val)) max_val = int(min(torch.finfo(dtype).max, int64_max_val)) tos = [-42, 0, 42, max_val >> 1] elif dtype == torch.bfloat16: min_val = int64_min_val max_val = int64_max_val tos = [-42, 0, 42, max_val >> 1] elif dtype == torch.uint8: min_val = torch.iinfo(dtype).min max_val = torch.iinfo(dtype).max tos = [-42, min_val - 1, min_val, 42, max_val, max_val + 1, int64_max_val] elif dtype == torch.int64: min_val = int64_min_val max_val = int64_max_val tos = [-42, 0, 42, max_val] else: min_val = torch.iinfo(dtype).min max_val = torch.iinfo(dtype).max tos = [min_val - 1, min_val, -42, 0, 42, max_val, max_val + 1, int64_max_val] from_ = 0 for to_ in tos: t = torch.empty(size, dtype=dtype, device=device) if to_ > from_: if not (min_val <= (to_ - 1) <= max_val): self.assertWarnsRegex( lambda: t.random_(to_), "to - 1 is out of bounds" ) else: t.random_(to_) range_ = to_ - from_ delta = max(1, alpha * range_) if dtype == torch.bfloat16: # Less strict checks because of rounding errors # TODO investigate rounding errors self.assertTrue(from_ <= t.to(torch.double).min() < (from_ + delta)) self.assertTrue((to_ - delta) < t.to(torch.double).max() <= to_) else: self.assertTrue(from_ <= t.to(torch.double).min() < (from_ + delta)) self.assertTrue((to_ - delta) <= t.to(torch.double).max() < to_) else: self.assertRaisesRegex( RuntimeError, "random_ expects 'from' to be less than 'to', but got from=" + str(from_) + " >= to=" + str(to_), lambda: t.random_(from_, to_) ) @dtypes(torch.uint8, torch.int8, torch.int16, torch.int32, torch.int64, torch.float, torch.double, torch.half, torch.bfloat16) @dtypesIfCUDA(torch.uint8, torch.int8, torch.int16, torch.int32, torch.int64, torch.float, torch.double, torch.half, torch.bfloat16) def test_random_default(self, device, dtype): # TODO: https://github.com/pytorch/pytorch/issues/33793 if IS_WINDOWS and device.startswith('cuda') and dtype == torch.bfloat16: return size = 2000 alpha = 0.1 if dtype == torch.float: to_inc = 1 << 24 elif dtype == torch.double: to_inc = 1 << 53 elif dtype == torch.half: to_inc = 1 << 11 elif dtype == torch.bfloat16: to_inc = 1 << 8 else: to_inc = torch.iinfo(dtype).max t = torch.empty(size, dtype=dtype, device=device) t.random_() self.assertTrue(0 <= t.to(torch.double).min() < alpha * to_inc) self.assertTrue((to_inc - alpha * to_inc) < t.to(torch.double).max() <= to_inc) @onlyCPU @dtypes(torch.half, torch.double, torch.int) def test_cat(self, device, dtype): SIZE = 10 for dim in range(-3, 3): pos_dim = dim if dim >= 0 else 3 + dim x = torch.randint(low=-100, high=100, size=(13, SIZE, SIZE), device=device).to(dtype).transpose(0, pos_dim) y = torch.randint(low=-100, high=100, size=(17, SIZE, SIZE), device=device).to(dtype).transpose(0, pos_dim) z = torch.randint(low=-100, high=100, size=(19, SIZE, SIZE), device=device).to(dtype).transpose(0, pos_dim) res1 = torch.cat((x, y, z), dim) self.assertEqual(res1.narrow(pos_dim, 0, 13), x, 0) self.assertEqual(res1.narrow(pos_dim, 13, 17), y, 0) self.assertEqual(res1.narrow(pos_dim, 30, 19), z, 0) x = torch.randint(low=-100, high=100, size=(20, SIZE, SIZE), device=device).to(dtype) self.assertEqual(torch.cat(torch.split(x, 7)), x) self.assertEqual(torch.cat(torch.chunk(x, 7)), x) y = torch.randint(low=-100, high=100, size=(1, SIZE, SIZE), device=device).to(dtype) z = torch.cat([x, y]) self.assertEqual(z.size(), (21, SIZE, SIZE)) self.assertRaises(RuntimeError, lambda: torch.cat([])) self.assertRaisesRegex(TypeError, 'got None', lambda: torch.cat([x, None])) @onlyCPU def test_cat_scalars(self, device): x = torch.tensor(0, device=device) y = torch.tensor(1, device=device) with self.assertRaisesRegex(RuntimeError, 'zero-dimensional.*cannot be concatenated'): torch.cat([x, y]) @onlyCPU @dtypes(torch.uint8, torch.int8, torch.int16, torch.int32, torch.int64) def test_div_zero(self, device, dtype): a = torch.tensor([0, 1], dtype=dtype, device=device) b = torch.tensor([0, 1], dtype=dtype, device=device) with self.assertRaisesRegex(RuntimeError, 'ZeroDivisionError'): a.div(b) @onlyCPU def test_cat_bad_input_sizes(self, device): x = torch.randn(2, 1, device=device) y = torch.randn(2, 1, 1, device=device) z = torch.randn(2, 1, 1, device=device) self.assertRaises(RuntimeError, lambda: torch.cat([x, y, z])) x = torch.randn(2, 1, 2, device=device) y = torch.randn(2, 1, 1, device=device) z = torch.randn(2, 2, 1, device=device) self.assertRaises(RuntimeError, lambda: torch.cat([x, y, z], dim=1)) @slowTest @onlyCPU def test_cat_big(self, device): SIZE1 = 6500 SIZE2 = 4500 concat_list = [] concat_list.append(torch.ones((SIZE1, 1024 * 512), dtype=torch.uint8, device=device)) concat_list.append(torch.ones((SIZE2, 1024 * 512), dtype=torch.uint8, device=device)) result = torch.cat(concat_list) self.assertEqual(result.size(0), SIZE1 + SIZE2) @onlyOnCPUAndCUDA def test_cat_bad_dtypes(self, device): def cross_product(a, b, skip_same=True): result = [] for dtype_a in a: for dtype_b in b: if skip_same and (dtype_a == dtype_b): continue result.append((dtype_a, dtype_b)) return result in_shape = (1, 2, 3) out_shape = (2, 2, 3) all_dtypes = (torch.uint8, torch.int8, torch.int16, torch.int32, torch.int64, torch.float, torch.double, torch.half, torch.bfloat16) all_dtype_combinations = cross_product(all_dtypes, all_dtypes, skip_same=True) out = torch.empty(out_shape) for (dtype_a, dtype_b) in all_dtype_combinations: a = torch.ones(in_shape, dtype=dtype_a).to(device) b = torch.ones(in_shape, dtype=dtype_b).to(device) self.assertRaises(RuntimeError, lambda: torch.cat([a, b])) self.assertRaises(RuntimeError, lambda: torch.cat([a, b], out=out)) @onlyCPU def test_max_mixed_devices(self, device): a = torch.randn(10, device=device) if torch.cuda.is_available(): values = torch.randn(10).cuda() indices = torch.cuda.LongTensor() self.assertRaises(RuntimeError, lambda: torch.max(a, 0, out=(values, indices))) @onlyCPU def test_min_mixed_devices(self, device): a = torch.randn(10, device=device) if torch.cuda.is_available(): values = torch.randn(10).cuda() indices = torch.cuda.LongTensor() self.assertRaises(RuntimeError, lambda: torch.min(a, 0, out=(values, indices))) def test_full_deprecation_warning(self, device): size = (2, 2) # Tests bool and integer fill_values deprecated without specific dtype set with self.maybeWarnsRegex(UserWarning, 'Deprecation warning: .+'): self.assertEqual(torch.full(size, True).dtype, torch.float) with self.maybeWarnsRegex(UserWarning, 'Deprecation warning: .+'): self.assertEqual(torch.full(size, 1).dtype, torch.float) # Explicitly setting the dtype doesn't warn with self.maybeWarnsRegex(UserWarning, ''): self.assertEqual(torch.full(size, 1, dtype=torch.long).dtype, torch.long) with self.maybeWarnsRegex(UserWarning, ''): self.assertEqual(torch.full(size, True, dtype=torch.bool).dtype, torch.bool) # Performs same tests with named tensor with self.maybeWarnsRegex(UserWarning, 'Deprecation warning: .+|Named tensors .+'): self.assertEqual(torch.full(size, True, names=('a', 'b')).dtype, torch.float) with self.maybeWarnsRegex(UserWarning, 'Deprecation warning: .+|Named tensors .+'): self.assertEqual(torch.full(size, 1, names=('a', 'b')).dtype, torch.float) with self.maybeWarnsRegex(UserWarning, 'Named tensors .+'): dt = torch.full(size, True, names=('a', 'b'), dtype=torch.bool).dtype self.assertEqual(dt, torch.bool) with self.maybeWarnsRegex(UserWarning, 'Named tensors .+'): dt = torch.full(size, 1, names=('a', 'b'), dtype=torch.long).dtype self.assertEqual(dt, torch.long) @onlyOnCPUAndCUDA @dtypes(torch.half, torch.float, torch.double) def test_full_inference(self, device, dtype): size = (2, 2) prev_default = torch.get_default_dtype() torch.set_default_dtype(dtype) # Tests bool fill value inference # Note: in the future this will return a tensor of torch.bool dtype t = torch.full(size, True) self.assertEqual(t.dtype, dtype) # Tests integer fill value inference # Note: in the future this will return a tensor of torch.long dtype t = torch.full(size, 1) self.assertEqual(t.dtype, dtype) # Tests float fill value inference t = torch.full(size, 1.) self.assertEqual(t.dtype, dtype) # Tests complex inference t = torch.full(size, (1 + 1j)) ctype = torch.complex128 if dtype is torch.double else torch.complex64 self.assertEqual(t.dtype, ctype) torch.set_default_dtype(prev_default) # Full-like precedence is the explicit dtype then the dtype of the "like" # tensor. @onlyOnCPUAndCUDA def test_full_like_inference(self, device): size = (2, 2) like = torch.empty((5,), device=device, dtype=torch.long) self.assertEqual(torch.full_like(like, 1.).dtype, torch.long) self.assertEqual(torch.full_like(like, 1., dtype=torch.complex64).dtype, torch.complex64) def test_full_out(self, device): o = torch.empty((5,), device=device, dtype=torch.long) # verifies dtype/out conflict throws a RuntimeError with self.assertRaises(RuntimeError): torch.full(o.shape, 1., dtype=torch.float, out=o) # verifies out dtype overrides inference self.assertEqual(torch.full(o.shape, 1., out=o).dtype, o.dtype) # Checks that float->integer casts don't produce undefined behavior errors. # Note: In C++, casting from a floating value to an integral dtype # is undefined if the floating point value is not within the integral # dtype's dynamic range. This can (and should) cause undefined behavior # errors with UBSAN. These casts are deliberate in PyTorch, however, and # NumPy has the same behavior. @dtypes(torch.bool, torch.uint8, torch.int8, torch.int16, torch.int32, torch.int64) def test_float_to_int_undefined_conversion(self, device, dtype): t = torch.tensor((-3.40282e+38, 3.40282e+38), device=device, dtype=torch.float) self.assertEqual(t.to(dtype).dtype, dtype) @onlyOnCPUAndCUDA def test_complex_type_conversions(self, device): dtypes = [torch.float, torch.complex64, torch.complex128] for from_type in dtypes: for to_type in dtypes: from_tensor = torch.randn(4, dtype=from_type, device=device) to_tensor = from_tensor.to(to_type) if from_type.is_complex and not to_type.is_complex: self.assertEqual(from_tensor.real(), to_tensor, exact_dtype=False) elif not from_type.is_complex and to_type.is_complex: self.assertEqual(from_tensor, to_tensor.real(), exact_dtype=False) self.assertEqual(torch.zeros_like(to_tensor.imag()), to_tensor.imag(), exact_dtype=False) else: self.assertEqual(from_tensor, to_tensor, exact_dtype=False) # NOTE [Linspace+Logspace precision override] # Our Linspace and logspace torch.half CUDA kernels are not very precise. # Since linspace/logspace are deterministic, we can compute an expected # amount of error (by testing without a precision override), adding a tiny # amount (EPS) to that, and using that value as the override. LINSPACE_LOGSPACE_EXTRA_EPS = 1e-5 # Tests that compare a device's computation with the (gold-standard) CPU's. class TestDevicePrecision(TestCase): exact_dtype = True # The implementation of linspace+logspace goes through a different path # when the steps arg is equal to 0 or 1. For other values of `steps` # they call specialized linspace (or logspace) kernels. LINSPACE_LOGSPACE_SPECIAL_STEPS = [0, 1] def _test_linspace(self, device, dtype, steps): a = torch.linspace(0, 10, steps=steps, dtype=dtype, device=device) b = torch.linspace(0, 10, steps=steps) self.assertEqual(a, b, exact_dtype=False) # See NOTE [Linspace+Logspace precision override] @precisionOverride({torch.half: 0.0039 + LINSPACE_LOGSPACE_EXTRA_EPS}) @dtypesIfCUDA(torch.half, torch.float, torch.double) @dtypes(torch.float, torch.double) def test_linspace(self, device, dtype): self._test_linspace(device, dtype, steps=10) @dtypesIfCUDA(torch.half, torch.float, torch.double) @dtypes(torch.float, torch.double) def test_linspace_special_steps(self, device, dtype): for steps in self.LINSPACE_LOGSPACE_SPECIAL_STEPS: self._test_linspace(device, dtype, steps=steps) def _test_logspace(self, device, dtype, steps): a = torch.logspace(1, 1.1, steps=steps, dtype=dtype, device=device) b = torch.logspace(1, 1.1, steps=steps) self.assertEqual(a, b, exact_dtype=False) def _test_logspace_base2(self, device, dtype, steps): a = torch.logspace(1, 1.1, steps=steps, base=2, dtype=dtype, device=device) b = torch.logspace(1, 1.1, steps=steps, base=2) self.assertEqual(a, b, exact_dtype=False) # See NOTE [Linspace+Logspace precision override] @precisionOverride({torch.half: 0.0157 + LINSPACE_LOGSPACE_EXTRA_EPS}) @dtypesIfCUDA(torch.half, torch.float, torch.double) @dtypes(torch.float, torch.double) def test_logspace(self, device, dtype): self._test_logspace(device, dtype, steps=10) # See NOTE [Linspace+Logspace precision override] @precisionOverride({torch.half: 0.00201 + LINSPACE_LOGSPACE_EXTRA_EPS}) @dtypesIfCUDA(torch.half, torch.float, torch.double) @dtypes(torch.float, torch.double) def test_logspace_base2(self, device, dtype): self._test_logspace_base2(device, dtype, steps=10) @dtypesIfCUDA(torch.half, torch.float, torch.double) @dtypes(torch.float, torch.double) def test_logspace_special_steps(self, device, dtype): for steps in self.LINSPACE_LOGSPACE_SPECIAL_STEPS: self._test_logspace(device, dtype, steps=steps) self._test_logspace_base2(device, dtype, steps=steps) # Note: ROCm fails when using float tensors @dtypes(torch.double) def test_polygamma(self, device, dtype): cpu_tensor = torch.randn(10, 10, 10, dtype=dtype) device_tensor = cpu_tensor.to(device) zeros = torch.zeros(10, 10, 10, dtype=dtype) for n in [0, 1]: cpu_out = cpu_tensor.polygamma(n) device_out = device_tensor.polygamma(n) norm_errors = (device_out - cpu_out.to(device)) / device_out self.assertEqual(norm_errors, zeros) # Note: fails when using float tensors @dtypes(torch.double) def test_digamma(self, device, dtype): cpu_tensor = torch.randn(10, 10, 10, dtype=dtype) device_tensor = cpu_tensor.to(device) zeros = torch.zeros(10, 10, 10, dtype=dtype) cpu_out = cpu_tensor.digamma() device_out = device_tensor.digamma() norm_errors = (device_out - cpu_out.to(device)) / device_out self.assertEqual(norm_errors, zeros) # Tests pole behavior cpu_tensor = torch.tensor([-0.999999994, -1.999999994, -2.0000000111, -100.99999994, -1931.99999994, 0.000000111, -0.000000111, 0, -1, -2, -931], dtype=dtype) expected_errors = torch.tensor([0, 0, 0, 0, 0, 0, 0, nan, nan, nan, nan], dtype=dtype) device_tensor = cpu_tensor.to(device) cpu_out = cpu_tensor.digamma() device_out = device_tensor.digamma() norm_errors = (device_out - cpu_out.to(device)) / device_out self.assertEqual(norm_errors, expected_errors) def test_var(self, device): cpu_tensor = torch.randn(2, 3, 3) device_tensor = cpu_tensor.to(device) self.assertEqual(device_tensor.var(), cpu_tensor.var()) self.assertEqual(device_tensor.var(1), cpu_tensor.var(1)) self.assertEqual(device_tensor.var(2), cpu_tensor.var(2)) self.assertEqual(device_tensor.std(), cpu_tensor.std()) self.assertEqual(device_tensor.std(1), cpu_tensor.std(1)) self.assertEqual(device_tensor.var(2), cpu_tensor.var(2)) cpu_tensor = torch.randn(100) device_tensor = cpu_tensor.to(device) self.assertEqual(device_tensor.var(), cpu_tensor.var()) def test_var_large_input(self, device): # Large, not-nice input cpu_tensor = torch.randn(2 * 32 * 1024 + 1, 2, 67) device_tensor = cpu_tensor.to(device) self.assertEqual(cpu_tensor.var(2), device_tensor.var(2)) @dtypesIfCUDA(torch.half, torch.float, torch.double) @dtypes(torch.float, torch.double) def test_device_rounding(self, device, dtype): # test half-to-even a = [-5.8, -3.5, -2.3, -1.5, -0.5, 0.5, 1.5, 2.3, 3.5, 5.8] res = [-6., -4., -2., -2., 0., 0., 2., 2., 4., 6.] a_tensor = torch.tensor(a, device=device).round() res_tensor = torch.tensor(res, device='cpu') self.assertEqual(a_tensor, res_tensor) @dtypes(torch.int, torch.long, torch.float, torch.double) def test_arange(self, device, dtype): cpu_tensor = torch.arange(0, 10, dtype=dtype, device='cpu') device_tensor = torch.arange(0, 10, dtype=dtype, device=device) self.assertEqual(cpu_tensor, device_tensor) @onlyCUDA @skipCUDAIfNotRocm def test_arange_bfloat16(self, device): ref_tensor = torch.tensor([0, 1, 2, 3], dtype=torch.bfloat16, device=device) bfloat16_tensor = torch.arange(0, 4, dtype=torch.bfloat16, device=device) self.assertEqual(ref_tensor, bfloat16_tensor) # step=2 ref_tensor = torch.tensor([0, 2, 4], dtype=torch.bfloat16, device=device) bfloat16_tensor = torch.arange(0, 6, step=2, dtype=torch.bfloat16, device=device) self.assertEqual(ref_tensor, bfloat16_tensor) @onlyCUDA @skipCUDAIfNotRocm def test_index_add_bfloat16(self, device): inp_tensor = torch.randn(5, 3, device='cpu').bfloat16() t = torch.tensor([[1, 2, 3], [4, 5, 6], [7, 8, 9]], dtype=torch.bfloat16, device='cpu') index = torch.tensor([0, 4, 2], device='cpu') out_cpu = inp_tensor.index_add(0, index, t) inp_tensor = inp_tensor.to(device=device) t = t.to(device=device) index = index.to(device=device) out_gpu = inp_tensor.index_add(0, index, t) self.assertEqual(out_cpu, out_gpu, prec=1e-2) @skipCUDAIfRocm @dtypes(torch.double) def test_sum_noncontig(self, device, dtype): x = torch.randn(1, 75, 57, 20, dtype=dtype, device=device).permute(0, 3, 1, 2) y = x.cpu() self.assertEqual(x.sum().cpu(), y.sum()) self.assertEqual(x.sum(dim=(-1, -2)).cpu(), y.sum(dim=(-1, -2))) self.assertEqual(x.sum(dim=(1, 3)).cpu(), y.sum(dim=(1, 3))) def test_device_serialization(self, device): x = torch.randn(4, 4, device=device) with tempfile.NamedTemporaryFile() as f: torch.save(x, f) f.seek(0) x_copy = torch.load(f) self.assertEqual(x_copy, x) self.assertIs(type(x_copy), type(x)) self.assertEqual(x_copy.device, x.device) @deviceCountAtLeast(2) def test_multidevice_serialization(self, devices): x = [torch.randn(4, 4, device=devices[0]), torch.randn(4, 4, device=devices[1])] with tempfile.NamedTemporaryFile() as f: torch.save(x, f) f.seek(0) x_copy = torch.load(f) for original, cp in zip(x, x_copy): self.assertEqual(cp, original) self.assertIs(type(cp), type(original)) self.assertEqual(cp.device, original.device) @deviceCountAtLeast(1) def test_copy_noncontig(self, devices): def do_test(d0, d1): x = torch.tensor([1.5, 2.5, 3.5, 4.5, 5.5, 6.5], device=d0) y = torch.tensor([0, 0, 0, 0, 0, 0], device=d1) self.assertNotEqual(x.dtype, y.dtype) y[::2].copy_(x[::2]) self.assertEqual(y, [1, 0, 3, 0, 5, 0]) do_test('cpu', devices[0]) do_test(devices[0], 'cpu') if len(devices) > 1: do_test(devices[0], devices[1]) @dtypes(torch.float, torch.double) def test_abs_zero(self, device, dtype): # Both abs(0.0) and abs(-0.0) should result in 0.0 abs_zeros = torch.tensor([0.0, -0.0], device=device, dtype=dtype).abs().tolist() for num in abs_zeros: self.assertGreater(math.copysign(1.0, num), 0.0) @deviceCountAtLeast(2) def test_type_conversions_same_device(self, devices): x = torch.randn(5, 5, device=devices[1]) self.assertEqual(x.int().device, torch.device(devices[1])) self.assertEqual(x.type(torch.int).device, torch.device(devices[1])) self.assertEqual(x.to(torch.int).device, torch.device(devices[1])) def test_min_max_nan(self, device): tests = [(lambda x: x.min(), 'min'), (lambda x: x.max(), 'max'), (lambda x: x.min(0)[0], 'min_dim'), (lambda x: x.max(0)[0], 'max_dim')] for f, name in tests: a = torch.arange(25.0).view(5, 5) a[2, 2] = nan actual = f(a.to(device)).cpu() expected = f(a).cpu() self.assertEqual(torch.isnan(actual), torch.isnan(expected), 'nans for {}'.format(name)) self.assertEqual(actual[~torch.isnan(actual)], expected[~torch.isnan(expected)], 'nans for {}'.format(name)) @dtypesIfCUDA(torch.half, torch.float, torch.double, torch.int8, torch.short, torch.int, torch.long, torch.uint8) @dtypes(torch.float, torch.double, torch.int8, torch.short, torch.int, torch.long, torch.uint8) def test_from_sequence(self, device, dtype): seq = [list(range(i * 4, i * 4 + 4)) for i in range(5)] reference = torch.arange(0, 20).resize_(5, 4) self.assertEqual(torch.tensor(seq, dtype=dtype, device=device), reference, exact_dtype=False) def test_cat(self, device): SIZE = 10 for dim in range(-3, 3): pos_dim = dim if dim >= 0 else 3 + dim x = torch.rand(13, SIZE, SIZE, device=device).transpose(0, pos_dim) y = torch.rand(17, SIZE, SIZE, device=device).transpose(0, pos_dim) z = torch.rand(19, SIZE, SIZE, device=device).transpose(0, pos_dim) res1 = torch.cat((x, y, z), dim) self.assertEqual(res1.narrow(pos_dim, 0, 13), x, 0) self.assertEqual(res1.narrow(pos_dim, 13, 17), y, 0) self.assertEqual(res1.narrow(pos_dim, 30, 19), z, 0) x = torch.randn(20, SIZE, SIZE, device=device) self.assertEqual(torch.cat(torch.split(x, 7)), x) self.assertEqual(torch.cat(torch.chunk(x, 7)), x) y = torch.randn(1, SIZE, SIZE, device=device) z = torch.cat([x, y]) self.assertEqual(z.size(), (21, SIZE, SIZE)) def test_sum_cpu_device_mismatch(self, device): x = torch.randn(20, dtype=torch.float32, device=device) y = torch.randn(1, dtype=torch.float32) err_string = "output with device cpu doesn't match the desired device {0}".format(device) with self.assertRaisesRegex(RuntimeError, err_string): torch.sum(x, dim=[0], dtype=torch.float32, out=y) # tests half to float promotion if self.device_type == 'cuda': x = x.half() with self.assertRaisesRegex(RuntimeError, err_string): torch.sum(x, dim=[0], dtype=torch.float32, out=y) @deviceCountAtLeast(1) def test_advancedindex_mixed_cpu_devices(self, devices): def test(x, ia, ib): # test getitem self.assertEqual(x[:, ia, None, ib, 0].cpu(), x.cpu()[:, ia.cpu(), None, ib.cpu(), 0]) self.assertEqual(x[ia], x.cpu()[ia.cpu()]) # test setitem x_clone1 = x.clone() x_clone2 = x.clone() first_shape = x[:, ia, None, ib, 0].shape second_shape = x[ia].shape x_clone1[:, ia, None, ib, 0] = torch.randn(first_shape).to(x_clone1) x_clone2[ia] = torch.randn(second_shape).to(x_clone2) cpu = torch.device('cpu') for device in devices: # Index cpu tensor with device tensor x = torch.randn(3, 4, 4, 4, 3) ia = torch.tensor([0, 2, 1]).to(device) ib = torch.tensor([0, 2, 1]).to(device) test(x, ia, ib) # Index device tensor with cpu tensor x = x.to(device) ia = ia.to(cpu) ib = ib.to(cpu) test(x, ia, ib) # Index cpu tensor with mixed cpu, device tensors x = x.to(cpu) ia = ia.to(cpu) ib = ib.to(device) test(x, ia, ib) # Index device tensor with mixed cpu, device tensors x = x.to(device) ia = ia.to(cpu) ib = ib.to(device) test(x, ia, ib) if len(devices) > 1: other_device = devices[0] if device == devices[0]: other_device = devices[1] # Index device tensor with mixed cpu, device tensors on different devices x = x.to(device) ia = ia.to(cpu) ib = ib.to(other_device) test(x, ia, ib) def test_copy_broadcast(self, device): x = torch.randn(10, 5) y = torch.randn(5, device=device) x.copy_(y) self.assertEqual(x[3], y) x = torch.randn(10, 5, device=device) y = torch.randn(5) x.copy_(y) self.assertEqual(x[3], y) def test_solve_methods_arg_device(self, device): for b_device, A_device in product(['cpu', device], repeat=2): if b_device == A_device: continue b = torch.randn(3, 1, device=b_device) A = torch.randn(3, 3, device=A_device) err_str = "Expected b and A to be on the same device" with self.assertRaisesRegex(RuntimeError, err_str): torch.solve(b, A) with self.assertRaisesRegex(RuntimeError, err_str): torch.cholesky_solve(b, A) with self.assertRaisesRegex(RuntimeError, err_str): torch.triangular_solve(b, A) # b and A have to be modified to match accepted inputs sizes for lu_solve b = b.unsqueeze(0) A = A.unsqueeze(0) with self.assertRaisesRegex(RuntimeError, err_str): torch.lu_solve(b, A, torch.rand(A.shape[:-1], device=A_device).int()) # This checks if a suitable error message is thrown # when LU output and pivots are on the same device with self.assertRaisesRegex(RuntimeError, "Expected LU_pivots and LU_data to be on the same device"): torch.lu_solve(b, A, torch.rand(A.shape[:-1], device=b_device).int()) @deviceCountAtLeast(2) def test_zeros_like_multiple_device(self, devices): expected = torch.zeros(100, 100, device=devices[0]) x = torch.randn(100, 100, device=devices[1], dtype=torch.float32) output = torch.zeros_like(x) self.assertEqual(output, expected) def test_ones_like(self, device): expected = torch.ones(100, 100, device=device) res1 = torch.ones_like(expected) self.assertEqual(res1, expected) @deviceCountAtLeast(2) def test_ones_like_multiple_device(self, devices): expected = torch.ones(100, 100, device=devices[0]) x = torch.randn(100, 100, device=devices[1], dtype=torch.float32) output = torch.ones_like(x) self.assertEqual(output, expected) # Tests ops and indexing to ensure they return views (and new tensors) as # appropriate. class TestViewOps(TestCase): exact_dtype = True def is_view_of(self, base, other): if (not other._is_view() or other is base or other._base is not base or base.device != other.device): return False # Note: only validates storage on native device types # because some accelerators, like XLA, do not expose storage if base.device.type == 'cpu' or base.device.type == 'cuda': if base.storage().data_ptr() != other.storage().data_ptr(): return False return True def test_diagonal_view(self, device): t = torch.ones((5, 5), device=device) v = torch.diagonal(t) self.assertTrue(self.is_view_of(t, v)) v[0] = 0 self.assertEqual(t[0, 0], v[0]) t = torch.ones((3, 3, 3), device=device) v = torch.diagonal(t, offset=1, dim1=1, dim2=2) self.assertTrue(self.is_view_of(t, v)) v[0, 0] = 0 self.assertEqual(t[0, 0, 1], v[0, 0]) def test_select_view(self, device): t = torch.ones((5, 5), device=device) v = t.select(0, 2) self.assertTrue(self.is_view_of(t, v)) v[0] = 0 self.assertEqual(t[2, 0], v[0]) def test_unbind_view(self, device): t = torch.zeros((5, 5), device=device) tup = torch.unbind(t) for idx, v in enumerate(tup): self.assertTrue(self.is_view_of(t, v)) v[0] = idx + 1 self.assertEqual(t[idx, 0], v[0]) def test_expand_view(self, device): t = torch.ones((5, 1), device=device) v = t.expand(5, 5) self.assertTrue(self.is_view_of(t, v)) v[2, 2] = 0 self.assertEqual(t[2, 0], v[2, 2]) def test_expand_as_view(self, device): t = torch.ones((5, 1), device=device) e = torch.empty((5, 5), device=device) v = t.expand_as(e) self.assertTrue(self.is_view_of(t, v)) v[2, 2] = 0 self.assertEqual(t[2, 0], v[2, 2]) def test_narrow_view(self, device): t = torch.ones((5, 5), device=device) v = torch.narrow(t, 1, 2, 2) self.assertTrue(self.is_view_of(t, v)) v[0, 0] = 0 self.assertEqual(t[0, 2], v[0, 0]) def test_permute_view(self, device): t = torch.ones((5, 5), device=device) v = t.permute(1, 0) self.assertTrue(self.is_view_of(t, v)) v[0, 1] = 0 self.assertEqual(t[1, 0], v[0, 1]) def test_transpose_view(self, device): t = torch.ones((5, 5), device=device) v = torch.transpose(t, 0, 1) self.assertTrue(self.is_view_of(t, v)) v[0, 1] = 0 self.assertEqual(t[1, 0], v[0, 1]) def test_t_view(self, device): t = torch.ones((5, 5), device=device) v = t.t() self.assertTrue(self.is_view_of(t, v)) v[0, 1] = 0 self.assertEqual(t[1, 0], v[0, 1]) def test_T_view(self, device): t = torch.ones((5, 5), device=device) v = t.T self.assertTrue(self.is_view_of(t, v)) v[0, 1] = 0 self.assertEqual(t[1, 0], v[0, 1]) def test_unfold_view(self, device): t = torch.ones(10, device=device) v = t.unfold(0, 3, 2) self.assertTrue(self.is_view_of(t, v)) v[1, 0] = 0 self.assertEqual(t[2], v[1, 0]) def test_squeeze_view(self, device): t = torch.ones(5, 1, 5, device=device) v = torch.squeeze(t) self.assertTrue(self.is_view_of(t, v)) v[0, 1] = 0 self.assertEqual(t, v._base) def test_unsqueeze_view(self, device): t = torch.ones(5, 5, device=device) v = torch.unsqueeze(t, 1) self.assertTrue(self.is_view_of(t, v)) v[0, 0, 1] = 0 self.assertEqual(t[0, 1], v[0, 0, 1]) def test_as_strided_view(self, device): t = torch.ones(5, 5, device=device) v = torch.as_strided(t, (25,), (1,)) self.assertTrue(self.is_view_of(t, v)) v[6] = 0 self.assertEqual(t[1, 1], v[6]) def test_view_view(self, device): t = torch.ones(5, 5, device=device) v = t.view(25) self.assertTrue(self.is_view_of(t, v)) v[6] = 0 self.assertEqual(t[1, 1], v[6]) def test_view_as_view(self, device): t = torch.ones(5, 5, device=device) e = torch.empty((25,)) v = t.view_as(e) self.assertTrue(self.is_view_of(t, v)) v[6] = 0 self.assertEqual(t[1, 1], v[6]) def test_contiguous_self(self, device): t = torch.ones(5, 5, device=device) s = t.contiguous() self.assertTrue(s is t) def test_contiguous_nonview(self, device): t = torch.ones(5, 5, device=device) nv = t.t().contiguous() self.assertTrue(not self.is_view_of(t, nv)) nv[0, 0] = 0 self.assertNotEqual(t[0, 0], nv[0, 0]) def test_reshape_view(self, device): t = torch.ones(5, 5, device=device) v = torch.reshape(t, (25,)) self.assertTrue(self.is_view_of(t, v)) v[6] = 0 self.assertEqual(t[1, 1], v[6]) def test_reshape_as_view(self, device): t = torch.ones(5, 5, device=device) e = torch.empty((25,), device=device) v = t.reshape_as(e) self.assertTrue(self.is_view_of(t, v)) v[6] = 0 self.assertEqual(t[1, 1], v[6]) def test_reshape_nonview(self, device): t = torch.ones(5, 5, device=device) nv = torch.reshape(t.t(), (25,)) self.assertTrue(not self.is_view_of(t, nv)) nv[6] = 0 self.assertNotEqual(t[1, 1], nv[6]) def test_basic_indexing_slice_view(self, device): t = torch.ones(5, 5, device=device) v = t[:2, :3] self.assertTrue(self.is_view_of(t, v)) v[0, 0] = 0 self.assertEqual(t[0, 0], v[0, 0]) def test_basic_indexing_ellipses_view(self, device): t = torch.ones(5, 5, device=device) v = t[..., :2] self.assertTrue(self.is_view_of(t, v)) v[0, 0] = 0 self.assertEqual(t[0, 0], v[0, 0]) def test_basic_indexing_newaxis_view(self, device): t = torch.ones(5, 5, device=device) v = t[None, :2, 3] self.assertTrue(self.is_view_of(t, v)) v[0, 0] = 0 self.assertEqual(t[0, 3], v[0, 0]) def test_advanced_indexing_nonview(self, device): t = torch.ones(3, 3, device=device) rows = torch.tensor([[0, 0], [2, 2]], device=device) cols = torch.tensor([[0, 1], [2, 2]], device=device) nv = t[rows, cols] self.assertTrue(not self.is_view_of(t, nv)) nv[1, 1] = 0 self.assertNotEqual(t[2, 2], nv[1, 1]) def test_advanced_indexing_assignment(self, device): t = torch.ones(3, 3, device=device) rows = torch.tensor([[0, 0], [2, 2]], device=device) cols = torch.tensor([[0, 1], [2, 2]], device=device) t[rows, cols] = 0 self.assertEqual(t[2, 2], 0) @unittest.skip("See https://github.com/pytorch/pytorch/pull/32720") def test_chunk_view(self, device): t = torch.zeros(3, 3, device=device) l = torch.chunk(t, 3) for idx, v in enumerate(l): self.assertTrue(self.is_view_of(t, v)) v[0, 0] = idx + 1 self.assertEqual(t[idx, 0], v[0, 0]) @unittest.skip("See https://github.com/pytorch/pytorch/pull/32720") def test_split_view(self, device): t = torch.zeros(3, 3, device=device) l = torch.split(t, [1, 1, 1]) for idx, v in enumerate(l): self.assertTrue(self.is_view_of(t, v)) v[0, 0] = idx + 1 self.assertEqual(t[idx, 0], v[0, 0]) # Below are fixtures and functions that generate tensor op comparison tests # These tests run a single op on both a CPU and device tensor and compare the # the results. In-place variants of the ops can also be run. # Lists of dtypes to instantiate tensor op test variants. _types = [ torch.half, torch.float, torch.double, torch.int8, torch.short, torch.int, torch.long, torch.uint8 ] # _types2 adds bfloat16 type to _types only on ROCm. Should eventually be unified # with _types when bfloat16 bringup is complete on all platforms. _types2 = _types + [torch.bfloat16] if TEST_WITH_ROCM else _types _float_types = [torch.half, torch.float, torch.double] _float_types_no_half = [torch.float, torch.double] # _float_types2 adds bfloat16 type to _float_types only on ROCm. Should eventually be unified # with _float_types when bfloat16 bringup is complete on all platforms _float_types2 = _float_types + [torch.bfloat16] if TEST_WITH_ROCM else _float_types _signed_types = [ torch.half, torch.float, torch.double, torch.int8, torch.short, torch.int, torch.long ] _signed_types_no_half = [ torch.float, torch.double, torch.int8, torch.short, torch.int, torch.long ] _unsigned_types = [torch.uint8] # Helper values and functions for producing tensors and scalars to use in tensor op tests. # Tensor dimension sizes (Small, Medium, Large, Giant) _S = 5 _M = 50 _L = 1000 _G = 275000000 # Value to clamp divisors to since dividing by small numbers can be unstable # on devices. _div_min = 2**-8 # Returns floating or integral scalar corresponding to dtype def _number(floating, integer, dtype): if dtype in [torch.half, torch.float, torch.double, torch.bfloat16]: return floating return integer # Converts half/bfloat16 dtype to float when device is cpu def _convert_t(dtype, device): if device == 'cpu' and dtype in {torch.half, torch.bfloat16}: return torch.float return dtype # Returns a tensor of the requested shape, dtype, and device # Requesting a half CPU tensor returns a float CPU tensor with # values representable by a half. # Initialization uses randint for non-float types and randn for float types. def _make_tensor(shape, dtype, device, fill_ones=False): # Returns a tensor filled with ones if fill_ones: return torch.ones(*shape, dtype=_convert_t(dtype, device), device=device) # Returns a tensor with random integer values if dtype not in _float_types2: t = torch.randint(0, 10, shape, device=device) return t.to(_convert_t(dtype, device)) # Populates the CPU tensor with floats representable as half/bfloat16 if dtype == torch.half and device == 'cpu': return torch.randn(*shape, dtype=torch.float, device=device).half().float() if dtype == torch.bfloat16 and device == 'cpu': return torch.randn(*shape, dtype=torch.float, device=device).bfloat16().float() # Default: returns a tensor with random float values return torch.randn(shape, dtype=dtype, device=device).to(dtype=dtype) def _small_0d(dtype, device): return _make_tensor((1,), dtype, device).squeeze() def _small_2d(dtype, device, has_zeros=True, fill_ones=False, oneish=False): t = _make_tensor((_S, _S), dtype, device, fill_ones=fill_ones) if oneish: return t.clamp(min=_number(.99, 1, dtype), max=1.01) if not has_zeros: return t.clamp(min=(_number(_div_min, 1, dtype))) return t def _small_3d(dtype, device, has_zeros=True, fill_ones=False, oneish=False): t = _make_tensor((_S, _S, _S), dtype, device, fill_ones=fill_ones) if oneish: return t.clamp(min=_number(.99, 1, dtype), max=1.01) if not has_zeros: return t.clamp(min=(_number(_div_min, 1, dtype))) return t def _small_3d_ones(dtype, device): return _small_3d(dtype, device, fill_ones=True) def _small_3d_unique(dtype, device): return (torch.randperm(_S * _S * _S, dtype=_convert_t(dtype, device), device=device) + 1).view(_S, _S, _S) def _medium_1d(dtype, device): return _make_tensor((_M,), dtype, device) def _medium_2d(dtype, device): return _make_tensor((_M, _M), dtype, device) def _large_2d(dtype, device): t = _make_tensor((_L, _L), dtype, device) return t.normal_() def _giant_1d(dtype, device): return _make_tensor((_G), dtype, device) # Helper method that returns a function which takes dtype and device and # instantiates tensors of the given shape. # Useful for tensor op tests with custom shapes. def _new_t(shape): def tmp(dtype, device): return _make_tensor(shape, dtype, device) return tmp def _wrap_maybe_warns(regex): def decorator(fn): def inner(self, device, dtype): with self.maybeWarnsRegex(UserWarning, regex): fn(self, device, dtype) return inner return decorator # TODO: random functions, cat, gather, scatter, index*, masked*, # resize, resizeAs, storage_offset, storage, stride, unfold # Each tests is defined in tensor_op_tests as a tuple of: # - op name (string) # - (sub)test name (string) # - tensor constructor, takes dtype and device and constructs the tensor to run the op on # - arg constructor, takes dtype and device and constructs op arguments # - torch.half precision (=1e-5) # - torch.bfloat16 precision (=1e-5) # - precision (=1e-5), precision to use for all other dtypes # - dtype_list (=_types), a list of torch dtypes to test the op(s) with # - make_inplace_variant (=True), if true the inplace version of the op (op_) is also tested # - decorators (=[]), a list of decorators to apply to the test tensor_op_tests = [ ('add', '', _small_3d, lambda t, d: [_number(3.14, 3, t)], 1e-2), ('add', 'tensor', _small_3d, lambda t, d: [_small_3d(t, d)], 1e-2), ('sub', '', _small_3d, lambda t, d: [_number(3.14, 3, t)], 1e-2), ('sub', 'tensor', _small_3d, lambda t, d: [_small_3d(t, d)], 1e-2), ('mul', '', _small_3d, lambda t, d: [_number(3.14, 3, t)], 1e-2), ('mul', 'tensor', _small_3d, lambda t, d: [_small_3d(t, d)], 1e-2), ('mul', 'scalar', _small_0d, lambda t, d: [_small_0d(torch.int32, d)], 1e-2), ('div', '', _small_3d, lambda t, d: [_number(3.14, 3, t)], 1e-1), ('div', 'tensor', _small_3d, lambda t, d: [_small_3d(t, d, has_zeros=False)], 1e-1), ('true_divide', '', _small_3d, lambda t, d: [_number(3.14, 3, t)], 1e-1, 1e-5, 1e-5, _types, False), ('true_divide', 'with_inplace', _small_3d, lambda t, d: [_number(3.14, 3, t)], 1e-1, 1e-5, 1e-5, _float_types), ('true_divide', 'tensor', _small_3d, lambda t, d: [_small_3d(t, d, has_zeros=False)], 1e-1, 1e-5, 1e-5, _types, False), ('true_divide', 'tensor_with_inplace', _small_3d, lambda t, d: [_small_3d(t, d, has_zeros=False)], 1e-1, 1e-5, 1e-5, _float_types), ('floor_divide', '', _small_3d, lambda t, d: [_number(3.14, 3, t)], 1, 1e-5, 1e-5, _types), ('floor_divide', 'tensor', _small_3d, lambda t, d: [_small_3d(t, d, has_zeros=False)], 1, 1e-5, 1e-5, _types), ('pow', '', _small_3d, lambda t, d: [_number(3.14, 3, t)], 1e-1, 1e-5, 1e-5, _float_types), ('pow', '1', _small_3d, lambda t, d: [_number(1., 1, t)], 1e-1), ('pow', '2', _small_3d, lambda t, d: [_number(2., 2, t)], 1e-1), ('pow', '3', _small_3d, lambda t, d: [_number(3., 3, t)], 1e-1), ('pow', '-1', _small_3d, lambda t, d: [_number(-1., -1, t)], 1e-1, 1e-5, 1e-5, _float_types), ('pow', '-2', _small_3d, lambda t, d: [_number(-2., -2, t)], 1e-1, 1e-5, 1e-5, _float_types_no_half, False, [skipCUDAIfRocm]), ('pow', 'tensor', _small_3d, lambda t, d: [_small_3d(t, d).abs()], 1e-1, 1e-5, 1e-5, _float_types), ('addbmm', '', _small_2d, lambda t, d: [_small_3d(t, d), _small_3d(t, d)], 1e-1, 1e-1, 1e-4, _float_types2), ('addbmm', 'scalar', _small_2d, lambda t, d: [_number(0.4, 2, t), _small_3d(t, d), _small_3d(t, d)], 1e-1, 1e-1, 1e-4, _float_types2, True, [_wrap_maybe_warns("This overload of addbmm_? is deprecated")]), ('addbmm', 'two_scalars', _small_2d, lambda t, d: [_number(0.5, 3, t), _number(0.4, 2, t), _small_3d(t, d), _small_3d(t, d)], 1e-1, 1e-1, 1e-4, _float_types2, True, [_wrap_maybe_warns("This overload of addbmm_? is deprecated")]), ('baddbmm', '', _small_3d, lambda t, d: [_small_3d(t, d), _small_3d(t, d)], 1e-2, 1e-1, 1e-4, _float_types2), ('baddbmm', 'scalar', _small_3d, lambda t, d: [_number(0.4, 2, t), _small_3d(t, d), _small_3d(t, d)], 1e-2, 1e-1, 1e-4, _float_types2, True, [_wrap_maybe_warns("This overload of baddbmm_? is deprecated")]), ('baddbmm', 'two_scalars', _small_3d, lambda t, d: [_number(0.5, 3, t), _number(0.4, 2, t), _small_3d(t, d), _small_3d(t, d)], 1e-2, 1e-1, 1e-4, _float_types2, True, [_wrap_maybe_warns("This overload of baddbmm_? is deprecated")]), ('bmm', '', _small_3d, lambda t, d: [_small_3d(t, d)], 1e-5, 1e-5, 1e-5, _float_types_no_half, False), ('addcdiv', '', _small_2d, lambda t, d: [_small_2d(t, d), _small_2d(t, d, has_zeros=False)], 1, 1e-5, 1e-3, _types, True, [_wrap_maybe_warns("Integer division .+")]), ('addcdiv', 'scalar', _small_2d, lambda t, d: [_number(2.8, 1, t), _small_2d(t, d), _small_2d(t, d, has_zeros=False)], 1, 1e-5, 1e-3, _types, True, [_wrap_maybe_warns("This overload of addcdiv_? is deprecated|Integer division .+")]), ('addcmul', '', _small_3d, lambda t, d: [_small_3d(t, d), _small_3d(t, d)], 1e-2, 2e-5, 1e-3), ('addcmul', 'scalar', _small_3d, lambda t, d: [_number(0.4, 2, t), _small_3d(t, d), _small_3d(t, d)], 1e-2, 1e-5, 1e-5, _types, True, [_wrap_maybe_warns("This overload of addcmul_? is deprecated")]), ('addmm', '', _medium_2d, lambda t, d: [_medium_2d(t, d), _medium_2d(t, d)], 1e-1, 1e-1, 1e-4, _float_types2), ('addmm', 'scalar', _medium_2d, lambda t, d: [_number(0.4, 2, t), _medium_2d(t, d), _medium_2d(t, d)], 1e-1, 1e-1, 1e-4, _float_types2, True, [_wrap_maybe_warns("This overload of addmm_? is deprecated")]), ('addmm', 'two_scalars', _medium_2d, lambda t, d: [_number(0.5, 3, t), _number(0.4, 2, t), _medium_2d(t, d), _medium_2d(t, d)], 1e-1, 1e-1, 1e-4, _float_types2, True, [_wrap_maybe_warns("This overload of addmm_? is deprecated")]), ('addmv', '', _medium_1d, lambda t, d: [_medium_2d(t, d), _medium_1d(t, d)], 1e-2, 1e-1, 1e-4, _float_types2), ('addmv', 'scalar', _medium_1d, lambda t, d: [_number(0.4, 2, t), _medium_2d(t, d), _medium_1d(t, d)], 1e-2, 1e-1, 1e-4, _float_types2, True, [_wrap_maybe_warns("This overload of addmv_? is deprecated")]), ('addmv', 'two_scalars', _medium_1d, lambda t, d: [_number(0.5, 3, t), _number(0.4, 2, t), _medium_2d(t, d), _medium_1d(t, d)], 1e-2, 1e-1, 1e-4, _float_types2, True, [_wrap_maybe_warns("This overload of addmv_? is deprecated")]), ('addr', '', _medium_2d, lambda t, d: [_medium_1d(t, d), _medium_1d(t, d)], 1e-2, 1e-1, 1e-4, _float_types2), ('addr', 'scalar', _medium_2d, lambda t, d: [_number(0.4, 2, t), _medium_1d(t, d), _medium_1d(t, d)], 1e-2, 1e-1, 1e-4, _float_types2, True, [_wrap_maybe_warns("This overload of addr_? is deprecated")]), ('addr', 'two_scalars', _medium_2d, lambda t, d: [_number(0.5, 3, t), _number(0.4, 2, t), _medium_1d(t, d), _medium_1d(t, d)], 1e-2, 1e-1, 1e-4, _float_types2, True, [_wrap_maybe_warns("This overload of addr_? is deprecated")]), ('atan2', '', _medium_2d, lambda t, d: [_medium_2d(t, d)], 1e-2, 1e-5, 1e-5, _float_types), ('fmod', 'value', _small_3d, lambda t, d: [3], 1e-3), ('fmod', 'tensor', _small_3d, lambda t, d: [_small_3d(t, d, has_zeros=False)], 1e-3), ('chunk', '', _medium_2d, lambda t, d: [4], 1e-5, 1e-5, 1e-5, _types, False), ('chunk', 'dim', _medium_2d, lambda t, d: [4, 1], 1e-5, 1e-5, 1e-5, _types, False), ('chunk', 'neg_dim', _medium_2d, lambda t, d: [4, -2], 1e-5, 1e-5, 1e-5, _types, False), ('clamp', 'neg', _medium_2d, lambda t, d: [-1, 5], 1e-5, 1e-5, 1e-5, _signed_types), ('clamp', 'pos', _medium_2d, lambda t, d: [1, 5], 1e-5, 1e-5, 1e-5, _unsigned_types), ('clone', '', _medium_2d, lambda t, d: [], 1e-5, 1e-5, 1e-5, _types, False), ('contiguous', '', _medium_2d, lambda t, d: [], 1e-5, 1e-5, 1e-5, _types, False), ('cross', '', _new_t((_M, 3, _M)), lambda t, d: [_new_t((_M, 3, _M))(t, d)], 1e-2, 1e-5, 1e-5, _types, False), ('cummax', '', _small_3d_unique, lambda t, d: [1], 1e-2, 1e-5, 1e-5, _types, False), ('cummax', 'neg_dim', _small_3d_unique, lambda t, d: [-1], 1e-2, 1e-5, 1e-5, _types, False), ('cummin', '', _small_3d_unique, lambda t, d: [1], 1e-2, 1e-5, 1e-5, _types, False), ('cummin', 'neg_dim', _small_3d_unique, lambda t, d: [-1], 1e-2, 1e-5, 1e-5, _types, False), ('cumprod', '', _small_3d, lambda t, d: [1], 1e-2, 1e-5, 1e-4, _types, False), ('cumprod', 'neg_dim', _small_3d, lambda t, d: [-1], 1e-2, 1e-5, 1e-4, _types, False), ('cumsum', '', _small_3d, lambda t, d: [1], 1e-2, 1e-5, 1e-5, _types, False), ('cumsum', 'neg_dim', _small_3d, lambda t, d: [-1], 1e-2, 1e-5, 1e-5, _types, False), ('dim', '', _small_3d, lambda t, d: [], 1e-5, 1e-5, 1e-5, _types, False), ('dist', '', _small_2d, lambda t, d: [_small_2d(t, d)], 1e-2, 1e-5, 1e-5, _float_types, False), ('dist', '3_norm', _small_2d, lambda t, d: [_small_2d(t, d), 3], 1e-2, 1e-5, 1e-5, _float_types, False), ('dist', '2_5_norm', _small_2d, lambda t, d: [_small_2d(t, d), 2.5], 1e-2, 1e-5, 1e-5, _float_types, False), ('dot', '', _medium_1d, lambda t, d: [_medium_1d(t, d)], 1e-2, 1e-5, 1e-5, _float_types, False, [skipCUDAIfRocm]), ('element_size', '', _medium_1d, lambda t, d: [], 1e-5, 1e-5, 1e-5, _float_types_no_half, False), ('eq', '', _small_3d_ones, lambda t, d: [_small_3d(t, d)], 1e-5, 1e-5, 1e-5, _types2), ('eq', 'equal', _small_3d_ones, lambda t, d: [_small_3d_ones(t, d)], 1e-5, 1e-5, 1e-5, _types2), ('ne', '', _small_3d_ones, lambda t, d: [_small_3d(t, d)], 1e-5, 1e-5, 1e-5, _types2), ('ne', 'equal', _small_3d_ones, lambda t, d: [_small_3d_ones(t, d)], 1e-5, 1e-5, 1e-5, _types2), ('equal', 'equal', _small_3d_ones, lambda t, d: [_small_3d_ones(t, d)], 1e-5, 1e-5, 1e-5, _types, False), ('equal', '', _small_3d_ones, lambda t, d: [_small_3d(t, d)], 1e-5, 1e-5, 1e-5, _types, False), ('expand', '', _new_t((_M, 1, _M)), lambda t, d: [_M, 4, _M], 1e-5, 1e-5, 1e-5, _types, False), ('expand_as', '', _new_t((_M, 1, _M)), lambda t, d: [_new_t((_M, 4, _M))(t, d)], 1e-5, 1e-5, 1e-5, _types, False), ('fill_', '', _medium_2d, lambda t, d: [_number(3.14, 3, t)], 1e-3, 1e-5, 1e-5, _types, False), ('ge', '', _medium_2d, lambda t, d: [_medium_2d(t, d)], 1e-5, 1e-5, 1e-5, _types2), ('le', '', _medium_2d, lambda t, d: [_medium_2d(t, d)], 1e-5, 1e-5, 1e-5, _types2), ('gt', '', _medium_2d, lambda t, d: [_medium_2d(t, d)], 1e-5, 1e-5, 1e-5, _types2), ('lt', '', _medium_2d, lambda t, d: [_medium_2d(t, d)], 1e-5, 1e-5, 1e-5, _types2), ('is_contiguous', '', _medium_2d, lambda t, d: [], 1e-5, 1e-5, 1e-5, _types, False), # TODO: can't check negative case - cross-device copy is contiguous ('is_same_size', 'negative', _medium_2d, lambda t, d: [_small_3d(t, d)], 1e-5, 1e-5, 1e-5, _types, False), ('is_same_size', 'positive', _medium_2d, lambda t, d: [_medium_2d(t, d)], 1e-5, 1e-5, 1e-5, _types, False), ('is_set_to', '', _medium_2d, lambda t, d: [_medium_2d(t, d)], 1e-5, 1e-5, 1e-5, _types, False), # TODO: positive case ('kthvalue', '', _small_3d_unique, lambda t, d: [3], 1e-5, 1e-5, 1e-5, _types, False), ('kthvalue', 'dim', _small_3d_unique, lambda t, d: [3, 1], 1e-5, 1e-5, 1e-5, _types, False), ('kthvalue', 'neg_dim', _small_3d_unique, lambda t, d: [3, -1], 1e-5, 1e-5, 1e-5, _types, False), ('lerp', '', _small_3d, lambda t, d: [_small_3d(t, d), 0.3], 1e-2, 1e-5, 1e-5, _float_types_no_half), ('max', '', _small_3d, lambda t, d: [], 1e-5, 1e-5, 1e-5, _types, False), ('max', 'dim', _small_3d_unique, lambda t, d: [1], 1e-5, 1e-5, 1e-5, _types, False), ('max', 'neg_dim', _small_3d_unique, lambda t, d: [-1], 1e-5, 1e-5, 1e-5, _types, False), ('max', 'elementwise', _medium_2d, lambda t, d: [_medium_2d(t, d)], 1e-5, 1e-5, 1e-5, _types, False), ('min', '', _small_3d, lambda t, d: [], 1e-5, 1e-5, 1e-5, _types, False), ('min', 'dim', _small_3d_unique, lambda t, d: [1], 1e-5, 1e-5, 1e-5, _types, False), ('min', 'neg_dim', _small_3d_unique, lambda t, d: [-1], 1e-5, 1e-5, 1e-5, _types, False), ('min', 'elementwise', _medium_2d, lambda t, d: [_medium_2d(t, d)], 1e-5, 1e-5, 1e-5, _types, False), ('mean', '', _small_3d, lambda t, d: [], 1e-3, 1e-2, 1e-5, _float_types2, False), ('mean', 'neg_dim', _small_3d, lambda t, d: [-1], 1e-3, 1e-2, 1e-5, _float_types2, False), ('mean', 'dim', _small_3d, lambda t, d: [1], 1e-3, 1e-2, 1e-2, _float_types2, False), # Double here because the CPU result will be wrong otherwise ('mean', '64bit_indexing', _giant_1d, lambda t, d: [], 1e-3, 1e-5, 1e-5, [torch.double], False, [slowTest]), ('mode', '', _small_3d, lambda t, d: [], 1e-5, 1e-5, 1e-5, _types, False), ('mode', 'dim', _small_3d, lambda t, d: [1], 1e-5, 1e-5, 1e-5, _types, False), ('mode', 'neg_dim', _small_3d, lambda t, d: [-1], 1e-5, 1e-5, 1e-5, _types, False), ('mvlgamma', '2d_p=1', lambda t, d: _small_2d(t, d).clamp(0.1, 10), lambda t, d: [1], 1e-5, 1e-5, 1e-5, _float_types_no_half), ('mvlgamma', '2d_p=2', lambda t, d: _small_2d(t, d).clamp(0.6, 10), lambda t, d: [2], 1e-5, 1e-5, 1e-5, _float_types_no_half), ('remainder', 'value', _small_3d, lambda t, d: [3], 1e-1, 1e-5, 1e-5, _signed_types), ('remainder', 'negative_value', _small_3d, lambda t, d: [-3], 1e-1, 1e-5, 1e-5, _signed_types), ('remainder', 'tensor', _small_3d, lambda t, d: [_small_3d(t, d, has_zeros=False)], 1e-1, 1e-5, 1e-5, _signed_types), ('remainder', 'negative_tensor', _small_3d, lambda t, d: [0 - _small_3d(t, d, has_zeros=False)], 1e-1, 1e-5, 1e-5, _signed_types), ('std', '', _small_3d, lambda t, d: [], 1e-3, 1e-5, 1e-5, _float_types, False), ('std', 'dim', _small_3d, lambda t, d: [1], 1e-3, 1e-5, 1e-5, _float_types, False), ('std', 'neg_dim', _small_3d, lambda t, d: [-1], 1e-3, 1e-5, 1e-5, _float_types, False), ('var', '', _small_3d, lambda t, d: [], 1e-3, 1e-5, 1e-5, _float_types, False), ('var', 'dim', _small_3d, lambda t, d: [1], 1e-3, 1e-5, 1e-5, _float_types, False), ('var', 'neg_dim', _small_3d, lambda t, d: [-1], 1e-3, 1e-5, 1e-5, _float_types, False), ('ndimension', '', _small_3d, lambda t, d: [], 1e-5, 1e-5, 1e-5, _types, False), ('nelement', '', _small_3d, lambda t, d: [], 1e-5, 1e-5, 1e-5, _types, False), ('numel', '', _small_3d, lambda t, d: [], 1e-5, 1e-5, 1e-5, _types, False), ('narrow', '', _small_3d, lambda t, d: [1, 3, 2], 1e-5, 1e-5, 1e-5, _types, False), ('narrow', 'neg_dim', _small_3d, lambda t, d: [-1, 3, 2], 1e-5, 1e-5, 1e-5, _types, False), ('nonzero', '', _small_3d, lambda t, d: [], 1e-5, 1e-5, 1e-5, _types, False), ('norm', '', _small_3d, lambda t, d: [], 1e-1, 1e-1, 1e-5, _float_types2, False), ('norm', '3_norm', _small_3d, lambda t, d: [3], 1e-1, 1e-1, 1e-5, _float_types2, False), ('norm', '3_norm_dim', _small_3d, lambda t, d: [3, 0], 1e-1, 1e-1, 1e-5, _float_types2, False), ('norm', '3_norm_neg_dim', _small_3d, lambda t, d: [3, -2], 1e-1, 1e-1, 1e-5, _float_types2, False), ('new_ones', '', _small_3d, lambda t, d: [1, 2, 3, 4, 5], 1e-5, 1e-5, 1e-5, _types, False), ('permute', '', _new_t((1, 2, 3, 4)), lambda t, d: [2, 1, 3, 0], 1e-5, 1e-5, 1e-5, _types, False), ('put_', '', _new_t((2, 5, 3)), lambda t, d: [torch.LongTensor([[0], [-2]]).to(device=d), torch.LongTensor([[3], [4]]).to(dtype=_convert_t(t, d), device=d)], 1e-5, 1e-5, 1e-5, _types, False), ('put_', 'empty', _new_t((2, 3)), lambda t, d: [torch.LongTensor([]).to(device=d), torch.LongTensor([]).to(dtype=_convert_t(t, d), device=d)], 1e-5, 1e-5, 1e-5, _types, False), ('put_', 'accumulate', _new_t((2, 2)), lambda t, d: [torch.LongTensor([[1], [-3]]).to(device=d), torch.LongTensor([[1], [2]]).to(dtype=_convert_t(t, d), device=d), True], 1e-5, 1e-5, 1e-5, _types, False), ('prod', '', lambda t, d: _small_2d(t, d, oneish=True), lambda t, d: [], 1e-2, 1e-1, 1e-5, _types2, False), ('prod', 'dim', _small_3d, lambda t, d: [1], 1e-3, 1e-1, 1e-5, _types2, False), ('prod', 'neg_dim', _small_3d, lambda t, d: [-1], 1e-3, 1e-1, 1e-5, _types2, False), ('sum', '', _small_2d, lambda t, d: [], 1e-2, 1e-2, 1e-5, _types2, False), ('sum', 'dim', _small_3d, lambda t, d: [1], 1e-2, 1e-2, 1e-5, _types2, False), ('sum', 'neg_dim', _small_3d, lambda t, d: [-1], 1e-2, 1e-5, 1e-5, _types, False), ('renorm', '2_norm', _small_3d, lambda t, d: [2, 1, 1], 1e-3, 1e-5, 1e-5, _float_types), ('renorm', '2_norm_neg_dim', _small_3d, lambda t, d: [2, -1, 1], 1e-3, 1e-5, 1e-5, _float_types), ('renorm', '1_5_norm', _small_3d, lambda t, d: [1.5, 1, 1], 1e-3, 1e-5, 1e-5, _float_types), ('repeat', '', _small_2d, lambda t, d: [2, 2, 2], 1e-5, 1e-5, 1e-5, _types, False), ('size', '', _new_t((1, 2, 3, 4)), lambda t, d: [], 1e-5, 1e-5, 1e-5, _types, False), ('size', 'dim', _new_t((1, 2, 3, 4)), lambda t, d: [1], 1e-5, 1e-5, 1e-5, _types, False), ('size', 'neg_dim', _new_t((1, 2, 3, 4)), lambda t, d: [-2], 1e-5, 1e-5, 1e-5, _types, False), ('sort', '', _small_3d_unique, lambda t, d: [], 1e-5, 1e-5, 1e-5, _types, False), ('sort', 'dim', _small_3d_unique, lambda t, d: [1], 1e-5, 1e-5, 1e-5, _types, False), ('sort', 'neg_dim', _small_3d_unique, lambda t, d: [-1], 1e-5, 1e-5, 1e-5, _types, False), ('sort', 'dim_descending', _small_3d_unique, lambda t, d: [1, True], 1e-5, 1e-5, 1e-5, _types, False), ('sort', 'neg_dim_descending', _small_3d_unique, lambda t, d: [-1, True], 1e-5, 1e-5, 1e-5, _types, False), ('split', '', _small_3d, lambda t, d: [2], 1e-5, 1e-5, 1e-5, _types, False), ('split', 'dim', _small_3d, lambda t, d: [2, 1], 1e-5, 1e-5, 1e-5, _types, False), ('split', 'neg_dim', _small_3d, lambda t, d: [2, -3], 1e-5, 1e-5, 1e-5, _types, False), ('squeeze', '', _new_t((1, 2, 1, 4)), lambda t, d: [],), ('squeeze', 'dim', _new_t((1, 2, 1, 4)), lambda t, d: [2], ), ('squeeze', 'neg_dim', _new_t((1, 2, 1, 4)), lambda t, d: [-2], ), ('t', '', _new_t((1, 2)), lambda t, d: [],), ('take', '', _new_t((3, 4)), lambda t, d: [torch.LongTensor([[0], [-2]]).to(device=d)], 1e-5, 1e-5, 1e-5, _types, False), ('transpose', '', _new_t((1, 2, 3, 4)), lambda t, d: [1, 2],), ('transpose', 'neg_dim', _new_t((1, 2, 3, 4)), lambda t, d: [-1, -2], ), ('tolist', '', _small_3d, lambda t, d: [], 1e-5, 1e-5, 1e-5, _types, False), ('topk', 'dim_sort', _small_3d_unique, lambda t, d: [2, 1, False, True], 1e-5, 1e-5, 1e-5, _types2, False), ('topk', 'neg_dim_sort', _small_3d_unique, lambda t, d: [2, -1, False, True], 1e-5, 1e-5, 1e-5, _types2, False), ('topk', 'dim_desc_sort', _small_3d_unique, lambda t, d: [2, 1, True, True], 1e-5, 1e-5, 1e-5, _types2, False), ('trace', '', _medium_2d, lambda t, d: [], 1e-3, 1e-5, 1e-5, _types, False), ('tril', '', _medium_2d, lambda t, d: [],), ('tril', 'zero_stride', _medium_2d, lambda t, d: [], 1e-5, 1e-5, 1e-5, _types, False), ('tril', 'positive', _medium_2d, lambda t, d: [2], ), ('tril', 'negative', _medium_2d, lambda t, d: [-2], ), ('triu', '', _medium_2d, lambda t, d: [],), ('triu', 'zero_stride', _medium_2d, lambda t, d: [], 1e-5, 1e-5, 1e-5, _types, False), ('triu', 'positive', _medium_2d, lambda t, d: [2], ), ('triu', 'negative', _medium_2d, lambda t, d: [-2], ), ('unsqueeze', '', _new_t((2, 3, 4)), lambda t, d: [2],), ('unsqueeze', 'neg_dim', _new_t((2, 3, 4)), lambda t, d: [-2], ), ('view', 'contiguous', _small_3d, lambda t, d: [25, 5], 1e-5, 1e-5, 1e-5, _types, False), ('view_as', '', _small_3d, lambda t, d: [_make_tensor((25, 5), t, d)], 1e-5, 1e-5, 1e-5, _types, False), ('zero_', '', _small_3d, lambda t, d: [], 1e-5, 1e-5, 1e-5, _types, False), ('new_zeros', '', _small_3d, lambda t, d: [1, 2, 3, 4], 1e-5, 1e-5, 1e-5, _types, False), ('flip', 'd0', _small_3d, lambda t, d: [0], 1e-5, 1e-5, 1e-5, _types, False), ('flip', 'd012', _small_3d, lambda t, d: [0, 1, 2], 1e-5, 1e-5, 1e-5, _types, False), ('flip', 'd02', _small_3d, lambda t, d: [0, 2], 1e-5, 1e-5, 1e-5, _types, False), ('flip', 'd20', _small_3d, lambda t, d: [2, 0], 1e-5, 1e-5, 1e-5, _types, False), ('flip', 'neg_d', _small_3d, lambda t, d: [-1], 1e-5, 1e-5, 1e-5, _types, False), ('rot90', 'k1_d01', _small_2d, lambda t, d: [1, [0, 1]], 1e-5, 1e-5, 1e-5, _types, False), ('rot90', 'k1_d12', _small_3d, lambda t, d: [1, [1, 2]], 1e-5, 1e-5, 1e-5, _types, False), ('rot90', 'k1_neg_d', _small_3d, lambda t, d: [1, [1, -1]], 1e-5, 1e-5, 1e-5, _types, False), ('rot90', 'default', _small_3d, lambda t, d: [], 1e-5, 1e-5, 1e-5, _types, False), ('rsqrt', '', lambda t, d: _small_3d(t, d) + 1, lambda t, d: [], 1e-2, 1e-5, 1e-4, _float_types_no_half), ('sinh', '', lambda t, d: _small_3d(t, d).clamp(-1, 1), lambda t, d: [], 1e-3, 1e-5, 1e-5, _float_types), ('tan', '', lambda t, d: _small_3d(t, d).clamp(-1, 1), lambda t, d: [], 1e-3, 1e-5, 1e-5, _float_types), ('__lshift__', '', lambda t, d: torch.pow(2, torch.arange(1, 5).to(dtype=_convert_t(t, d), device=d)), lambda t, d: [2], 1e-3, 1e-5, 1e-3, _signed_types_no_half, False), ('__rshift__', '', lambda t, d: torch.pow(2, torch.arange(3, 7).to(dtype=_convert_t(t, d), device=d)), lambda t, d: [2], 1e-3, 1e-5, 1e-3, _signed_types_no_half, False), # lapack tests ('qr', 'square', _small_2d, lambda t, d: [], 1e-5, 1e-5, 3e-4, _float_types_no_half, False, [skipCUDAIfNoMagma]), ('qr', 'skinny', _new_t((3, 4)), lambda t, d: [], 1e-5, 1e-5, 3e-4, _float_types_no_half, False, [skipCUDAIfNoMagma]), ('qr', 'fat', _new_t((4, 3)), lambda t, d: [], 1e-5, 1e-5, 3e-4, _float_types_no_half, False, [skipCUDAIfNoMagma]), ('qr', 'big', _large_2d, lambda t, d: [], 1e-5, 1e-5, 3e-4, _float_types_no_half, False, [skipCUDAIfNoMagma]), ('geqrf', '', _new_t((20, 20)), lambda t, d: [], 1e-5, 1e-5, 3e-4, _float_types_no_half, False, [skipCUDAIfNoMagma]), ('eig', 'with_eigvec', _new_t((10, 10)), lambda t, d: [True], 1e-5, 1e-5, 1e-5, _float_types_no_half, False, [skipCUDAIfNoMagma]), ('abs', '', _small_3d, lambda t, d: []), ('sign', '', _small_3d, lambda t, d: []), ('log', '', _small_3d, lambda t, d: [], 1e-2, 1e-1, 1e-5, _float_types2), ('log10', '', _small_3d, lambda t, d: [], 1e-2, 1e-1, 1e-5, _float_types2), ('log1p', '', _small_3d, lambda t, d: [], 1e-3, 1e-1, 1e-5, _float_types_no_half), ('log2', '', _small_3d, lambda t, d: [], 1e-2, 1e-1, 1e-5, _float_types2), ('sigmoid', '', _small_3d, lambda t, d: [], 1e-3, 1e-2, 1e-5, _float_types2), ('sin', '', _small_3d, lambda t, d: [], 1e-3, 1e-5, 1e-5, _float_types), ('sqrt', '', _small_3d, lambda t, d: [], 1e-3, 1e-5, 1e-5, _float_types), ('tanh', '', _small_3d, lambda t, d: [], 1e-3, 1e-5, 1e-5, _float_types), ('acos', '', _small_3d, lambda t, d: [], 1e-3, 1e-5, 1e-5, _float_types), ('asin', '', _small_3d, lambda t, d: [], 1e-3, 1e-5, 1e-5, _float_types), ('atan', '', _small_3d, lambda t, d: [], 1e-3, 1e-5, 1e-5, _float_types), ('cos', '', _small_3d, lambda t, d: [], 1e-3, 1e-5, 1e-5, _float_types), ('cosh', '', _small_3d, lambda t, d: [], 1e-2, 1e-5, 1e-5, _float_types), ('erf', '', _small_3d, lambda t, d: [], 1e-3, 1e-5, 1e-5, _float_types), ('erfc', '', _small_3d, lambda t, d: [], 1e-3, 1e-5, 1e-5, _float_types), ('exp', '', _small_3d, lambda t, d: [], 1e-2, 1e-5, 1e-5, _float_types), ('expm1', '', _small_3d, lambda t, d: [], 1e-2, 1e-5, 1e-5, _float_types), ('reciprocal', '', _small_3d, lambda t, d: [], 1e-1, 1e-5, 1e-5, _float_types), ('floor', '', _small_3d, lambda t, d: [], 1e-5, 1e-5, 1e-5, _float_types), ('frac', '', _small_3d, lambda t, d: [], 1e-5, 1e-5, 1e-5, _float_types), ('neg', '', _small_3d, lambda t, d: [], 1e-5, 1e-5, 1e-5, _float_types2), ('round', '', _small_3d, lambda t, d: [], 1e-5, 1e-5, 1e-5, _float_types), ('trunc', '', _small_3d, lambda t, d: [], 1e-5, 1e-5, 1e-5, _float_types), ('ceil', '', _small_3d, lambda t, d: [], 1e-5, 1e-5, 1e-5, _float_types), ('lgamma', '', _small_3d, lambda t, d: [], 1e-2, 1e-5, 1e-5, _float_types_no_half), ('digamma', 'op', _small_3d, lambda t, d: [], 1e-5, 1e-5, 1e0, _float_types_no_half), ] # Creates and decorates a generic test and adds it to the class. def generate_test_function(cls, op_str, subtest_str, tensor_ctor, arg_ctor, half_precision, bfloat16_precision, float_precision, dtype_list, decorators): def fn(self, device, dtype): # Generates the CPU inputs # Note: CPU tensors are never torch.half cpu_tensor = tensor_ctor(dtype, 'cpu') cpu_args = arg_ctor(dtype, 'cpu') # Converts CPU tensors to device tensors device_tensor = cpu_tensor.to(dtype=dtype, device=device) device_args = [arg.to(device=device) if torch.is_tensor(arg) else arg for arg in cpu_args] # Converts float device tensors to half/bfloat16 when the dtype is half/bfloat16 # Note: CPU half tensors don't support many operations. if dtype in {torch.half, torch.bfloat16}: device_args = [arg.to(dtype=dtype) if (torch.is_tensor(arg) and arg.dtype == torch.float) else arg for arg in device_args] # Runs the tensor op on CPU and device cpu_result = getattr(cpu_tensor, op_str)(*cpu_args) device_result = getattr(device_tensor, op_str)(*device_args) dtype2precision = {torch.half : half_precision, torch.bfloat16 : bfloat16_precision} # Compares CPU and device inputs and outputs precision = dtype2precision.get(dtype, float_precision) self.assertEqual(cpu_tensor, device_tensor, prec=precision, exact_dtype=False) self.assertEqual(cpu_args, device_args, prec=precision, exact_dtype=False) self.assertEqual(cpu_result, device_result, prec=precision, exact_dtype=False) test_name = "test_" + op_str + subtest_str assert not hasattr(cls, test_name), "{0} already in TestDevicePrecision".format(test_name) # Constructs decorator list and applies decorators if decorators is None: decorators = [dtypes(*dtype_list)] else: decorators = decorators + [dtypes(*dtype_list)] for dec in decorators: fn = dec(fn) setattr(cls, test_name, fn) # Instantiates variants of tensor_op_tests and adds them to the given class. def generate_tensor_op_tests(cls): def caller(cls, op_str, subtest_str, tensor_ctor, arg_ctor, half_precision=1e-5, bfloat16_precision=1e-5, float_precision=1e-5, dtype_list=_types, make_inplace_variant=True, decorators=None): if subtest_str: subtest_str = '_' + subtest_str generate_test_function(cls, op_str, subtest_str, tensor_ctor, arg_ctor, half_precision, bfloat16_precision, float_precision, dtype_list, decorators) if make_inplace_variant: op_str = op_str + '_' subtest_str = 'inplace' + subtest_str generate_test_function(cls, op_str, subtest_str, tensor_ctor, arg_ctor, half_precision, bfloat16_precision, float_precision, dtype_list, decorators) for test in tensor_op_tests: caller(cls, *test) tensor_binary_ops = [ '__lt__', '__le__', '__gt__', '__ge__', '__eq__', '__ne__', '__add__', '__radd__', '__iadd__', '__sub__', '__rsub__', '__isub__', '__mul__', '__rmul__', '__imul__', '__matmul__', '__rmatmul__', '__imatmul__', '__truediv__', '__rtruediv__', '__itruediv__', '__floordiv__', '__rfloordiv__', '__ifloordiv__', '__mod__', '__rmod__', '__imod__', '__divmod__', '__rdivmod__', '__idivmod__', '__pow__', '__rpow__', '__ipow__', '__lshift__', '__rlshift__', '__ilshift__', '__rshift__', '__rrshift__', '__irshift__', '__and__', '__rand__', '__iand__', '__xor__', '__rxor__', '__ixor__', '__or__', '__ror__', '__ior__', ] # Test that binary math operations return NotImplemented for unknown types. def generate_not_implemented_tests(cls): class UnknownType: pass for op in tensor_binary_ops: @dtypes(*_types) def test(self, device, dtype): # Generate the inputs tensor = _small_2d(dtype, device) # Runs the tensor op on the device result = getattr(tensor, op)(UnknownType()) self.assertEqual(result, NotImplemented) test_name = "test_{}_not_implemented".format(op) assert not hasattr(cls, test_name), "{0} already in {1}".format( test_name, cls.__name__) setattr(cls, test_name, test) class TestTensorDeviceOps(TestCase): exact_dtype = True def _test_svd_helper(self, shape, some, col_maj, device, dtype): cpu_tensor = torch.randn(shape, device='cpu').to(dtype) device_tensor = cpu_tensor.to(device=device) if col_maj: cpu_tensor = cpu_tensor.t() device_tensor = device_tensor.t() cpu_result = torch.svd(cpu_tensor, some=some) device_result = torch.svd(device_tensor, some=some) m = min(cpu_tensor.shape[-2:]) # torch.svd returns torch.return_types.svd which is a tuple of (U, V, S). # - When some==False, U[..., m:] can be arbitrary. # - When some==True, U shape: [..., m], V shape: [m, m] # - Signs are not deterministic. If the sign of a column of U is changed # then the corresponding column of the V has to be changed. # Thus here we only compare result[..., :m].abs() from CPU and device. for x, y in zip(cpu_result, device_result): self.assertEqual(x[..., :m].abs(), y[..., :m].abs(), prec=1e-5) @skipCUDAIfNoMagma @dtypes(*_float_types_no_half) def test_svd_square(self, device, dtype): self._test_svd_helper((10, 10), True, False, device, dtype) @skipCUDAIfNoMagma @dtypes(*_float_types_no_half) def test_svd_square_col_maj(self, device, dtype): self._test_svd_helper((10, 10), True, True, device, dtype) @skipCUDAIfNoMagma @dtypes(*_float_types_no_half) def test_svd_tall_some(self, device, dtype): self._test_svd_helper((20, 5), True, False, device, dtype) @skipCUDAIfNoMagma @dtypes(*_float_types_no_half) def test_svd_tall_all(self, device, dtype): self._test_svd_helper((20, 5), False, False, device, dtype) @skipCUDAIfNoMagma @dtypes(*_float_types_no_half) def test_svd_tall_some_col_maj(self, device, dtype): self._test_svd_helper((5, 20), True, True, device, dtype) @skipCUDAIfNoMagma @dtypes(*_float_types_no_half) def test_svd_tall_all_col_maj(self, device, dtype): self._test_svd_helper((5, 20), False, True, device, dtype) class TestTorch(TestCase, _TestTorchMixin): exact_dtype = True # Generates tests # Note: test generation must be done at file scope, not within main, or # pytest will fail. add_neg_dim_tests() generate_tensor_op_tests(TestTensorDeviceOps) generate_not_implemented_tests(TestTorchDeviceType) instantiate_device_type_tests(TestTorchDeviceType, globals()) instantiate_device_type_tests(TestViewOps, globals()) instantiate_device_type_tests(TestDevicePrecision, globals(), except_for='cpu') instantiate_device_type_tests(TestTensorDeviceOps, globals(), except_for='cpu') if __name__ == '__main__': run_tests()